Processing math: 100%
Research article

Generalized warped product submanifolds of Lorentzian concircular structure manifolds

  • Received: 15 March 2024 Revised: 14 May 2024 Accepted: 15 May 2024 Published: 27 May 2024
  • MSC : 53C15, 53C25, 53C40

  • We began by considering invariant, anti-invariant, proper slant, and pointwise slant submanifolds of a Lorentzian concircular structure manifold. Subsequently, we explored two distinct categories of warped product submanifolds. The first category encompassed the fiber submanifold as an anti-invariant submanifold, while the second category included the fiber submanifold as a pointwise slant submanifold. We established several fundamental results concerning these submanifold classes. Additionally, we demonstrated the existence of such submanifold classes through specific examples. Moreover, we derived inequalities for the squared norm of the second fundamental form.

    Citation: Tanumoy Pal, Ibrahim Al-Dayel, Meraj Ali Khan, Biswabismita Bag, Shyamal Kumar Hui, Foued Aloui. Generalized warped product submanifolds of Lorentzian concircular structure manifolds[J]. AIMS Mathematics, 2024, 9(7): 17997-18012. doi: 10.3934/math.2024877

    Related Papers:

    [1] Fatemah Mofarreh, S. K. Srivastava, Anuj Kumar, Akram Ali . Geometric inequalities of $ \mathcal{PR} $-warped product submanifold in para-Kenmotsu manifold. AIMS Mathematics, 2022, 7(10): 19481-19509. doi: 10.3934/math.20221069
    [2] Ibrahim Al-Dayel, Meraj Ali Khan . Ricci curvature of contact CR-warped product submanifolds in generalized Sasakian space forms admitting nearly Sasakian structure. AIMS Mathematics, 2021, 6(3): 2132-2151. doi: 10.3934/math.2021130
    [3] Amira A. Ishan, Meraj Ali Khan . Chen-Ricci inequality for biwarped product submanifolds in complex space forms. AIMS Mathematics, 2021, 6(5): 5256-5274. doi: 10.3934/math.2021311
    [4] Ali H. Alkhaldi, Akram Ali, Jae Won Lee . The Lawson-Simons' theorem on warped product submanifolds with geometric information. AIMS Mathematics, 2021, 6(6): 5886-5895. doi: 10.3934/math.2021348
    [5] Biswabismita Bag, Meraj Ali Khan, Tanumoy Pal, Shyamal Kumar Hui . Geometric analysis on warped product semi-slant submanifolds of a locally metallic Riemannian space form. AIMS Mathematics, 2025, 10(4): 8131-8143. doi: 10.3934/math.2025373
    [6] Fahad Sikander, Tanveer Fatima, Sharief Deshmukh, Ayman Elsharkawy . Curvature analysis of concircular trajectories in doubly warped product manifolds. AIMS Mathematics, 2024, 9(8): 21940-21951. doi: 10.3934/math.20241066
    [7] Özgür Boyacıoğlu Kalkan . On normal curves and their characterizations in Lorentzian n-space. AIMS Mathematics, 2020, 5(4): 3510-3524. doi: 10.3934/math.2020228
    [8] Ali H. Alkhaldi, Meraj Ali Khan, Shyamal Kumar Hui, Pradip Mandal . Ricci curvature of semi-slant warped product submanifolds in generalized complex space forms. AIMS Mathematics, 2022, 7(4): 7069-7092. doi: 10.3934/math.2022394
    [9] Andrea Ratto . Higher order energy functionals and the Chen-Maeta conjecture. AIMS Mathematics, 2020, 5(2): 1089-1104. doi: 10.3934/math.2020076
    [10] Mohammad Aamir Qayyoom, Rawan Bossly, Mobin Ahmad . On CR-lightlike submanifolds in a golden semi-Riemannian manifold. AIMS Mathematics, 2024, 9(5): 13043-13057. doi: 10.3934/math.2024636
  • We began by considering invariant, anti-invariant, proper slant, and pointwise slant submanifolds of a Lorentzian concircular structure manifold. Subsequently, we explored two distinct categories of warped product submanifolds. The first category encompassed the fiber submanifold as an anti-invariant submanifold, while the second category included the fiber submanifold as a pointwise slant submanifold. We established several fundamental results concerning these submanifold classes. Additionally, we demonstrated the existence of such submanifold classes through specific examples. Moreover, we derived inequalities for the squared norm of the second fundamental form.



    In the year 2003, Shaikh [18] introduced a fascinating mathematical concept known as (LCS)n-manifold, which stands for Lorentzian concircular structure manifold. This concept has profound implications in the field of general relativity. It was subsequently discovered that (LCS)n-spacetimes are intricately connected to generalized Robertson Walker spacetimes [10], a well-established framework in cosmology.

    The (LCS)n-structure has garnered considerable attention due to its wide-ranging applications in the general theory of relativity. Researchers, as evidenced by studies such as [19,20], have explored the various implications and consequences of this structure within the framework of Einstein's theory.

    One intriguing property of the (LCS)n-structure is its invariance under conformal transformations. This means that the structure remains unaltered when subjected to a conformal transformation, a mathematical operation that preserves angles but alters distances.

    The concept of slant submanifolds was first introduced in the seminal work by Chen [3]. Building upon this notion, the idea of slant immersions of Riemannian manifolds into almost contact metric manifolds was further developed by Lotta [9]. Pointwise slant submanifolds, another variant of this concept, were introduced and investigated by Etayo [7]. For more comprehensive information on these topics, one may read [13,17].

    To explore additional classes of submanifolds within this manifold framework, researchers are suggested to go through Atehui [1] and Hui et al. [8].

    The notion of warped product manifolds, on the other hand, originated from the pioneering work of Bishop and O'Neill [2] and has since been extensively studied in the literature, see [4,5,6,8,14,22,24]. The existence or non-existence of such product manifolds holds great significance, as it contributes to our understanding of the geometric structures and properties of these manifolds.

    Let (ˉΣ,g) be an n-dimensional Lorentzian manifold with Lorentzian metric g and ˉ be the Levi-Civita connection for g. The (LCS)n-manifold is defined as an n-dimensional Lorentzian manifold equipped with

    ξ, a unit timelike concircular vector field,

    η, ξ's associated 1-form,

    ● an (1,1) tensor field ϕ,

    such that

    ˉPξ=αϕP, (2.1)

    for some non-zero scalar function α which satisfies

    ˉPα=Pα=dα(P)=ρη(P), (2.2)

    where ρ=(ξα) is also a scalar and PΓ(TˉΣ). A (LCS)n-manifold becomes a LP-Sasakian manifold when α=1 [11,12].

    From [18], we get some basic relations in a (LCS)n-manifold (n>2) ˉΣ:

    η(ξ)=1,  ϕξ=0,   η(ϕP)=0,   g(ϕP,ϕQ)=g(P,Q)+η(P)η(Q), (2.3)
    ϕ2P=P+η(P)ξ, (2.4)
    (ˉPϕ)Q=α{g(P,Q)ξ+2η(P)η(Q)ξ+η(Q)P}, (2.5)

    for all P, Q, ZΓ(TˉΣ). Throughout the paper, we denote a (LCS)n-manifold by ˉΣ.

    We consider a submanifold ΣˉΣ with induced metric g and suppose that , denotes the induced connections on TΣ and TΣ of Σ, respectively. In this regard, the Gauss and Weingarten formulae are

    ˉPQ=PQ+ζ(P,Q), (2.6)

    and

    ˉPV=AVP+PV, (2.7)

    for all P,QΓ(TΣ) and VΓ(TΣ), where the second fundamental form is denoted by ζ and AV denotes the shape operator (corresponding to V) for the immersion ΣˉΣ such that g(ζ(P,Q),V)=g(AVP,Q).

    For PΓ(TΣ), the gradient i of a differentiable function i on Σ is defined by

    g(i,P)=Pi. (2.8)

    We also have

    (a) ϕP=hP+kP,  (b) ϕV=lV+fV, (2.9)

    for any PΓ(TΣ) and VΓ(TΣ), where hP, lV are the tangential components and kP, fV are the normal components.

    A submanifold ΣˉΣ is said to be invariant if ϕ(TpΣ)TpΣ and anti-invariant if ϕ(TpΣ)TpΣ for every pΣ.

    A submanifold ΣˉΣ is said to be slant if for each non-zero vector PTpΣ, the angle β(0βπ2) between ϕP and TpΣ is a constant, i.e., it is independent of the choice of pΣ. Again Σ is said to be pointwise slant of ˉΣ if β depends on P.

    From [21], we find that a submanifold ΣˉΣ with ξΓ(TΣ) is pointwise slant if and only if

    h2=cos2β(I+ηξ), (2.10)

    for some real valued function β defined on TΣ. Also if Dβ is a pointwise slant distribution on pointwise slant submanifold Σ with ξΓ(TΣ), then

    g(hZ,hW)=cos2β{g(Z,W)+η(Z)η(W)},   (2.11)
    g(kZ,kW)=sin2β{g(Z,W)+η(Z)η(W)}, (2.12)

    for any Z, WΓ(Dβ).

    Let (N1,g1) and (N2,g2) be two semi-Riemannian manifolds and i be a positive smooth function on N1. The warped product of (N1,g1) and (N2,g2) is denoted by N1×iN2:=(N1×N2,g), where

    g=g1+i2g2, (2.13)

    and i is the warping function. From [16], we have

    UP=PU=(Plni)U,PΓ(TN1) and UΓ(TN2). (2.14)

    We consider ΣI, Σ, Σβ, and Σψ as invariant, anti-invariant, proper slant, and proper pointwise slant submanifolds of ˉΣ. In this paper, we study the following two different classes of warped product submanifolds of ˉΣ.

    First Class: Σ=Σ1×iΣ with ξ tangent to Σ1, where Σ1=ΣI×Σβ. This class of submanifolds are known as warped product skew-CR submanifolds [15].

    Second Class: Σ=Σ2×iΣψ with ξ tangent to Σ2, where Σ2=ΣI×Σ. This class of submanifolds are known as warped product CR-slant submanifolds [23,25].

    Throughout this paper, we consider the tangent spaces of ΣI, Σ, Σβ,  and Σψ as DI, D, Dβ,  and  Dψ, respectively.

    First, we construct an example of a submanifold of the { First Class}.

    Example 1. Consider the Euclidean space R13 with the cartesian coordinates (u1,v1,,u6,v6,t) and para contact structure

    ϕ(ui)=vi,ϕ(vj)=uj,ϕ(t)=0,1i,j6.

    It is clear that R13 is a Lorentzian manifold with usual semi-Euclidean metric tensor. For any non-zero λ,τ, and β[0,π2], let Σ be a submanifold of R13 defined by the immersion map χ:R6R13 as

    χ(λ,τ,β,μ,ϱ,t)=(λcosβ,λsinβ,τcosβ,τsinβ,4λ+3τ,3λ+4τ,τcosβ,τsinβ,λcosβ,λsinβ,μ,ϱ,t).

    Then the tangent space of Σ is spanned by the following vectors

    J1=cosβu1+sinβv1+4u3+3v3cosβu5+sinβv5,J2=cosβu2+sinβv2+3u3+4v3cosβu4+sinβv4,J3=λsinβu1+λcosβv1τsinβu2+τcosβv2+τsinβu4+τcosβv4+λsinβu5+λcosβv5,J4=u6, J5=v6, and J6=t.

    Then we have

    ϕJ1=cosβv1+sinβu1+4v3+3u3cosβv5+sinβu5,ϕJ2=cosβv2+sinβu2+3v3+4u3cosβv4+sinβu4,
    ϕJ3=λsinβv1+λcosβu1τsinβv2+τcosβu2+τsinβv4+τcosβu4+λsinβv5+λcosβu5,ϕJ4=v6,ϕJ5=u6, andϕJ6=0.

    Therefore, it is clear that DI=span{J4, J5, J6} is an invariant distribution, Dβ=span{J1, J2} is a slant distribution with slant angle cos1(2527), and D=span{J3} is an anti-invaiant distribution. Hence Σ is a skew CR-submanifold. Denote the integral manifolds of DI, D, and Dβ by ΣI,Σ, and Σβ, respectively. Then the product metric g of Σ is given by

    g=dt2+27(dλ2+dτ2)+(dμ2+dϱ2)+2(λ2+τ2)dβ2.

    Consequently Σ is a warped product skew CR-submanifold of type Σ1×iΣ of R13, where Σ1=ΣI×Σβ with warping function i=2(λ2+τ2).

    We take dimΣI=2a+1, dimΣ=b, dimΣβ=2c and their corresponding tangent spaces are DI{ξ}, D, and Dβ, respectively.

    Assume that {x1,x2,,xa,xa+1=ϕx1, ,x2a=ϕxa,x2a+1=ξ}, {x2a+2=x1,,x2a+b+1=xb}, and {x2a+b+2=ˆx1,x2a+b+3=ˆx2,, x2a+b+c+1=ˆxc,x2a+b+c+2=ˆxc+1=secβhˆx1, ,x2a+b+2c+1(=xm)=ˆx2c=secβhˆxc} are local orthonormal frames of DI{ξ}, D, and Dβ, respectively.

    Then the local orthonormal frames for ϕD and kDβ are {xm+1=~x1=ϕx1,,xm+b=~xb=ϕxb} and {xm+b+1=˜xb+1=cscβkˆx1,, xm+b+c=˜xb+c=cscβkˆxc,xm+b+c+1=˜xb+c+1=cscβsecβkhˆx1, ,xm+b+2c=˜xb+2c=cscβsecβkhˆxc}, respectively. Also {xm+b+2c+1,,xn} is a normal subbundle. We denote it by ν. Clearly ν is ϕ invariant and dim ν=(nmb2c).

    First, we prove the following lemmas:

    Lemma 1. Let Σ=Σ1×iΣ be a warped product submanifold of ˉΣ such that ξ is tangent to Σ1=ΣI×Σβ. Then we have

    g(ζ(P,Q),ϕZ)=g(ζ(P,Z),kU)=g(ζ(P,U),ϕZ)=0, (3.1)

    and

    g(ζ(U,Z),kV)+g(ζ(U,V),ϕZ)=0, (3.2)

    for every P, QΓ(ΣI), ZΓ(Σ), and U,VΓ(Σβ).

    Proof. For P, QΓ(ΣI), ZΓ(Σ), and U,VΓ(Σβ), we find

    g(ζ(P,Q),ϕZ)=g(QϕP,Z)g((ˉQϕ)P,Z), (3.3)
    g(ζ(P,Z),kU)=g(ZϕP,U)g((ˉZϕ)P,U)+g(P,ZhU), (3.4)

    and

    g(ζ(P,U),ϕZ)=g(UϕP,Z)g((ˉUϕ)P,Z). (3.5)

    Using (2.5) and (2.14) in (3.3)–(3.5), we get (3.1).

    Also we have

    g(ζ(U,V),ϕZ)=g(hV,UZ)g((ˉUϕ)V,Z)+g(ˉUkV,Z). (3.6)

    Using (2.5) and (2.14) in (3.6), we get (3.2).

    Lemma 2. Let Σ=Σ1×iΣ be a warped product submanifold of ˉΣ such that ξ is tangent to Σ1=ΣI×Σβ. Then we have

    g(ζ(P,Z),ϕW)={(ϕPlni)αη(P)}g(Z,W), (3.7)
    g(ζ(ϕP,Z),ϕW)={(Plni)+αη(P)}g(Z,W), (3.8)

    and

    g(ζ(Z,U),ϕW)+g(ζ(Z,W),kU)={(hUlni)αη(U)}g(Z,W), (3.9)

    for every PΓ(ΣI), Z, WΓ(Σ), and UΓ(Σβ).

    Proof. For PΓ(ΣI), Z, WΓ(Σ), and UΓ(Σβ), we find

    g(ζ(P,Z),ϕW)=g(ˉZϕP,W)g((ˉZϕ)P,W). (3.10)

    Using (2.5) and (2.14) in (3.10), we get (3.7). Replacing P by ϕP and applying (ξlni)=α in (3.7), we get (3.8).

    Also we have

    g(ζ(Z,U),ϕW)=g(ˉZhU,W)+g(ˉZkU,W)g((ˉZϕ)U,W). (3.11)

    Using (2.5) and (2.14) in (3.11), we get (3.9).

    Corollary 1. Let Σ=Σ1×iΣ be a DDθ warped product submanifold of ˉΣ such that ξ is tangent to Σ1=ΣI×Σβ, then we have

    g(ζ(Z,W),kU)={(hUlni)αη(U)}g(Z,W), (3.12)

    and

    g(ζ(Z,W),khU)=cos2θ[(Ulni)αη(U)]g(Z,W), (3.13)

    for every Z, WΓ(Σ), and UΓ(Σβ).

    Now we establish an inequality on a submanifold Σ of the First Class of ˉΣ.

    Theorem 1. Let Σ=Σ1×iΣ be a DDβ mixed geodesic warped product submanifold of ˉΣ such that ξ is tangent to ΣI, where Σ1=ΣI×Σβ. Then the squared norm of the second fundamental form satisfies

    ζ2b[{2(Ilni2)}+cot2ββlni2], (3.14)

    where Ilni and βlni are the gradient of lni along ΣI and Σβ, respectively, and for the case of equality, Σ1 becomes totally geodesic and Σ becomes totally umbilical in ˉΣ.

    Proof. From (2.8), we have

    ζ2=mp,q=1g(ζ(xp,xq),ζ(xp,xq))=nr=m+1g(ζ(xp,xq),xr)2.

    Decomposing the above relation for our constructed frames, we get

    ζ2=nr=m+12a+1p,q=1g(ζ(xp,xq),xr)2+nr=m+1bp,q=1g(ζ(xp,xq),xr)2+nr=m+12ci,j=1g(ζ(^xp,^xq),xr)2+2nr=m+1bp=12cq=1g(ζ(xp,^xq),xr)2+2nr=m+1bp=12a+1q=1g(ζ(xp,xq),xr)2+2nr=m+12cp=12a+1q=1g(ζ(^xp,xq),xr)2. (3.15)

    Now, again decomposing (3.15) along the normal subbundles ϕD, kDβ, and ν, we get

    ζ2=m+br=m+12a+1p,q=1g(ζ(xp,xq),xr)2+m+b+2cr=m+b+12a+1p,q=1g(ζ(xp,xq),xr)2+nr=m+b+2c+12a+1p,q=1g(ζ(xp,xq),xr)2+m+br=m+1bp,q=1g(ζ(xp,xq),xr)2+m+b+2cr=m+b+1bp,q=1g(ζ(xp,xq),xr)2+nr=m+b+2c+1bp,q=1g(ζ(xp,xq),xr)2+m+br=m+12cp,q=1g(ζ(ˆxp,ˆxq),xr)2+m+b+2cr=m+b+12cp,q=1g(ζ(ˆxp,ˆxq),xr)2+nr=m+b+2c+12cp,q=1g(ζ(ˆxp,ˆxq),xr)2+2m+br=m+1bp=12cq=1g(ζ(xp,ˆxq),xr)2+2m+b+2cr=m+b+1bp=12cq=1g(ζ(xp,ˆxq),xr)2+2nr=m+b+2c+1bp=12cq=1g(ζ(xp,ˆxq),xr)2+2m+br=m+12a+1p=1bq=1g(ζ(xp,xq),xr)2+2m+b+2cr=m+b+12a+1p=1bq=1g(ζ(xp,xq),xr)2+2nr=m+b+2c+12a+1p=1bq=1g(ζ(xp,xq),xr)2+2m+br=m+12a+1p=12cq=1g(ζ(xp,ˆxq),xr)2+2m+b+2cr=m+b+12a+1p=12cq=1g(ζ(xp,ˆxq),xr)2+2nr=m+b+2c+12a+1p=12cq=1g(ζ(xp,ˆxq),xr)2. (3.16)

    Now, we can not find any relation for a warped product in the form g(ζ(E,F),ν) for any E,FΓ(TΣ). So, we leave the positive third, sixth, ninth, twelfth, fifteenth, and eighteenth terms of (3.16). Also, using Lemma 3.1 and the DDβ mixed geodesic property of Σ in (3.16), we get

    |ζ2br=1bp,q=2a+1g(ζ(xp,xq),kˆxr)2+br=1bp,q=1g(ζ(xp,xq),ϕxr)2+2cr=1bp,q=1g(ζ(xp,xq),kˆxr)2+2cr=12cp,q=1g(ζ(ˆxp,ˆxq),kˆxr)2+2br=12a+1p=1bq=1g(ζ(xp,xq),ϕxr)2+22cr=12a+1p=12cq=1g(ζ(xp,ˆxq),kˆxr)2. (3.17)

    Also, we have no relation for a warped product of the forms g(ζ(Z,W),ϕD), g(ζ(P,Q),kDβ), g(ζ(P,U),kDβ), and g(ζ(U,V),kDβ) for any P, QΓ(DI) Z, WΓ(D), U, VΓ(Dβ{ξ}). So, we leave these terms from (3.17) and obtain

    ζ22cr=1bp,q=1g(ζ(xp,xq),kˆxr)2+2br=12a+1p=1bq=1g(ζ(xp,xq),ϕxr)2. (3.18)

    Now

    2cr=1bp,q=1g(ζ(xp,xq),kˆxr)2=csc2βcr=1bp,q=1g(ζ(xp,xq),kˆxr)2+csc2βsec2βcr=1bp,q=1g(ζ(xp,xq),khˆxr)2.

    Using Corollary 3.1, the above relation reduces to

    2cr=1bp,q=1g(ζ(xp,xq),kˆxr)2=bcsc2β2cr=1[h(ˆxrlni)η(ˆxr)]2+bcot2β[2cr=1[(ˆxrlni)+αη(ˆxr)]2. (3.19)

    Now, since η(ˆxr=0), for every r=1,2,2c. So (3.19) turns into

    2cr=1bp,q=1g(ζ(xp,xq),kˆxr)2=bcot2ββlni2. (3.20)

    On the other hand

    br=12a+1p=1bq=1g(ζ(xp,xq),ϕxr)2=br=1ap=1bq=1g(ζ(xp,xq),ϕxr)2+br=1ap=1bq=1g(ζ(ϕxp,xq),ϕxr)2+br=1g(ζ(ξ,xq),ϕxr)2.

    Using Lemma 3.2 in the above relation, we obtain

    br=12a+1p=1bq=1g(ζ(xp,xq),ϕxr)2=bap=1[(ϕxplni)η(xp)]2+bap=1[(xplni)+αη(xp)]2+bα.

    Since η(xp)=0 for every p=1,2,,a, using the relation ξ(lni)=α, the above equation reduces to

    br=12a+1p=1bq=1g(ζ(xp,xq),ϕxr)2=bIlni2. (3.21)

    Using (3.20) and (3.21) in (3.18), we get the inequality (3.14).

    If the equality of (3.14) holds, then after omitting ν component terms of (3.16), we get ζ(DI,DI)ν, ζ(D,D)ν, ζ(Dβ,Dβ)ν, ζ(D,Dβ)ν, ζ(DI,D)ν, and ζ(DI,Dβ)ν. Also, for the neglected terms of (3.17), we get ζ(DI,DI)kDβ, ζ(D,D)ϕD, ζ(Dβ,Dβ)kDβ, ζ(DI,Dβ)kDβ. Next, for DβD mixed geodesicness and Lemma 3.1, we get ζ(DI,DI)ϕD and ζ(Dβ,Dβ)ϕD.

    Thus, we get ζ(DI,DI)=0, ζ(Dβ,Dβ)=0, ζ(DI,Dβ)=0 and ζ(D,D)kDβ.

    Therefore Σ1 is totally geodesic in Σ and hence in ˉΣ [2]. Again, since Σ is totally umbilical in Σ [2], with the fact that ζ(D,D)kDβ, we conclude that Σ is totally umbilical in ˉΣ.

    Theorem 2. Let Σ=Σ1×iΣ be a DDβ mixed geodesic warped product submanifold of ˉΣ such that ξ is tangent to Σ, where Σ1=Σ×Σβ. Then the squared norm of the second fundamental form satisfies

    ζ2b[2(Ilni2)+cot2β{βlni2α2}], (3.22)

    where Ilni and βlni are the gradient of lni along ΣI and Σβ, respectively, and for the case of equality, Σ1 becomes totally geodesic and Σ becomes totally umbilical in ˉΣ.

    First, we construct an example of a submanifold of the Second Class.

    Example 2. Consider the semi-Euclidean space R21 with the cartesian coordinates (u1,v1,u2,v2,,u10,v10,t) and para contact structure

    ϕ(ui)=vi,ϕ(vj)=uj,ϕ(t)=0,1i,j10.

    It is clear that R21 is a Lorentzian manifold with usual semi-Euclidean metric tensor. For any non-zero λ,τ, and β,ψ[0,π2], let Σ be a submanifold of R21 defined by the immersion map χ:R7R21 as

    χ(λ,τ,β,ψ,μ,ϱ,t)=(λcosβ,λsinβ,τcosβ,τsinβ,λcosψ,λsinψ,τcosψ,τsinψ,4β+3ψ,3β+4ψ,τcosβ,τsinβ,λcosβ,λsinβ,τcosψ,τsinψλcosψ,λsinψ,μ,ϱ,t).

    Then the tangent space of Σ is spanned by the following vectors

    J1=cosβu1+sinβv1+cosψu3+sinψv3cosβu7+sinβv7cosψu9+sinψv9,J2=cosβu2+sinβv2+cosψu4+sinψv4cosβu6+sinβv6cosψu8+sinψv8,J3=λsinβu1+λcosβv1τsinβu2+τcosβv2+4u5+3v5+τsinβu6+τcosβv6+λsinβu7+λcosβv7,J4=λsinψu3+λcosψv3τsinψu4+τcosψv4+3u5+4v5+τsinψu8+τcosψv8+λsinψu9+λcosψv9,J5=u10,J6=v10, andJ7=t.

    Then we have

    ϕJ1=cosβv1+sinβu1+cosψv3+sinψu3cosβv7+sinβu7cosψv9+sinψu9,ϕJ2=cosβv2+sinβu2+cosψv4+sinψu4cosβv6+sinβu6cosψv8+sinψu8,
    ϕJ3=λsinβv1+λcosβu1τsinβv2+τcosβu2+4v5+3u5+τsinβv6+τcosβu6+λsinβv7+λcosβu7,ϕJ4=λsinψv3+λcosψu3τsinψv4+τcosψu4+3v5+4u5+τsinψv8+τcosψu8+λsinψv9+λcosψu9,ϕJ5=v10,ϕJ6=u10,  andϕJ7=0.

    Therefore, it is clear that DI=span{J5, J6, J7} is an invariant distribution, Dψ=span{J3, J4} is a pointwise slant distribution with pointwise slant function cos1(252λ2+2τ2+25), and D=span{J3,J4} is an anti-invaiant distribution. Hence Σ is a CR-slant submanifold. Denote the integral manifolds of DI, D, and Dψ by ΣI,Σ, and Σβ, respectively. Then the product metric g of Σ is given by

    g=dt2+4(dλ2+dτ2)+(dμ2+dϱ2)+(4λ2+4τ2+25)(dβ2+dψ2).

    Consequently Σ is a warped product CR-slant submanifold of type Σ2×iΣβ of R21, where Σ2=ΣI×Σψ with warping function i=4λ2+4τ2+25.

    Now we prove the following lemmas:

    Lemma 3. Let Σ=Σ2×iΣψ be a warped product submanifold of ˉΣ such that ξ is tangent to Σ2=ΣI×Σ. Then we have

    g(ζ(P,Q),kU)=g(ζ(P,U),ϕZ)=g(ζ(P,Z),kU)=0, (4.1)

    and

    g(ζ(Z,PU),ϕW)+g(ζ(Z,W),khU)=0, (4.2)

    for every P, QΓ(ΣI), Z, WΓ(Σ), and UΓ(Σψ).

    Proof. For P, QΓ(ΣI), Z, WΓ(Σ), and UΓ(Σψ), we find

    g(ζ(P,Q),kU)=g(ϕP,QU)g((ˉQϕ)P,U), (4.3)
    g(ζ(P,U),ϕZ)=g(ˉUϕP,Z)g((ˉUϕ)P,Z)+g(P,ˉU,Z), (4.4)

    and

    g(ζ(P,Z),kU)=g(ϕP,ˉZU)g((ˉZϕ)P,U). (4.5)

    Using (2.5) and (2.14) in (4.3)–(4.5), we get (4.1).

    Also,

    g(ζ(U,V),ϕZ)=g(hV,ˉUZ)g((ˉUϕ)V,Z)+g(ˉUkV,Z). (4.6)

    Using (2.5) and (2.14) in (3.6), we get (3.2).

    Lemma 4. Let Σ=Σ2×iΣβ be a warped product CR-slant submanifold of ˉΣ such that ξ is tangent to Σ2=ΣI×Σ. Then we have

    g(ζ(P,U),kV)={(ϕPlni)αη(P)}g(U,V)(Plni)g(U,hV), (4.7)
    g(ζ(ϕP,U),kV)={(Plni)+αη(P)}g(U,V)(ϕPlni)g(U,hV), (4.8)

    and

    g(ζ(U,hV),ϕZ)+g(ζ(U,Z),khV)=cos2ψ(Zlni)g(U,V)η(Z)g(U,hV), (4.9)

    for every PΓ(ΣI), ZΓ(Σ), and U, VΓ(Σψ).

    Proof. For PΓ(ΣI), ZΓ(Σ), and U, VΓ(Σψ), we find

    g(ζ(P,U),kV)=g(ˉUϕP,V)g((ˉUϕ)P,V). (4.10)

    Using (2.5) and (2.14) in (4.10), we get (4.7) and replacing P by ϕP in (4.7), we get (4.8).

    Also we have

    g(ζ(U,hV),ϕZ)=g(ˉUZ,hV)+g(ˉUkhV,Z)g((ˉUϕ)hV,Z). (4.11)

    Using (2.5) and (2.14) in (4.11), we get (4.9).

    Corollary 2. Let Σ=Σ2×iΣψ be a DDψ mixed geodesic warped product submanifold of ˉΣ such that ξ is tangent to Σ2=ΣI×Σ, then we have

    g(ζ(U,hV),ϕZ)=cos2ψ(Zlni)g(U,V)αη(Z)g(U,hV), (4.12)

    and

    g(ζ(U,V),ϕZ)=(Zlni)g(U,hV)αη(Z)g(U,V). (4.13)

    Now we establish the following inequality on a warped product submanifold Σ of ˉΣ of the Second Class.

    Theorem 3. Let Σ=Σ2×iΣψ be a DDψ mixed geodesic warped product submanifold of ˉΣ such that ξ is tangent to ΣI, where Σ2=ΣI×Σ. Then the squared norm of the second fundamental form satisfies

    ζ22c[{(csc2β+cot2β)Ilni2}+cos2ψlni2], (4.14)

    where Ilni and lni are the gradient of lni along ΣI and Σ, respectively, and for the case of equality, Σ2 becomes totally geodesic and Σψ becomes totally umbilical in ˉΣ.

    Proof. For our constructed frame field, the second fundamental form ζ satisfies the relation (3.16). Now, similar to Theorem 1, we leave the positive third, sixth, ninth, twelfth, fifteenth, and eighteenth terms of (3.16).

    Also, using Lemma 4.1 and the DDβ mixed geodesic property of Σ, from (3.16), we get

    |ζ2br=12a+1p,q=1g(ζ(xp,xq),kˆxr)2+br=1bp,q=1g(ζ(xp,xq),ϕxr)2+br=12cp,q=1g(ζ(ˆxp,ˆxq),ϕxr)2+2cr=12cp,q=1g(ζ(ˆxp,ˆxq),kˆxr)2+2br=12a+1p=1bq=1g(ζ(xp,xq),ϕxr)2+22cr=12a+1p=12cq=1g(ζ(xp,ˆxq),kˆxr)2. (4.15)

    Also, we have no relation for a warped product of the forms g(ζ(Z,W),ϕD), g(ζ(P,Q),kDψ), g(ζ(P,Z),ϕD), and g(ζ(U,V),kDψ) for any P, QΓ(DI{ξ}), Z, WΓ(D), U, VΓ(Dψ). So, we leave these terms from (4.15) and obtain

    ζ2br=12cp,q=1g(ζ(ˆxp,ˆxq),ϕxr)2+22cr=12a+1p=12cq=1g(ζ(xp,ˆxq),kˆxr)2. (4.16)

    Now

    br=12cp,q=1g(ζ(ˆxp,ˆxq),ϕxr)2=br=1cp,q=1g(ζ(ˆxp,ˆxq),ϕxr)2+2sec2ψbr=1cp,q=1g(ζ(ˆxp,hˆxq),ϕxr)2+sec4ψbr=1cp,q=1g(ζ(hˆxp,hˆxq),ϕxr)2.

    Using Corollary 4.1, the above relation reduces to

    br=12cp,q=1g(ζ(ˆxp,ˆxq),ϕxr)2=2cbr=1[η(xr)]2+2ccos2ψbr=1[(xrlni)]2. (4.17)

    Now, since η(xr)=0, for every r=1,2,b, (4.17) turns into

    br=12cp,q=1g(ζ(ˆxp,ˆxq),ϕxr)2=2ccos2ψ[lni2]. (4.18)

    On the other hand

    2cr,q=12a+1p=1g(ζ(xp,ˆxq),kˆxr)2=csc2ψcr,q=1ap=1g(ζ(xp,ˆxq),kˆxr)2+csc2ψcr,q=12ap=1g(ζ(ϕxp,ˆxq),kˆxr)2+csc2ψsec2ψcr,q=1ap=1g(ζ(xp,hˆxq),kˆxr)2+csc2ψcr,q=1g(ζ(ξ,ˆxq),kˆxr)2+csc2ψsec2ψcr,q=1ap=1g(ζ(ϕxp,hˆxq),kˆxr)2+csc2ψsec2ψcr,q=1g(ζ(ξ,hˆxq),kˆxr)2+csc2ψsec2ψcr,q=1ap=1g(ζ(xp,hˆxq),khˆxr)2+csc2ψsec2ψcr,q=12ap=1g(ζ(ϕxp,hˆxq),khˆxr)2+csc2ψsec2ψcr,q=1g(ζ(ξ,hˆxq),kˆxr)2+csc2ψsec4ψcr,q=1ap=1g(ζ(xp,hˆxq),khˆxr)2+csc2ψsec4ψcr,q=1g(ζ(ξ,hˆxq),khˆxr)2+csc2ψsec4ψcr,q=1ap=1g(ζ(xp,hˆxq),khˆxr)2.

    Using Lemma 4.4 in the above relation, we obtain

    2cr,q=12a+1p=1g(ζ(xp,ˆxq),kˆxr)2=ccsc2ψap=1[(ϕxplni)η(xp)]2+ccsc2ψap=1[(xplni)+αη(xp)]2+2cα2csc2ψ+ccot2ψap=1(xplni)2+ccot2ψap=1(ϕxplni)2+ccot2ψap=1(xplni)2+ccot2ψap=1(ϕxplni)2+ccsc2ψap=1[(ϕxplni)η(xp)]2+ccsc2ψap=1[(xplni)+αη(xp)]2+2cα2cot2ψ.

    Since η(xp)=0 for every p=1,2,,a, the above equation reduces to

    2cr,q=12a+1p=1g(ζ(xp,ˆxq),kˆxr)2=2c(cos2ψ+cot2ψ)Ilni2. (4.19)

    Using (4.18) and (4.19) in (4.17), we get the inequality (4.14).

    Proof of the equalty case is similar to the proof of the equality case of Theorem 3.1.

    Theorem 4. Let Σ=Σ2×iΣψ be a DDψ mixed geodesic warped product submanifold of ˉΣ such that ξ is tangent to Σ, where Σ2=ΣI×Σ. Then the squared norm of the second fundamental form satisfies

    ζ22c[(csc2ψ+cot2ψ)Ilni2+cos2ψ{lni2α2}], (4.20)

    where Ilni and lni are the gradient of lni along ΣI and Σ, respectively, and for the case of equality, Σ2 becomes totally geodesic and Σψ becomes totally umbilical in ˉΣ.

    This paper investigated different types of submanifolds in the context of a Lorentzian concircular structure manifold. We examined invariant, anti-invariant, proper slant, and pointwise slant submanifolds, and further explored two distinct categories of warped product submanifolds.

    In the first category, we considered the fiber submanifold as an anti-invariant submanifold, while in the second category, the fiber submanifold was treated as a pointwise slant submanifold. Throughout our analysis, we established several fundamental results and derived important inequalities for the squared norm of the second fundamental form.

    Our research not only provided a theoretical framework for understanding the properties and characteristics of these submanifold classes but also demonstrated the existence of such submanifold classes through specific examples. By examining these examples, we gained valuable insights into the behavior and geometric structures of the submanifolds within the Lorentzian concircular structure manifold.

    Overall, this study contributes to the field of differential geometry by expanding our understanding of submanifolds and their relationships within a Lorentzian concircular structure manifold. The results and inequalities derived in this paper can serve as valuable tools for future research in this area, and we hope that they will inspire further investigations into the geometric properties of submanifolds in related contexts.

    Tanumoy Pal: Conceptualization, Methodology, Investigation, Writing-original draft preparation, Writing-review and editing; Ibrahim Al-Dayel: Investigation, Writing-original draft preparation; Meraj Ali Khan: Conceptualization, Writing-review and editing; Biswabismita Bag: Methodology, Investigation, Writing-original draft preparation, Writing-review and editing; Shyamal Kumar Hui: Conceptualization, Methodology, Writing-review and editing, Foued Aloui: Investigation, Writing-original draft preparation. All authors have read and approved the final version of the manuscript for publication.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-RP23074).

    The authors are thankful to the reviewers for their invaluable suggestions toward the improvement of the paper.

    The authors declare that they have no conflicts of interest.



    [1] M. Atceken, S. K. Hui, Slant and pseudo-slant submanifolds in LCS-manifolds, Czech. Math. J., 63 (2013), 177–190. https://doi.org/10.1007/s10587-013-0012-6 doi: 10.1007/s10587-013-0012-6
    [2] R. L. Bishop, B. O'Neill, Manifolds of negative curvature, T. Am. Math. Soc., 145 (1969), 1–49.
    [3] B. Y. Chen, Slant immersions, B. Aust. Math. Soc., 41 (1990), 135–147. https://doi.org/10.1017/S0004972700017925
    [4] B. Y. Chen, Geometry of warped product CR-submanifolds in Kaehler manifold, Mh. Math., 133 (2001), 177–195. https://doi.org/10.1007/s006050170019 doi: 10.1007/s006050170019
    [5] B. Y. Chen, Geometry of warped product CR-submanifolds in Kaehler manifolds II, Mh. Math., 134 (2001), 103–119. https://doi.org/10.1007/s006050170002 doi: 10.1007/s006050170002
    [6] B. Y. Chen, Differential geometry of warped product manifolds and submanifolds, Hackensack: World Scientific, 2017.
    [7] F. Etayo, On quasi-slant submanifolds of an almost Hermitian manifold, Publ. Math. Debrecen, 53 (1998), 217–223.
    [8] S. K. Hui, T. Pal, L. I. Piscoran, Characterization of warped product submanifolds of Lorentzian concircular structure manifolds, arXiv Preprint, 2018. https://doi.org/10.48550/arXiv.1803.02526
    [9] A. Lotta, Slant submanifolds in contact geometry, Bull. Math. Soc. Sci. Math. Roumanie, 39 (1996), 183–198.
    [10] C. A. Mantica, L. G. Molinari, A note on concircular structure structure space-times, arXiv Preprint, 2018.
    [11] K. Matsumoto, On Lorentzian almost paracontact manifolds, Bull. Yamagata Univ. Nat. Sci., 12 (1989), 151–156.
    [12] I. K. Mihai, R. H. Qjha, On Lorentzian para-Sasakian manifolds, Singapore: World Scientific, 2001.
    [13] I. Mihai, S. Uddin, A. Mihai, Warped product pointwise semi-slant submanifolds of Sasakian manifolds, Kragujev. J. Math., 45 (2021), 721–738.
    [14] A. Mustafa, S. Uddin, V. Khan, B. Wong, Contact CR-warped product submanifolds of nearly trans Sasakian manifolds, Taiwanese J. Math., 17 (2013), 1473–1486. https://doi.org/10.11650/tjm.17.2013.2601 doi: 10.11650/tjm.17.2013.2601
    [15] M. F. Naghi, I. Mihai, S. Uddin, F. R. Al-Solamy, Warped product skew CR-submanifolds of Kenmotsu manifolds and their applications, Filomat, 32 (2018), 3505–3528. https://doi.org/10.2298/FIL1810505N doi: 10.2298/FIL1810505N
    [16] B. O'Neill, Semi Riemannian Geometry with applications to relativity, New York: Academic Press, 1983.
    [17] K. S. Park, Pointwise slant and pointwise semi slant submanifolds in almost contact metric manifold, arXiv Preprint, 2014.
    [18] A. A. Shaikh, On Lorentzian almost paracontact manifolds with a structure of the concircular type, Kyungpook Math. J., 43 (2003), 305–314.
    [19] A. A. Shaikh, K. K. Baishya, On concircular structure spacetimes, J. Math. Stat., 1 (2005), 129–132.
    [20] A. A. Shaikh, K. K. Baishya, On concircular structure spacetimes II, American J. Appl. Sci., 3 (2006), 1790–1794.
    [21] S. K. Srivastava, A. Sharma, Pointwise semi-slant warped product submanifold in a Lorentzian paracosympletic manifold, arXiv Preprint, 2016.
    [22] S. Uddin, Warped product CR-submanifolds of LP-cosymplectic manifolds, Filomat, 24 (2010), 87–95. https://doi.org/10.2298/FIL1001087U doi: 10.2298/FIL1001087U
    [23] S. Uddin, L. S. Alqahtani, A. H. Alkhaldi, F. Y. Mofarreh, CR-slant warped product submanifolds in nearly Kaehler manifolds, Int. J. Geom. Method M., 17 (2020), 2050003. https://doi.org/10.1142/S0219887820500036 doi: 10.1142/S0219887820500036
    [24] S. Uddin, V. A. Khan, K. A. Khan, Warped product submanifolds of a Kenmotsu manifold, Turk. J. Math., 36 (2012), 319–330. https://doi.org/10.3906/mat-0912-42 doi: 10.3906/mat-0912-42
    [25] S. Uddin, M. Z. Ullah, A geometric obstruction for CR-slant warped products in a nearly cosympletic manifolds, Mathematics, 8 (2020), 1622. https://doi.org/10.3390/math8091622 doi: 10.3390/math8091622
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1084) PDF downloads(46) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog