Research article Special Issues

On certain properties of three parametric kinds of Apostol-type unified Bernoulli-Euler polynomials

  • In this paper, we define the three parametric types of Apostol-type unified Bernoulli-Euler polynomials. We present fundamental properties of these polynomials through the utilization of their generating functions. Furthermore, we derive the partial derivatives of these polynomials. Subsequently, we introduce bivariate polynomials and determine their zeros, graphical representations, and approximation values for specific parameters.

    Citation: William Ramírez, Can Kızılateş, Daniel Bedoya, Clemente Cesarano, Cheon Seoung Ryoo. On certain properties of three parametric kinds of Apostol-type unified Bernoulli-Euler polynomials[J]. AIMS Mathematics, 2025, 10(1): 137-158. doi: 10.3934/math.2025008

    Related Papers:

    [1] Can Kızılateş, Halit Öztürk . On parametric types of Apostol Bernoulli-Fibonacci, Apostol Euler-Fibonacci, and Apostol Genocchi-Fibonacci polynomials via Golden calculus. AIMS Mathematics, 2023, 8(4): 8386-8402. doi: 10.3934/math.2023423
    [2] Rabeb Sidaoui, Abdulghani Muhyi, Khaled Aldwoah, Ayman Alahmade, Mohammed Rabih, Amer Alsulami, Khidir Mohamed . A family of trivariate Gould-Hopper-Bell-Apostol-Type polynomials: Construction and properties. AIMS Mathematics, 2025, 10(6): 13251-13277. doi: 10.3934/math.2025594
    [3] Letelier Castilla, William Ramírez, Clemente Cesarano, Shahid Ahmad Wani, Maria-Fernanda Heredia-Moyano . A new class of generalized Apostol–type Frobenius–Euler polynomials. AIMS Mathematics, 2025, 10(2): 3623-3641. doi: 10.3934/math.2025167
    [4] Li Chen, Dmitry V. Dolgy, Taekyun Kim, Dae San Kim . Probabilistic type 2 Bernoulli and Euler polynomials. AIMS Mathematics, 2024, 9(6): 14312-14324. doi: 10.3934/math.2024696
    [5] Dojin Kim, Patcharee Wongsason, Jongkyum Kwon . Type 2 degenerate modified poly-Bernoulli polynomials arising from the degenerate poly-exponential functions. AIMS Mathematics, 2022, 7(6): 9716-9730. doi: 10.3934/math.2022541
    [6] Waseem A. Khan, Abdulghani Muhyi, Rifaqat Ali, Khaled Ahmad Hassan Alzobydi, Manoj Singh, Praveen Agarwal . A new family of degenerate poly-Bernoulli polynomials of the second kind with its certain related properties. AIMS Mathematics, 2021, 6(11): 12680-12697. doi: 10.3934/math.2021731
    [7] Mohra Zayed, Gamal Hassan . On the approximation of analytic functions by infinite series of fractional Ruscheweyh derivatives bases. AIMS Mathematics, 2024, 9(4): 8712-8731. doi: 10.3934/math.2024422
    [8] Mohra Zayed, Waseem Ahmad Khan, Cheon Seoung Ryoo, Ugur Duran . An exploratory study on bivariate extended q-Laguerre-based Appell polynomials with some applications. AIMS Mathematics, 2025, 10(6): 12841-12867. doi: 10.3934/math.2025577
    [9] Waseem Ahmad Khan, Kottakkaran Sooppy Nisar, Dumitru Baleanu . A note on (p, q)-analogue type of Fubini numbers and polynomials. AIMS Mathematics, 2020, 5(3): 2743-2757. doi: 10.3934/math.2020177
    [10] Tabinda Nahid, Mohd Saif, Serkan Araci . A new class of Appell-type Changhee-Euler polynomials and related properties. AIMS Mathematics, 2021, 6(12): 13566-13579. doi: 10.3934/math.2021788
  • In this paper, we define the three parametric types of Apostol-type unified Bernoulli-Euler polynomials. We present fundamental properties of these polynomials through the utilization of their generating functions. Furthermore, we derive the partial derivatives of these polynomials. Subsequently, we introduce bivariate polynomials and determine their zeros, graphical representations, and approximation values for specific parameters.



    In recent years, a number of scholars have made significant contributions to the development of generating functions for newly discovered families of special polynomials, such as Bernoulli, Euler, and Genocchi polynomials. These researchers have successfully established the essential properties of these polynomials and have derived a variety of identities and relationships connecting trigonometric functions with two types of special polynomials using generating functions. Additionally, by applying the partial derivative operator to these generating functions, several derivative formulae and finite combinatorial sums involving the aforementioned polynomials and numbers have been obtained. Let N,Z,R and C indicate the set of positive integers, the set of integers, the set of real numbers, and the set of complex numbers, respectively. Let αN xR, and λC (or R). The two classical polynomials, specifically the Bernoulli polynomials (BP) denoted as Bn(x) and the Euler polynomials (EP) represented as En(x), have a rich history dating back centuries and have found extensive applications across diverse mathematical domains. Notably, they have played a pivotal role in finite difference calculus and number theory, as substantiated by references [1,2,4,5,7,13,27,28]. It is worth emphasizing that these polynomials are characterized by the following exponential generating functions:

    textet1=n=0Bn(x)tnn!, |t|<2π

    and

    2extet+1=n=0En(x)tnn!, |t|<π.

    Because of their importance, numerous extensions for these polynomials and others that share similar structures have been extensively investigated, leading to some fascinating results [3,9,10,11,15,20,21]. For instance, one can consider the generalized Bernoulli polynomials denoted by B(α)n(x) and generalized Euler polynomials denoted by E(α)n(x), where the parameter α specifies their order

    (tet1)αext=n=0B(α)n(x)tnn!,|t|<2π

    and

    (2et+1)αext=n=0E(α)n(x)tnn!, |t|<π.

    Referentially, please see [14,16]. Srivastava and Luo studied the Apostol-Bernoulli polynomials, B(α)n(x;λ), and the Apostol-Euler polynomials (AEP), E(α)n(x;λ), of order α in their work cited as [17, p. 917, Eq (1)], and [23, p. 395, Eq (1.18)]. The Apostol-Bernoulli polynomials B(α)n(x;λ) of order α are defined by means of the following exponential generating function.

    n=0B(α)n(x;λ)tnn!=(tλet1)αext. (1.1)

    Note that B(α)n(x;1)=B(α)n(x) denotes the Bernoulli polynomials of order α, and B(α)n(0;λ)=B(α)n(λ) denote the Apostol-Bernoulli numbers of order α, respectively. Setting α=1 into (1.1), we obtain B(1)n(λ)=Bn(λ) which are the so-called Apostol-Bernoulli numbers. The Apostol-Euler polynomials E(α)n(x;λ) of order α are defined by means of the following exponential generating function.

    n=0E(α)n(x;λ)tnn!=(2λet+1)αext. (1.2)

    By virtue of (1.2), we have E(α)n(x;1)=E(α)n(x) denot the Euler polynomials of order α and E(α)n(0;λ)=E(α)n(λ) denot the Apostol-Euler numbers of order α, respectively. Setting α=1 into (1.2), we obtain E(1)n(λ)=En(λ) which are the so-called Apostol-Euler numbers.

    Srivastava et al. [24,25] utilized both trigonometric generating functions and exponential generating functions to define two parameter special cases of the Apostol-Bernoulli, Apostol-Euler, and Apostol-Genocchi polynomials. Additionally, they presented the fundamental properties of these types of polynomials, which can also be found in other papers, such as [18,19,26]. These polynomials are defined as follows:

    n=0B(c,α)n(x,y;λ)tnn!=(tλet1)αextcos(yt), (1.3)
    n=0B(s,α)n(x,y;λ)tnn!=(tλet1)αextsin(yt), (1.4)
    n=0E(c,α)n(x,y;λ)tnn!=(2λet+1)αextcos(yt), (1.5)

    and

    n=0E(s,α)n(x,y;λ)tnn!=(2λet+1)αextsin(yt). (1.6)

    The symbols c and s appearing in the superscripts on the left-hand sides of these aforementioned Eqs (1.3)–(1.6) denote the presence of the trigonometric cosine and the trigonometric sine functions, respectively, in the generating functions on the corresponding right-hand sides.

    Recently, in the paper [8], a class of polynomials denoted as Unified Bernoulli-Euler Polynomials of Apostol-type (UBEPA), represented as Un(x;λ;μ), was introduced and their properties were systematically examined by Belbachir et al. These UBEPA are defined through the following power series:

    2μ+μ2tλet+(1μ)ext=n=0Un(x;λ;μ)tnn!, (1.7)

    where

    |ln(λ1μ)+t|<π,0μ<1

    and

    |ln(λμ1)+t|<2π,otherwise.

    It is worth noting that by choosing specific values for the parameters μ and λ in Eq (1.7), we can get the well-known Bernoulli, Euler, Apostol-Bernoulli, and Apostol-Euler polynomials. However, this formulation does not encompass the unified polynomials of order α, nor does it take into account the Frobenius-Euler Polynomials (FEP), denoted as Hn(x;u), which are defined using the following generating function:

    1uetuext=n=0Hn(x;u)tnn!, |t|<|log1u|.

    For more detail about Frobenius-Euler polynomials, please see [22] and [6, p. 2, Def. 1]. For real parameters y and z, the Taylor series representations of the following functions in t=0 are given by:

    Gcc(t;y;z)=cos(yt)cos(zt)=n=0Cccn(y,z)tnn!, (1.8)
    Gss(t;y;z)=sin(yt)sin(zt)=n=0Sssn(x,y)znn!, (1.9)
    Gcs(t;y;z)=cos(yt)sin(zt)=n=0Ccsn(y,z)tnn!, (1.10)
    Gsc(t;y;z)=sin(yt)cos(zt)=n=0Sscn(y,z)tnn!, (1.11)

    where the expressions Cccn(y,z), Sssn(y,z), Ccsn(y,z), and Sscn(y,z) are given by:

    Cccn(y,z)=[n2]k=0(1)n(2n2k)z2n2ky2k,
    Sccn(y,z)=[n12]k=0(1)n(2n+12k)2k+1z2n2k+1y2k+1,
    Ccsn(y,z)=[n12]k=0(1)n(2n+12k)z2n2k+1y2k,
    Sscn(y,z)=[n12]k=0(2n+1)(1)n(2n2k)2k+1z2n2ky2k.

    Motivated by the above-cited recent papers, we define the three parametric kinds of Apostol-type unified Bernoulli-Euler polynomials. Utilizing the generating functions with their functional equations, some properties of these polynomials are given. Then we give the partial derivatives of these newly established polynomials. As a special cases of these types of polynomials, we define two parametric kinds of Apostol-type unified Bernoulli-Euler polynomials and give some properties of these polynomials. Moreover, by using a computer program, we obtain certain zeros of two parametric kinds of Apostol-type unified Bernoulli-Euler polynomials UCyn(x;y;λ;μ) and USyn(x;y;λ;μ) and beautifully graphical representations of them.

    In this section, by virtue of the above Eqs (1.7)–(1.11), we define the three parametric kinds of Apostol-type unified Bernoulli-Euler polynomials.

    Definition 2.1. For λ,μC, three parametric kinds of Apostol-type unified Bernoulli-Euler polynomials, are defined through the following generating function:

    Fcc(t;x;y;z;λ;μ)=2μ+μ2tλet+(1μ)extcos(yt)cos(zt)=n=0UCyCzn(x;y;z;λ;μ)tnn!, (2.1)
    Fss(t;x;y;z;λ;μ)=2μ+μ2tλet+(1μ)extsin(yt)sin(zt)=n=0USySzn(x;y;z;λ;μ)tnn!, (2.2)
    Fcs(t;x;y;z;λ;μ)=2μ+μ2tλet+(1μ)extcos(yt)sin(zt)=n=0UCySzn(x;y;z;λ;μ)tnn!, (2.3)
    Fsc(t;x;y;z;λ;μ)=2μ+μ2tλet+(1μ)extsin(yt)cos(zt)=n=0USyCzn(x;y;z;λ;μ)tnn!, (2.4)

    where

    |ln(λ1μ)+t|<π,0μ<1

    and

    |ln(λμ1)+t|<2π,otherwise.

    We now give the following items and examples of some special polynomials related to these extensions.

    ● For μ=0 and λ=1, Eqs (2.1) and (2.4) become the three variables of Euler polynomials.

    ● For μ=z=0 and λ=1, Eqs (2.1) and (2.4) become the two variables of Euler polynomials.

    ● For μ=2 and λ=1, Eqs (2.1) and (2.4) become the three variables of Bernoulli polynomials.

    ● For μ=2, λ=1, and z=0, Eqs (2.1) and (2.4) become the two variables of Bernoulli polynomials.

    ● For μ=2, Eqs (2.1) and (2.4) become the three variables of Apostol-Bernoulli polynomials.

    ● For μ=2 and z=0, Eqs (2.1) and (2.4) become the two variables of Apostol-Bernoulli polynomials.

    ● For μ=0, Eqs (2.1) and (2.4) become the three variables of Apostol-Euler polynomials.

    ● For μ=z=0, Eqs (2.1) and (2.4) become the two variables of Apostol-Euler polynomials.

    Example 2.1. The first three terms of UCyCzn(x;y;z;λ;μ) polynomials in the variable x, y and z, are as follows:

    UCyCz0(x;y;z;λ;μ)=2+μ1λ+μ,UCyCz1(x;y;z;λ;μ)=2λ(1+λμ)2+2x1+λμ+λμ(1+λμ)2+μ2(1+λμ)xμ1+λμ,UCyCz2(x;y;z;λ;μ)=2λ(1+λμ)3+2λ2(1+λμ)34xλ(1+λμ)2+2x21+λμ2y21+λμ2z21+λμ+3λμ(1+λμ)3λ2μ(1+λμ)3λμ(1+λμ)2+2xλμ(1+λμ)2+xμ1+λμx2μ1+λμ+y2μ1+λμ+z2μ1+λμλμ2(1+λμ)3.

    Example 2.2. The first four terms of USySzn(x;y;z;λ;μ) polynomials in the variables x, y, and z are as follows:

    USySz0(x;y;z;λ;μ)=0,USySz1(x;y;z;λ;μ)=0,USySz2(x;y;z;λ;μ)=4yz1λ+μ+2yzμ1λ+μ,USySz3(x;y;z;λ;μ)=12yzλ(1+λμ)2+12xyz1+λμ+6yzλμ(1+λμ)2+3yzμ1+λμ6xyzμ1+λμ,USySz4(x;y;z;λ;μ)=24yzλ(1+λμ)3+24yzλ2(1+λμ)348xyzλ(1+λμ)2+24x2yz1+λμ(8y3z1+λμ8yz31+λμ+36yzλμ(1+λμ)312yzλ2μ(1+λμ)312yzλμ(1+λμ)2+24xyzλμ(1+λμ)2+12xyzμ1+λμ12x2yzμ1+λμ+4y3zμ1+λμ+4yz3μ1+λμ12yzλμ2(1+λμ)3.

    Example 2.3. The first three terms of UCySzn(x;y;z;λ;μ) polynomials in the variables x, y, and z are as follows:

    UCySz0(x;y;z;λ;μ)=0,UCySz1(x;y;z;λ;μ)=2z1λ+μ+zμ1λ+μ,UCySz2(x;y;z;λ;μ)=4zλ(1+λμ)2+4xz1+λμ+2zλμ(1+λμ)2+zμ1+λμ2xzμ1+λμ,UCySz3(x;y;z;λ;μ)=6zλ(1+λμ)3+6zλ2(1+λμ)312xzλ(1+λμ)2+6x2z1+λμ6y2z1+λμ2z31+λμ+9zλμ(1+λμ)33zλ2μ(1+λμ)33zλμ(1+λμ)2+6xzλμ(1+λμ)2+3xzμ1+λμ3x2zμ1+λμ+3y2zμ1+λμ+z3μ1+λμ3zλμ2(1+λμ)3.

    Example 2.4. The first three terms of USyCzn(x;y;z;λ;μ) polynomials in the variables x, y, and z are as follows:

    USyCz0(x;y;z;λ;μ)=0,USyCz1(x;y;z;λ;μ)=2y1λ+μ+yμ1λ+μ,USyCz2(x;y;z;λ;μ)=4yλ(1+λμ)2+4xy1+λμ+2yλμ(1+λμ)2+yμ1+λμ2xyμ1+λμ,USyCz3(x;y;z;λ;μ)=6yλ(1+λμ)3+6yλ2(1+λμ)312xyλ(1+λμ)2+6x2y1+λμ6y2y1+λμ2y31+λμ+9yλμ(1+λμ)33yλ2μ(1+λμ)33yλμ(1+λμ)2+6xyλμ(1+λμ)2+3xyμ1+λμ3x2yμ1+λμ+3yz2μ1+λμ+y3μ1+λμ3yλμ2(1+λμ)3.

    We now give some properties for these polynomials in the following Theorems.

    Theorem 2.1. Let {UCyCzn(x;y;z;λ;μ)}n0, {UCySzn(x;y;z;λ;μ)}n0, {USySzn(x;y;z;λ;μ)}n0 and {USyCzn(x;y;z;λ;μ)}n0 are the three parametric kinds of Apostol-type unified Bernoulli-Euler polynomials. Then, we have:

    UCyCzn(x;y;z;λ;μ)=nk=0(nk)Unk(x;λ;u)Ccck(y,z), (2.5)
    UCySzn(x;y;z;λ;μ)=nk=0(nk)Unk(x;λ;u)Ccsk(y,z), (2.6)
    USySzn(x;y;z;λ;μ)=nk=0(nk)Unk(x;λ;u)Sssk(y,z), (2.7)
    USyCzn(x;y;z;λ;μ)=nk=0(nk)Unk(x;λ;u)Ssck(y,z). (2.8)

    Proof. For the proof Eq (2.5), using (1.7) and (1.8), we obtain

    n=0UCyCzn(x;y;z;λ;μ)tnn!=2μ+μ2tλet+(1μ)extcos(yt)cos(zt)=n=0Un(x;λ;μ)tnn!n=0Cccn(y,z)tnn!=n=0nk=0(nk) Unk(x;λ;μ)Ccck(y,z)tnn!.

    Equations (2.6)–(2.8) can be shown similarly.

    Theorem 2.2. Let {UCyCzn(x;y;z;λ;μ)}n0, {USySzn(x;y;z;λ;μ)}n0 be three parametric kinds of Apostol-type unified Bernoulli-Euler polynomials. Then, we obtain:

    Un(x;λ;μ)=UCyCzn(x;y;y;λ;μ)+USySzn(x;y;y;λ;μ)

    and

    UCyCzn(x;2y;0;λ;μ)=UCyCzn(x;y;y;λ;μ)USySzn(x;y;y;λ;μ).

    Proof. Substituting z=y in Eqs (2.1) and (2.2), respectively, we have

    2μ+μ2tλet+(1μ)extcos2(yt)=n=0UCyCzn(x;y;y;λ;μ)tnn!
    2μ+μ2tλet+(1μ)extsin2(yt)=n=0USySzn(x;y;y;λ;μ)tnn!.

    Adding the two previous expressions, we have

    2μ+μ2tλet+(1μ)ext[cos2(yt)+sin2(yt)]=n=0[UCyCzn(x;y;y;λ;μ)+USySzn(x;y;y;λ;μ)]tnn!.

    Because of the above equation, we obtain

    2μ+μ2tλet+(1μ)ext=n=0[UCyCzn(x;y;y;λ;μ)+USySzn(x;y;y;λ;μ)]tnn!.

    By equating coefficients, the desired result is obtained. Our second assertion in the theorem follows a very similar path, but instead of adding the expressions, we subtract them and also use the fact that, cos2(t)sin2(t)=cos(2t).

    Theorem 2.3. Let {UCySzn(x;y;z;λ;μ)}n0, {USyCzn(x;y;z;λ;μ)}n0 be two parametric kinds of Apostol-type unified Bernoulli-Euler polynomials. Then, we have:

    UCySzn(x;y;y;λ;μ)=USyCzn(x;y;y;λ;μ)=12UCySzn(x;0;2y;λ;μ).

    Proof. Substituting z=y in Eq (2.3), we have

    2μ+μ2tλet+(1μ)ext[2cos(yt)sin(yt)]=2n=0UCySzn(x;y;y;λ;μ)tnn!2μ+μ2tλet+(1μ)extsin(2yt)=2n=0UCySzn(x;y;y;λ;μ)tnn!.

    Then, we have

    n=0UCySzn(x;0;2y;λ;μ)tnn!=2n=0UCySzn(x;y;y;λ;μ)tnn!.

    By equating coefficients, the proof is completed.

    In this section, by applying the partial derivative of three parametric kinds of Apostol-type unified Bernoulli-Euler polynomials operator to Eqs (2.1)–(2.4), we will give the following results.

    Theorem 3.1. For n,m,kN, let {UCyCzn(x;y;z;λ;μ)}n0 be the sequence of three parametric kinds of Apostol-type unified Bernoulli-Euler polynomials; then the following statements hold:

    kxk{UCyCzn(x;y;z;λ;μ)}=k!(nk)UCyCznk(x;y;z;λ;μ), (3.1)
    kyk{UCyCzn(x;y;z;λ;μ)}=(1)k2k!(nk)UCyCznk(x;y;z;λ;μ), (3.2)
    kyk{UCyCzn(x;y;z;λ;μ)}=(1)k+12k!(nk)USyCznk(x;y;z;λ;μ), (3.3)
    kzk{UCyCzn(x;y;z;λ;μ)}=(1)k2k!(nk)UCyCznk(x;y;z;λ;μ),kzk{UCyCzn(x;y;z;λ;μ)}=(1)k+12k!(nk)UCySznk(x;y;z;λ;μ), (3.4)

    where denotes the integer part of .

    Proof. If we take the partial derivative of both sides with respect to x in Eq (2.1), we have

    n=0kxkUCyCzn(x;y;z;λ;μ)tnn!=2μ+μ2tλet+(1μ)cos(yt)cos(zt)kxkext=2μ+μ2tλet+(1μ)cos(yt)cos(zt)tkext.

    So, we obtain

    n=0kxkUCyCzn(x;y;z;λ;μ)tnn!=n=0UCyCzn(x;y;z;λ;μ)tn+kn!.

    Comparing the coefficients of tn in both sides of the above equation, we obtain our assertion (3.1).

    In Eq (2.1), we take the partial derivative of both sides with respect to y and use the following fact,

    kyk(cos(yt))={tkcos(yt)if k0(mod4),tksin(yt)if k1(mod4),tkcos(yt)if k2(mod4),tksin(yt)if k3(mod4).

    So, we achieve

    kykFcc(t;x;y;z;λ;μ)=2μ+μ2tλet+(1μ)ext(1)k/2tkcos(yt)cos(zt),
    kykFcc(t;x;y;z;λ;μ)=2μ+μ2tλet+(1μ)ext(1)(k+1)/2tksin(yt)cos(zt).

    By virtue of above identities, we have

    n=0kykUCyCzn(x;y;z;λ;μ)tnn!=(1)k/2n=0UCyCzn(x;y;z;λ;μ)tn+kn!,
    n=0kykUCyCzn(x;y;z;λ;μ)tnn!=(1)k+12n=0USyCzn(x;y;z;λ;μ)tn+kn!.

    Comparing the coefficients of tn on both sides of the above equation, we obtain our assertions (3.2) and (3.3).

    In Eq (2.1), we take the partial derivative of both sides with respect to z and use the following fact,

    kzk(cos(zt))={tkcos(zt)if k0(mod4),tksin(zt)if k1(mod4),tkcos(zt)if k2(mod4),tksin(zt)if k3(mod4).

    Thus, we have

    kzkFcc(t;x;y;z;λ;μ)=2μ+μ2tλet+(1μ)ext(1)k/2tkcos(yt)cos(zt),
    kzkFcc(t;x;y;z;λ;μ)=2μ+μ2tλet+(1μ)ext(1)(k+1)/2tksin(yt)cos(zt).

    Using the above identities, we have

    n=0kzkUCyCzn(x;y;z;λ;μ)tnn!=(1)k/2n=0UCyCzn(x;y;z;λ;μ)tn+kn!,
    n=0kzkUCyCzn(x;y;z;λ;μ)tnn!=(1)k+12n=0UCySzn(x;y;z;λ;μ)tn+kn!.

    Comparing the coefficients of tn on both sides of the above equation, we get our assertions (3.3) and (3.4).

    Theorem 3.2. For n,m,kN, let {USySzn(x;y;z;λ;μ)}n0 be the three parametric kinds of Apostol-type unified Bernoulli-Euler polynomials. Then the following identities hold:

    kxk{USySzn(x;y;z;λ;μ)}=k!(nk)USySznk(x;y;z;λ;μ), (3.5)
    kyk{USySzn(x;y;z;λ;μ)}=(1)k2k!(nk)USySznk(x;y;z;λ;μ), (3.6)
    kyk{USySzn(x;y;z;λ;μ)}=(1)(k1)2k!(nk)UCySznk(x;y;z;λ;μ), (3.7)
    kzk{USySzn(x;y;z;λ;μ)}=(1)k2k!(nk)USySznk(x;y;z;λ;μ), (3.8)
    kzk{USySzn(x;y;z;λ;μ)}=(1)(k1)2k!(nk)USyCznk(x;y;z;λ;μ), (3.9)

    where denotes the integer part of .

    Proof. If we take the partial derivative of both sides with respect to x in Equation (2.2), we find that

    n=0kxkUSySzn(x;y;z;λ;μ)tnn!=kxk[2μ+μ2tλet+(1μ)extsin(yt)sin(zt)]=2μ+μ2tλet+(1μ)sin(yt)sin(zt)kxkext=2μ+μ2tλet+(1μ)sin(yt)sin(zt)tkext.

    So, we have

    n=0kxkUSySzn(x;y;z;λ;μ)tnn!=n=0USySzn(x;y;z;λ;μ)tn+kn!.

    Comparing the coefficients of tn on both sides of the above equation, we obtain our assertion (3.5).

    In Eq (2.2), we take the partial derivative of both sides with respect to y and use the following fact

    kyksin(yt)={tksin(yt)if k0 (mod 4),tkcos(yt)if k1 (mod 4),tksin(yt)if k2 (mod 4),tkcos(yt)if k3 (mod 4).

    So, we obtain

    kykFss(t;x;y;z;λ;μ)=2μ+μ2tλet+(1μ)ext×({tksin(yt)sin(zt)if k0 (mod 4),tkcos(yt)sin(zt)if k1 (mod 4),tksin(yt)sin(zt)if k2 (mod 4),tkcos(yt)sin(zt)if k3 (mod 4).).

    Namely, we have

    kykFss(t;x;y;z;λ;μ)=2μ+μ2tλet+(1μ)ext(1)k/2tksin(yt)sin(zt),
    kykFss(t;x;y;z;λ;μ)=2μ+μ2tλet+(1μ)ext(1)(k1)/2tkcos(yt)sin(zt).

    Using the above identities, we have

    n=0kykUSySzn(x;y;z;λ;μ)tnn!=(1)k/2n=0USySzn(x;y;z;λ;μ)tn+kn!,
    n=0kykUSySzn(x;y;z;λ;μ)tnn!=(1)k12n=0UCySzn(x;y;z;λ;μ)tn+kn!.

    Comparing the coefficients of tn on both sides of the above Eqs (3.6) and (3.7), we obtain our assertions.

    In Eq (2.2), we take the partial derivative of both sides with respect to z and use the following fact,

    kzk(sin(zt))={tksin(zt)if k0(mod4),tkcos(zt)if k1(mod4),tksin(zt)if k2(mod4),tkcos(zt)if k3(mod4).

    So, we find that

    kzkFss(t;x;y;z;λ;μ)=2μ+μ2tλet+(1μ)ext(1)k/2tksin(yt)sin(zt),
    kzkFss(t;x;y;z;λ;μ)=2μ+μ2tλet+(1μ)ext(1)k12tksin(yt)cos(zt).

    By using the above identities, we have

    n=0kzkUSySzn(x;y;z;λ;μ)tnn!=(1)k2n=0USySzn(x;y;z;λ;μ)tn+kn!,
    n=0kzkUSySzn(x;y;z;λ;μ)tnn!=(1)(k1)2n=0USyCzn(x;y;z;λ;μ)tn+kn!.

    Comparing the coefficients of tn on both sides of the above Eqs (3.8) and (3.9), we obtain our assertions.

    Theorem 3.3. For n,m,kN, let {UCySzn(x;y;z;λ;μ)}n0 be the three parametric kinds of Apostol-type unified Bernoulli-Euler polynomials. Then the following identities hold:

    kxk{UCySzn(x;y;z;λ;μ)}=k!(nk)UCySznk(x;y;z;λ;μ),kyk{UCySzn(x;y;z;λ;μ)}=(1)k2k!(nk)UCySznk(x;y;z;λ;μ),kyk{UCySzn(x;y;z;λ;μ)}=(1)k+12k!(nk)USySznk(x;y;z;λ;μ),kzk{UCySzn(x;y;z;λ;μ)}=(1)k2k!(nk)UCySznk(x;y;z;λ;μ),kzk{UCySzn(x;y;z;λ;μ)}=(1)k+12k!(nk)USySznk(x;y;z;λ;μ),

    where denotes the integer part of .

    Proof. Using Eq (2.3), we have the following result.

    n=0kxkUCySzn(x;y;z;λ;μ)tnn!=2μ+μ2tλet+(1μ)cos(yt)sin(zt)kxkext=2μ+μ2tλet+(1μ)cos(yt)sin(zt)tkext.

    So, we get

    n=0kxkUCySzn(x;y;z;λ;μ)tnn!=n=0UCySzn(x;y;z;λ;μ)tn+kn!.

    Comparing the coefficients of tn on both sides of the above equation, we get our first statement; the other statements follow a similar path.

    Theorem 3.4. For n,m,kN, let {USyCzn(x;y;z;λ;μ)}n0 are the three parametric kinds of Apostol-type unified Bernoulli-Euler polynomials. Then, we find that:

    kxk{USyCzn(x;y;z;λ;μ)}=k!(nk)USyCznk(x;y;z;λ;μ),kyk{USyCzn(x;y;z;λ;μ)}=(1)k2k!(nk)USyCznk(x;y;z;λ;μ),kyk{USyCzn(x;y;z;λ;μ)}=(1)k12k!(nk)UCyCznk(x;y;z;λ;μ),kzk{USyCzn(x;y;z;λ;μ)}=(1)k2k!(nk)USyCznk(x;y;z;λ;μ),kzk{USyCzn(x;y;z;λ;μ)}=(1)k12k!(nk)USySznk(x;y;z;λ;μ),

    where denotes the integer part of .

    Proof. Using Eq (2.4), we have the following result.

    n=0kxkUSyCzn(x;y;z;λ;μ)tnn!=2μ+μ2tλet+(1μ)sin(yt)cos(zt)kxkext=2μ+μ2tλet+(1μ)sin(yt)cos(zt)tkext.

    So, we obtain

    n=0kxkUSyCzn(x;y;z;λ;μ)tnn!=n=0USyCzn(x;y;z;λ;μ)tn+kn!.

    By comparing the coefficients of tn on both sides of the equation, we arrive at our first statement. The other statements are derived through a similar reasoning process.

    In this section, we define the two parametric kinds of Apostol-type unified Bernoulli-Euler polynomials. Substituting z=0 in Eqs (2.1) and (2.4), we can give the following definition.

    Definition 4.1. For λ,μC, the two parametric kinds of Apostol-type unified Bernoulli-Euler polynomials, are defined through the following generating function:

    Fc(t;x;y;λ;μ)=2μ+μ2tλet+(1μ)extcos(yt)=n=0UCyn(x;y;λ;μ)tnn!,Fs(t;x;y;λ;μ)=2μ+μ2tλet+(1μ)extsin(yt)=n=0USyn(x;y;λ;μ)tnn!. (4.1)

    Theorem 4.1. For n,m,kN, let {UCyn(x;y;λ;μ)}n0 and {USyn(x;y;z;λ;μ)}n0 be the sequences of two parametric kinds of Apostol-type unified Bernoulli-Euler polynomials; then the following identities hold:

    UCyn(x;y;λ;μ)=[n2]k=0(1)k(n2k)Un2k(x;λ;μ)y2k

    and

    USyn(x;y;λ;μ)=[n12]k=0(1)k(n2k+1)Un12k(x;λ;μ)y2k+1. (4.2)

    Proof. By using Eq (1.7) and the complex series of the cosine, we have

    n=0UCyn(x;y;λ;μ)tnn!=2μ+μ2tλet+(1μ)extcos(yt)
    n=0UCyn(x;y;λ;μ)tnn!=n=0Un(x;λ;μ)tnn!n=0(1)ny2nt2n2n!.

    Applying the Cauchy series product, we have

    n=0UCyn(x;y;λ;μ)tnn!=n=0[n2]n=0(1)k(n2k)Un2k(x;λ;μ)y2ktnn!.

    By equating coefficients, the desired result is obtained. The proof of (4.2) follows a similar approach, where we employ (1.7) and the complex series of the sine.

    Theorem 4.2. The following identities hold true:

    UCyn(x+r;y;λ;μ)=nk=0(nk)UCyk(x;y;λ;μ)rnk (4.3)

    and

    USyn(x+r;y;λ;μ)=nk=0(nk)USyk(x;y;λ;μ)rnk. (4.4)

    Proof. By using the Eq (4.1), we find that

    n=0UCyn(x+r;y;λ;μ)tnn!=2μ+μ2tλet+(1μ)e(x+r)tcos(yt)=n=0UCyn(x;y;λ;μ)tnn!n=0(rt)nn!=n=0(nk=0(nk)UCyk(x;y;λ;μ)rnk)tnn!.

    Comparing the coefficients of tn on both sides of this last equation, we have

    UCyn(x+r;y;λ;μ)=nk=0(nk)UCyk(x;y;λ;μ)rnk,

    which proves the result (4.4). The assertion (4.3) can be proved similarly.

    In this section, certain zeros of the two parametric kinds of Apostol-type unified Bernoulli-Euler polynomials UCyn(x;y;λ;μ) and beautifully graphical representations are shown.

    A few of them are

    UCy0(x;y;λ;μ)=2+μ1λ+μ,UCy1(x;y;λ;μ)=2λ(1+λμ)2+2x1+λμ+λμ(1+λμ)2+μ2(1+λμ)xμ1+λμ,UCy2(x;y;λ;μ)=2λ(1+λμ)3+2λ2(1+λμ)34xλ(1+λμ)2+2x21+λμ2y21+λμ+3λμ(1+λμ)3λ2μ(1+λμ)3λμ(1+λμ)2+2xλμ(1+λμ)2+xμ1+λμx2μ1+λμ+y2μ1+λμλμ2(1+λμ)3,UCy3(x;y;λ;μ)=2λ(1+λμ)4+8λ2(1+λμ)42λ3(1+λμ)46xλ(1+λμ)3+6xλ2(1+λμ)36x2λ(1+λμ)2+6y2λ(1+λμ)2+2x31+λμ6xy21+λμ+5λμ(1+λμ)412λ2μ(1+λμ)4+λ3μ(1+λμ)43λμ2(1+λμ)3+9xλμ(1+λμ)3+3λ2μ2(1+λμ)33xλ2μ(1+λμ)33xλμ(1+λμ)2+3x2λμ(1+λμ)23y2λμ(1+λμ)2+3x2μ2(1+λμ)x3μ1+λμ3y2μ2(1+λμ)+3xy2μ1+λμ4λμ2(1+λμ)4+4λ2μ2(1+λμ)4+3λμ22(1+λμ)33xλμ2(1+λμ)3+λμ3(1+λμ)4.

    We investigate the beautiful zeros of the two parametric kinds of Apostol-type unified Bernoulli-Euler polynomials UCyn(x;y;λ;μ)=0 by using a computer. We plot the zeros of two parametric kinds of Apostol-type unified Bernoulli-Euler polynomials UCyn(x;y;λ;μ)=0 for n=40 (Figure 1).

    Figure 1.   Zeros of UCyn(x;y;λ;μ)=0.

    In Figure 1(top-left), we choose λ=2,μ=5, and y=π. In Figure 1(top-right), we choose λ=2,μ=5, and y=π2. In Figure 1(bottom-left), we choose λ=2,μ=5, and y=π3. In Figure 1(bottom-right), we choose λ=2,μ=5, and y=π4.

    Stacks of zeros of the two parametric kinds of Apostol-type unified Bernoulli-Euler polynomials type UCyn(x;y;λ;μ)=0 for 1ε40, forming a 3D structure, are presented (Figure 2). In Figure 2 (top-left), we choose λ=2,μ=5, and y=π. In Figure 2 (top-right), we choose λ=2,μ=5, and y=π2. In Figure 2 (bottom-left), we choose λ=2,μ=5, and y=π3. In Figure 2 (bottom-right), we choose λ=2,μ=5, and y=π4.

    Figure 2.   Zeros of UCyn(x;y;λ;μ)=0.

    Plots of real zeros of the two parametric kinds of Apostol-type unified Bernoulli-Euler polynomials UCyn(x;y;λ;μ)=0 for 1n40 are presented (Figure 3). In Figure 3 (top-left), we choose λ=2,μ=5, and y=π. In Figure 3 (top-right), we choose λ=2,μ=5, and y=π2. In Figure 3 (bottom-left), we choose λ=2,μ=5, and y=π3. In Figure 3 (bottom-right), we choose λ=2,μ=5, and y=π4.

    Figure 3.   Real zeros of UCyn(x;y;λ;μ)=0.

    Next, we calculated an approximate solution satisfying the two parametric kinds of Apostol-type unified Bernoulli-Euler polynomials UCyn(x;y;λ;μ)=0 for λ=2,μ=5, and y=π. The results are given in Table 1.

    Table 1.  Approximate solutions of UCyn(x;y;λ;μ)=0.
    degree n x
    1 -0.16667
    2 -3.0931, 2.7598
    3 -5.3271, 0.022080, 4.8051
    4 -7.4559, -0.97012, 1.0296, 6.7297
    5 -9.5327, -2.0616, 1.06441 - 0.49134 i, 1.06441 + 0.49134i, 8.6321
    6 -11.584, -2.8515, -0.87769, 1.8890 + 1.4399 i, 1.8890 - 1.4399i, 10.536
    7 -13.621, -3.6918, -0.88781 - 0.68377i, -0.88781 + 0.68377 i, 2.7381 - 2.2167i, 2.7381 + 2.2167 i, 12.446
    8 -15.649, -4.4325, -2.1661, -0.3586 - 1.5978 i, -0.3586 + 1.5978 i, 3.6336 - 2.9432 i, 3.6336 + 2.9432 i, 14.364
    9 -17.671, -5.1878, -2.2437 - 0.7223 i, -2.2437 + 0.7223 i, 0.2105 + 2.4649 i, 0.2105 - 2.4649 i, 4.5674 - 3.6322 i, 4.5674 + 3.6322 i, 16.291
    10 -19.689, -5.9057, -3.2565, -1.8925 + 1.6512 i, -1.8925 - 1.6512 i, 0.8405 - 3.2947i, 0.8405 + 3.2947 i, 5.5322 - 4.2897 i, 5.5322 + 4.2897 i, 18.224

     | Show Table
    DownLoad: CSV

    We investigate the beautiful zeros of the two parametric kinds of Apostol-type unified Bernoulli-Euler polynomials USyn(x;y;λ;μ)=0 by using a computer. We plot the zeros of two parametric kinds of Apostol-type unified Bernoulli-Euler polynomials USyn(x;y;λ;μ)=0 for n=40 (Figure 4). In Figure 4 (top-left), we choose λ=1,μ=3, and y=π.

    Figure 4.   Zeros of USyn(x;y;λ;μ)=0.

    In Figure 4 (top-right), we choose λ=1,μ=3, and y=π2. In Figure 4 (bottom-left), we choose λ=1,μ=3, and y=π3. In Figure 4 (bottom-right), we choose λ=1,μ=3, and y=π4.

    Stacks of zeros of the two parametric kinds of Apostol-type unified Bernoulli-Euler polynomials USyn(x;y;λ;μ)=0 for 2ε40, forming a 3D structure, are presented (Figure 5).

    Figure 5.   Zeros of USyn(x;y;λ;μ)=0.

    In Figure 5(top-left), we choose λ=1,μ=3, and y=π. In Figure 5(top-right), we choose λ=1,μ=3, and y=π2. In Figure 5(bottom-left), we choose λ=1,μ=3, and y=π3. In Figure 5(bottom-right), we choose λ=1,μ=3, and y=π4.

    Plots of real zeros of the two parametric kinds of Apostol-type unified Bernoulli-Euler polynomials USyn(x;y;λ;μ)=0 for 2n40 are presented (Figure 6).

    Figure 6.   Real zeros of USyn(x;y;λ;μ)=0.

    In Figure 6 (top-left), we choose λ=1,μ=3, and y=π. In Figure 6 (top-right), we choose λ=1,μ=3, and y=π2. In Figure 6 (bottom-left), we choose λ=1,μ=3, and y=π3. In Figure 6 (bottom-right), we choose λ=1,μ=3, and y=π4.

    Next, we calculated an approximate solution satisfying the two parametric kinds of Apostol-type unified Bernoulli-Euler polynomials USyn(x;y;λ;μ)=0 for λ=1,μ=3, and y=π. The results are given in Table 2.

    Table 2.  Approximate solutions of USyn(x;y;λ;μ)=0.
    degree n x
    2 0.50000
    3 -1.3815, 2.3815
    4 -2.7229, 0.42934, 3.7935
    5 -3.9186, -0.58148, 1.4253, 5.0748
    6 -5.0425, -1.4358, 0.55667, 2.1148, 6.3069
    7 -6.1297, -2.1173, -0.42912, 1.7145, 2.4412, 7.5205
    8 -7.1938, -2.7930, -0.55400, -0.30241, 2.8069 + 0.8621i, 2.8069 - 0.8621i, 8.7294
    9 -8.2433, -3.3840, -1.6647, 0.09379 - 1.04386 i, 0.09379 + 1.04386i, 3.5819 + 1.4587 i, 3.5819 - 1.4587 i, 9.9406
    10 -9.2825, -3.9907, -1.7136 + 0.5208 i, -1.7136 - 0.5208 i, 0.6149 - 1.7860 i, 0.6149 + 1.7860 i, 4.4064 - 2.0008 i, 4.4064 + 2.0008 i, 11.158
    11 -10.314, -4.5450, -2.7181, -1.3669 + 1.3569 i, -1.3669 - 1.3569 i, 1.1914 - 2.5026i, 1.1914 + 2.5026 i, 5.2728 - 2.5151 i, 5.2728 + 2.5151 i, 12.383

     | Show Table
    DownLoad: CSV

    The application of special polynomials is extensive and varied in scientific fields, encompassing areas such as signal processing, geoscience, engineering, and quantum mechanics. These polynomials play a pivotal role in numerical analysis and computational techniques, enabling the resolution of intricate issues across various scientific domains. Researchers in the field of applied mathematics have employed generating functions and function equations of special polynomials in numerous studies to investigate various topics. The results of these investigations have been documented in multiple research papers. In this paper, we have conducted an investigation into the two and three parametric kinds of Apostol-type unified Bernoulli-Euler polynomials, thus broadening the scope of certain special polynomial families that may or may not be present in the literature. Our research has yielded several essential properties of these newly established polynomials. Additionally, we have supplied zeroes and graphical illustrations for the two parametric kinds of Apostol-type unified Bernoulli-Euler polynomials. In [12], the authors constructed a new operator based on Hermite polynomials. Using this paper, researchers can obtain operators for the polynomials mentioned in this paper and study the approximation properties of these operators.

    All authors of this article have been contributed equally. All authors have read and approved the final version of the manuscript for publication

    The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this article.

    Clemente Cesarano and William Ramírez are the Guest Editors of special issue "Orthogonal polynomials and related applications" for AIMS Mathematics. Clemente Cesarano and William Ramírez were not involved in the editorial review and the decision to publish this article.



    [1] M. Abramowitz, I. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, Washington: US Government Printing Office, 1964.
    [2] N. Alam, W. A. Khan, C. Kızılateş, S. Obeidat, C. S. Ryoo, N. S. Diab, Some explicit properties of Frobenius-Euler-Genocchi polynomials with applications in computer modeling, Symmetry, 15 (2023), 1358. https://doi.org/10.3390/sym15071358 doi: 10.3390/sym15071358
    [3] O. Agratini, On a q-analogue of Stancu operators, Open Math., 8 (2010), 191–198. https://doi.org/10.2478/s11533-009-0057-9 doi: 10.2478/s11533-009-0057-9
    [4] T. M. Apostol, On the Lerch zeta function, Pacific J. Math., 1 (1951), 161–167.
    [5] T. M. Apostol, Introduction to analytic number theory, Berlin: Springer Science & Business Media, 1998.
    [6] S. Araci, M. Acikgoz, Construction of Fourier expansion of Apostol Frobenius-Euler polynomials and its applications, Adv. Differ. Equ., 2018 (2018), 67. https://doi.org/10.1186/s13662-018-1526-x doi: 10.1186/s13662-018-1526-x
    [7] D. Bedoya, C. Cesarano, W. Ramírez, L. Castilla, A new class of degenerate biparametric Apostol-type polynomials, Dolomites Res. Notes Approx., 16 (2023), 10–19. https://doi.org/10.14658/PUPJ-DRNA-2023-1-2 doi: 10.14658/PUPJ-DRNA-2023-1-2
    [8] H. Belbachir, Y. Djemmada, S. Hadj-Brahim, Unified Bern oulli-Euler polynomials of Apostol type, Indian J. Pure Appl. Math., 54 (2023), 76–83. https://doi.org/10.1007/s13226-022-00232-x doi: 10.1007/s13226-022-00232-x
    [9] L. Castilla, W. Ramírez, A. Urieles, An extended generalized-extensions for the Apostol Type polynomial, Abstr. Appl. Anal., 2018. https://doi.org/10.1155/2018/2937950 doi: 10.1155/2018/2937950
    [10] L. Comtet, Advanced combinatorics: The art of finite and infinite expansions, Berlin: Springer, 1974.
    [11] V. Gupta, New operators based on Laguerre polynomials, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 118 (2024). https://doi.org/10.1007/s13398-023-01521-8 doi: 10.1007/s13398-023-01521-8
    [12] V. Gupta, D. Malik, On a new Kantorovich operator based on Hermite polynomials, J. Appl. Math. Comput., 70 (2024), 2587–2602. https://doi.org/10.1007/s12190-024-02068-6 doi: 10.1007/s12190-024-02068-6
    [13] R. L. Graham, D. E. Knuth, O. Patashnik, S. Liu, Concrete mathematics: A foundation for computer science, Comput. Phys., 3 (1989), 106–107.
    [14] A. F. Horadam, Negative order Genocchi polynomials, Fibonacci Quart., 30 (1992), 21–34. https://doi.org/10.1080/00150517.1992.12429381 doi: 10.1080/00150517.1992.12429381
    [15] B. Kurt, A further generalization of the Bernoulli polynomials and on the 2D-Bernoulli polynomials B2n(x,y), Appl. Math. Sci., 47 (2010), 2315–2322.
    [16] G. D. Liu, H. M. Srivastava, Explicit formulas for the Norlund polynomials Bn(x) and bn(x), Comput. Math. Appl., 51 (2006), 1377–1384. https://doi.org/10.1016/j.camwa.2006.02.003 doi: 10.1016/j.camwa.2006.02.003
    [17] Q. M. Luo, Apostol-Euler polynomials of higher order and Gaussian hypergeometric functions, Taiwan. J. Math., 10 (2006), 917–925. https://doi.org/10.11650/twjm/1500403883 doi: 10.11650/twjm/1500403883
    [18] M. Masjed-Jamei, M. R. Beyki, W. Koepf, A new type of Euler polynomials and numbers, Mediterr. J. Math., 15 (2018), 138. https://doi.org/10.1007/s00009-018-1181-1 doi: 10.1007/s00009-018-1181-1
    [19] M. Masjed-Jamei, W. Koepf, Symbolic computation of some power-trigonometric series, J. Symbolic Comput., 80 (2017), 273–284. https://doi.org/10.1016/j.jsc.2016.03.004 doi: 10.1016/j.jsc.2016.03.004
    [20] Y. Quintana, W. Ramírez, A degenerate version of hypergeometric Bernoulli polynomials: announcement of results, Commun. Appl. Ind. Math., 15 (2024), 36–43. https://doi.org/10.2478/caim-2024-0011 doi: 10.2478/caim-2024-0011
    [21] W. Ramírez, C. Cesarano, S. Díaz, New results for degenerated generalized Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials, WSEAS Trans. Math., 21 (2022), 604–608. https://doi.org/10.37394/23206.2022.21.69 doi: 10.37394/23206.2022.21.69
    [22] W. Ramírez, M. Ortega, D. Bedoya, A. Urieles, New parametric Apostol-type Frobenius-Euler polynomials and their matrix approach, Kragujev. J. Math., 49 (2025), 411–429.
    [23] H. M. Srivastava, Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials, Appl. Math. Inf. Sci., 5 (2011), 390–444.
    [24] H. M. Srivastava, M. Masjed-Jamei, M. R. Beyki, Some new generalizations and applications of the Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials, Rocky Mountain J. Math., 49 (2019), 681–697. https://doi.org/10.1216/RMJ-2019-49-2-681 doi: 10.1216/RMJ-2019-49-2-681
    [25] H. M. Srivastava, M. Masjed-Jamei, M. RezaBeyki, A parametric type of the Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials, Appl. Math. Inf. Sci., 12 (2018), 907–916. http://doi.org/10.18576/amis/120502 doi: 10.18576/amis/120502
    [26] H. M. Srivastava, L. C. Kızı, A parametric kind of the Fubini-type polynomials, RACSAM, 113 (2019), 3253–3267. https://doi.org/10.1007/s13398-019-00687-4 doi: 10.1007/s13398-019-00687-4
    [27] M. Zayed, S. A. Wani, Properties and applications of generalized 1-parameter 3-variable Hermite-based Appell polynomials, AIMS Math., 9 (2024), 25145–25165. https://dx.doi.org/10.3934/math.20241226 doi: 10.3934/math.20241226
    [28] M. Zayed, S. A. Wani, M. Subzar, M. Riyasat, Certain families of differential equations associated with the generalized 1-parameter Hermite-Frobenius Euler polynomials, Math. Comput. Model. Dyn. Syst., 30 (2024), 683–700. https://doi.org/10.1080/13873954.2024.2396713 doi: 10.1080/13873954.2024.2396713
  • This article has been cited by:

    1. Awatif Muflih Alqahtani, Shahid Ahmad Wani, William Ramírez, Exploring differential equations and fundamental properties of Generalized Hermite-Frobenius-Genocchi polynomials, 2025, 10, 2473-6988, 2668, 10.3934/math.2025125
    2. Letelier Castilla, William Ramírez, Clemente Cesarano, Shahid Ahmad Wani, Maria-Fernanda Heredia-Moyano, A new class of generalized Apostol–type Frobenius–Euler polynomials, 2025, 10, 2473-6988, 3623, 10.3934/math.2025167
    3. Elif Sükrüoglu, Yilmaz Simsek, Formulas involving moment and interpolation functions for Apostol type polynomials via Nörlund Sum and Laplace transform, 2025, 0022247X, 129504, 10.1016/j.jmaa.2025.129504
    4. Hakan Akkuş, Bahar Kuloğlu, Engin Özkan, Analytical Characterization of Self-Similarity in k-Cullen Sequences Through Generating Functions and Fibonacci Scaling, 2025, 9, 2504-3110, 380, 10.3390/fractalfract9060380
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(712) PDF downloads(101) Cited by(4)

Figures and Tables

Figures(6)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog