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1. Introduction

In the year 2003, Shaikh [18] introduced a fascinating mathematical concept known as (LCS),-
manifold, which stands for Lorentzian concircular structure manifold. This concept has profound
implications in the field of general relativity. It was subsequently discovered that (LCS ),-spacetimes
are intricately connected to generalized Robertson Walker spacetimes [10], a well-established
framework in cosmology.

The (LCS ),-structure has garnered considerable attention due to its wide-ranging applications in
the general theory of relativity. Researchers, as evidenced by studies such as [19,20], have explored
the various implications and consequences of this structure within the framework of Einstein’s theory.
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One intriguing property of the (LCS ),-structure is its invariance under conformal transformations.
This means that the structure remains unaltered when subjected to a conformal transformation, a
mathematical operation that preserves angles but alters distances.

The concept of slant submanifolds was first introduced in the seminal work by Chen [3]. Building
upon this notion, the idea of slant immersions of Riemannian manifolds into almost contact metric
manifolds was further developed by Lotta [9]. Pointwise slant submanifolds, another variant of this
concept, were introduced and investigated by Etayo [7]. For more comprehensive information on these
topics, one may read [13,17].

To explore additional classes of submanifolds within this manifold framework, researchers are
suggested to go through Atehui [1] and Hui et al. [8].

The notion of warped product manifolds, on the other hand, originated from the pioneering work of
Bishop and O’Neill [2] and has since been extensively studied in the literature, see [4-6, 8, 14,22,24].
The existence or non-existence of such product manifolds holds great significance, as it contributes to
our understanding of the geometric structures and properties of these manifolds.

2. Preliminaries

Let (£, g) be an n-dimensional Lorentzian manifold with Lorentzian metric g and V be the Levi-
Civita connection for g. The (LCS),-manifold is defined as an n-dimensional Lorentzian manifold
equipped with

e £, a unit timelike concircular vector field,
e 1, &’s associated 1-form,
e an (1, 1) tensor field ¢,

such that
Vpé = agP, (2.1)

for some non-zero scalar function o which satisfies
Vpa = Pa = da(P) = pn(P), (2.2)

where p = —(£a) is also a scalar and P € I'(T'Z). A (LCS),-manifold becomes a LP-Sasakian manifold
when a = 1[11,12].
From [18], we get some basic relations in a (LCS ),-manifold (n > 2) :

né) =-1, ¢ =0, n(eP) =0, g@P,¢Q) = g(P, Q)+ n(Pn(Q), (2.3)
#*P = P + n(P)¢, (2.4)
(Ve)Q = afg(P, Q)¢ + 2n(P)n(Q)¢ + n(Q)P}, (2.5)

for all P, Q, Z € I'(TZ). Throughout the paper, we denote a (LCS ),-manifold by .

We consider a submanifold ¥ < ¥ with induced metric g and suppose that V, V* denotes the
induced connections on TX and 7+X of X, respectively. In this regard, the Gauss and Weingarten
formulae are

VrQ = V0 +{(P,Q), (2.6)
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and

VpV = -AyP + V3V, (2.7)
for all P,Q € I'(TX) and V € I'(T+X), where the second fundamental form is denoted by ¢ and Ay
denotes the shape operator (corresponding to V) for the immersion £ < X such that g(Z(P,Q),V) =

g(AyP, 0).
For P € [(TY), the gradient Vi of a differentiable function i on X is defined by

g(Vi, P) = Pi. (2.8)
We also have
(@) pP = hP + kP, (b) oV =1V + [V, 2.9)

for any P € I'(TX) and V € I'(T+X), where hP, [V are the tangential components and kP, fV are the
normal components.

A submanifold £ < X is said to be invariant if ¢(T,X) € T,X and anti-invariant if ¢(7T,X) C T;Z
for every p € X.

A submanifold £ < £ is said to be slant if for each non-zero vector P € T,%, the angle (0 < 8 < )
between ¢P and T,X is a constant, i.e., it is independent of the choice of p € X. Again X is said to be
pointwise slant of ¥ if 8 depends on P.

From [21], we find that a submanifold £ — ¥ with £ € I'(TY) is pointwise slant if and only if

W =cos’ B +n® &), (2.10)

for some real valued function 3 defined on TZ. Also if D is a pointwise slant distribution on pointwise
slant submanifold X with ¢ € I'(TZX), then

g(hZ, hW)
g(kZ, kW)

cos’ Blg(Z, W) + n(Z)n(W)}, (2.11)
sin® B{g(Z, W) + n(Zn(W)}, (2.12)

for any Z, W € I'(DF).
Let (N1, g1) and (V,, g2) be two semi-Riemannian manifolds and i be a positive smooth function
on N;. The warped product of (N, g) and (NV,, g>) is denoted by N; X; N, := (N; X N,, g), where

g=g1+i’g, (2.13)
and i is the warping function. From [16], we have
VyP =VpU = (PIni)U,VP € I(TN;) and U € I'(TN,). (2.14)

We consider X;, X,, X3, and X, as invariant, anti-invariant, proper slant, and proper pointwise slant
submanifolds of £. In this paper, we study the following two different classes of warped product
submanifolds of Z.
First Class: X = X; x; X, with £ tangent to X, where X; = X; X X3. This class of submanifolds are
known as warped product skew-CR submanifolds [15].
Second Class: X =X, x; X, with £ tangent to X,, where X, = ¥; X X, . This class of submanifolds are
known as warped product CR-slant submanifolds [23,25].

Throughout this paper, we consider the tangent spaces of %;, X,, X3 and X, as
D, D, DP, and DY, respectively.
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3. Submanifolds of the First Class

First, we construct an example of a submanifold of the First Class.

Example 1. Consider the Euclidean space R'> with the cartesian coordinates (uy, vy, -+ ,ug, ve, t) and
para contact structure

¢i_i ‘bi_i ¢£—O 1<i,j<6
ou; _Bv,-’ (9vj _auj’ ot - Y% S1,]=0.

It is clear that R'3 is a Lorentzian manifold with usual semi-Euclidean metric tensor. For any non-zero
A, 7, and B € [0, 2], let T be a submanifold of R defined by the immersion map y : R® — R!? as

x, 7, B, 1, 0, t) = (dcosB, AsinB, TcosB, tsinfB, 44+ 37, 31 + 41,
—Tcosf, Tsinf, —AcosB, Asinf, u, o,1).

Then the tangent space of X is spanned by the following vectors

Ji = cos,é’i+sin,8i+4i+3i—cosﬂi+sin,8i
b ou, v Ous O us dvs’
0 0 0 0 0 0
Jy = — +sinB— +3— +4— — cosf— +sinff—,
5 cosfs s + sin 3 o + 0 + o cosf " + sin 8 o
J3 = —/lsinﬁaiul+/lcosﬁé%—Tsin,Baiuz+Tcos,88ivz+Tsinﬁaiu4
+ Tcosﬁaiw+/lsinﬁa%5+/lcosﬁaiv5,
Jy = i Js = i and Jg = ﬁ
YT bug T e T ar
Then we have
0 0 0 0 0 0
J = — +sinB— +4—+3— — — +sinf—,
¢ : COS'BOVI Sm'Baul 6\/3 6”3 COSﬁaV5 Smﬁam
0 0 0 0 0 0
= — +sinf— +3—+4— — — +sinf—
oJ> cosfB s + sinf3 o, + v + s cosf o + sinf8 G’
oJ; = —xlsin,8i+/lcosﬁi—'rsin,Bi+Tcos,Bi+7'sin,8i
T v, ou, P A v,
+ Tcosﬁaim+/lsin,88ivs+/lcos,86i%,
0 0
(]5.]4 = - ¢J5 = and¢]6 =0.
6\/6 (9146

Therefore, it is clear that D' = span{Js, Js, Js} is an invariant distribution, D = span{J,, J,} is
a slant distribution with slant angle Cos‘l(%), and D+ = span{J3} is an anti-invaiant distribution.
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Hence X is a skew CR-submanifold. Denote the integral manifolds of D!, D*, and DP by X;, X, and
X, respectively. Then the product metric g of X is given by

g = —dt* + 27(dX* + dt*) + (dy* + do*) + 2(A* + tH)dp>.

Consequently ¥ is a warped product skew CR-submanifold of type £, X; X, of R'?, where £ = £; X X4
with warping function i = 7J2(A* + 72).

We take dimX; = 2a + 1, dimX, = b, dimXz; = 2c and their corresponding tangent spaces are
D' @ (£}, D, and DP, respectively.

Assume that {xi, xp, -+, X, Xar1 = X1, , Xoq = PXay Xoa1 = Eh AXoara = X1, Xoarwr1 = X},
and {xX2q1p12 = X15 Xoa443 = X200 s Xoarbiesl = Xes Xoasbrer2 = Xex1 = S€CBhRy, -+, Xogspsoe+1 (= Xm) =
%2 = sec Bhi,.} are local orthonormal frames of D' @ {¢}, D+, and DP, respectively.

Then the local orthonormal frames for ¢D+ and kD’ are {x,,; = £ = OX], Xt
Xp = ¢xp} and {Xppps1 = Xps1 = CSCPkX(, ++ , Xpspre = Xpye = CSCPKX, Xpsprcr1 = Xprer1 =
cscfsecfkhxy, -+, Xprpioe = Xpiae = cscfsecfkhx.}, respectively. AlSo {X,ipi2ce1,° »Xn} 1S @

normal subbundle. We denote it by v. Clearly v is ¢ invariant and dim v = (n — m — b — 2c).
First, we prove the following lemmas:

Lemma 1. Let T = X, X,X, be a warped product submanifold of £ such that & is tangent to £, = ;XX
Then we have

8((P,Q),9Z) = g({(P,Z),kU) = g({(P,U), ¢Z) = 0, (3.1
and
8, 2),kV) + g(L(U, V), ¢Z) = 0, (3.2)
forevery P, Qe T'(X)), ZeT'(X,), and U,V € I'(Zp).

Proof. For P, Q€ I'(Z)),Z€I'(X,),and U,V € I'(Z3), we find

8P, Q),9Z) = g(VopP, Z) - g(Vo$)P, Z), (3.3)
8W(P,Z),kU) = —=g(Vz¢P, U) — g((Vz¢)P, U) + g(P, VzhU), (3.4

and
g(P,U),¢Z) = g(VydP,Z) - g(Vup)P, Z). (3.5)

Using (2.5) and (2.14) in (3.3)—(3.5), we get (3.1).
Also we have ) )
gW(U,V),¢Z) = —g(hV,VyZ) — g(Vup)V, Z) + g(VykV, Z). (3.6)

Using (2.5) and (2.14) in (3.6), we get (3.2). O

Lemma 2. Let X = 2, X;%, be a warped product submanifold of £ such that £ is tangent to £, = ;X%
Then we have

8 (P, Z),pW) = {(pPIni) — an(P)}g(Z, W), (3.7)
8L (9P, Z),¢W) = {(PIni) + an(P)}g(Z, W), (3.8)

and
8(L(Z, U), pW) + g({(Z, W), kU) = {(hU Ini) — an(U)}g(Z, W), (3.9)

forevery Pel'(X;), Z, W e I'(Z,), and U € I'(Zp).
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Proof. For P eI'(Z)),Z, W e I'(X,), and U € I'(¥p), we find

gU(P,Z),¢W) = —g(Vz0P, W) — g((V2¢)P, W). (3.10)

Using (2.5) and (2.14) in (3.10), we get (3.7). Replacing P by ¢P and applying (£Ini) = @ in (3.7), we
get (3.8).
Also we have

8L(Z,U), pW) = —g(VzhU, W) + g(V kU, W) = g((Vz$)U, W). (3.11)
Using (2.5) and (2.14) in (3.11), we get (3.9). O

Corollary 1. Let T = 3| x; X, be a D+ — D’ warped product submanifold of ¥ such that & is tangent
to ) = X X Xg, then we have

8W(Z, W), kU) = {(hU Ini) — an(U)}g(Z, W), (3.12)

and
g(&(Z, W), khU) = cos* O[(Uni) — an(U)|g(Z, W), (3.13)

forevery Z, W e I'(Z,), and U € I'(Zp).
Now we establish an inequality on a submanifold X of the First Class of T .

Theorem 1. Let X = X, X; X, be a D+ — DP mixed geodesic warped product submanifold of < such that
& is tangent to X, where Xy = X; X Xg. Then the squared norm of the second fundamental form satisfies

1217 = BI2(3I V! Ind 7)) + cot® 1| VP Ini |P], (3.14)

where V'Ini and VPIni are the gradient of Ini along X; and X, respectively, and for the case of
equality, X, becomes totally geodesic and X, becomes totally umbilical in Z.

Proof. From (2.8), we have

IR = > 8 %), £Cp X)) = > &L, Xg), %)
p.g=1 r=m+1

Decomposing the above relation for our constructed frames, we get

n  2a+l n b
KIP= > > 8@, x)?+ D0 > g, x), x,) (3.15)
r=m+1 p,g=1 r=m+1 p,g=1
n 2c n b 2
£ R ) 12 D DT (L6, %), %)
r=m+1i,j=1 r=m+1 p=1 g=1
n b 2a+l n 2¢ 2a+l
#2303 3 @ a1 12 DTN gl x) 1)
r=m+1 p=1 g=1 r=m+1 p=1 g=1
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Now, again decomposing (3.15) along the normal subbundles pD*, kDP, and v, we get

m+b  2a+1 m+b+2c 2a+1
KIP= D0 > 8@ x), %)+ D > sl x)x)? (3.16)
r=m+1 p,g=1 r=m+b+1 p,g=1
n 2a+1 m+b
DI (CIE RS Y Z gLy, x3), %)
r=m+b+2c+1 p,g=1 r=m+1 p,g=1
m+b+2c b n b
Y s Y Y g, X)), x,)?
r=m+b+1 p,q=1 r=m+b+2c+1 p,g=1
m+b  2c m+b+2c¢  2c
F )L D8R+ Y D sy d) )
r=m+1 p,g=1 r=m+b+1 p,g=1
m+b
Z Z SR &) x) 42 ) ZZg(ﬁxp,xq) %)
r= m+b+2c+1pq 1 r=m+1 p=1 ¢g=1
m+b+2c n b 2c
2 ) Z Z g &), ) 42 Y DT (L6, &), %)
r=m+b+1 p=1 g=1 r=m+b+2c+1 p—l g=1
m+b 2a+1 m+b+2c 2a+1
23 ) Zg(g(xp,xq) w2 Zg({(xp,xq) X,
r=m+1 p=1 g=1 r=m+b+1 p=1 g=1
2a+1 m+b 2a+1 2c
Z D, Zg({(xp, )Y +2 YN gl &), %)’
r=m+b+2c+1 p=1 g=1 r=m+1 p=1 g=1
m+b+2c 2a+1 2c n 2a+1 2c
EIDYEDIPIF(EHE NSO S YW A
r=m+b+1 p=1 g=1 r=m+b+2c+1 p=1 g=1

Now, we can not find any relation for a warped product in the form g({(E, F), v) for any E, F € ['(TZ).
So, we leave the positive third, sixth, ninth, twelfth, fifteenth, and eighteenth terms of (3.16). Also,
using Lemma 3.1 and the D* — D mixed geodesic property of T in (3.16), we get

(3.17)
b b
P = > D 8 xg), kR + Z Z gL, X3, ;)
r=1 p,g=2a+1 r=1 p,g=1
2¢c b 2¢c  2c
£ R X KR+ DY @y By, KR
r=1 p,g=1 r=1 p,g=1
b 2a+l b 2¢ 2a+1 2c
F 23N R X, P+ 2D DS 2Ly B), k)
r=1 p=1 g=1 r=1 p=1 g=1

Also, we have no relation for a warped product of the forms g(Z(Z, W), pD*), g(Z(P, Q),kDP),
g((P,U),kDP), and g(Z(U,V),kDP) for any P, Q € T(D") Z, W € T(D*), U, V € T(DP @ {&)).
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So, we leave these terms from (3.17) and obtain

2c b b
KIE 2> @@, 2. k&) +2 3" 30 3" g(fxy x5, 63002 (3.18)

b
r=1 p,g=1 r=1 p=1 g=1

[\

a+1

Now

2c b c b
DU 8, x) k&)t = es?B YD gl(xy, X)), k)

r=1 p,g=1 r=1 p,g=1

c b
csc? Bsec’ B Z Z g(¢(x,, x,), khz,)*.

r=1 p,g=1

+

Using Corollary 3.1, the above relation reduces to

2¢c b 2c
D, D 8@ X ks = bese? B Y [hE i)~ (&) (3.19)
r=1 p,g=1 r=1
pP-q N
+ beot B Y [(&Ini) + an(i)[,
r=1

Now, since n(x, = 0), forevery r = 1,2,---2c¢. So (3.19) turns into

2c b
Z Z g((xh, X), k2,)? = beot? BIVF In il (3.20)

r=1 p,g=1

On the other hand

b
> 8(£(xy, X)), )

p=1 g=1

b
D8£, X)), ) =

b a
r=1 p=1 ¢g=1 r=1

b
D 8l@x,, ), 6307 + ) &L, x}), 6,7
r=1

M=
o
~
A
I~
=
3
=
Q%
b./
ASY
=
N ¥
p—
[\e]
Il

b [(@x,Ini) = nix,)]
p=1

+

b Z [(x,1Ini) + cm(xp)]2 + ba.

p=1

Since n(x,) = 0 for every p = 1,2, --- , a, using the relation £(Ini) = a, the above equation reduces to

b b
D 80X, X7 = BIV'InilP. (321)

r=1 p=1 ¢g=1

N}

a+1
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Using (3.20) and (3.21) in (3.18), we get the inequality (3.14).

If the equality of (3.14) holds, then after omitting v component terms of (3.16), we get £(D!, D') Ly,
(D, DY Ly, L(DP, DP) Ly, (D, DP)Ly, (D!, DY) Ly, and (D!, DP)Ly. Also, for the neglected
terms of (3.17), we get (D!, D LkDP, [(D*, DY) LpD*, ((DP, DP)LkDP, ((D', DP)LkDP. Next,
for O — D* mixed geodesicness and Lemma 3.1, we get (D', D) LoD+ and {(DF, DP) LopD*.

Thus, we get (D!, D) = 0, £(DP, DP) = 0, (D!, DP) = 0 and £(D*, DY) C kDP.

Therefore X, is totally geodesic in T and hence in X [2]. Again, since X, is totally umbilical in X [2],
with the fact that Z(D*, D) ¢ kDP, we conclude that X, is totally umbilical in > O

Theorem 2. Let X = X, X; X, be a D+ — DP mixed geodesic warped product submanifold of & such that
Eistangent to X,, where X; = X XXg. Then the squared norm of the second fundamental form satisfies

1217 = b12(1 V' Ini ) + cot? B{ll VP Ini [P —a?}], (3.22)

where V' 1ni and VP 1ni are the gradient of Ini along ¥; and X, respectively, and for the case of
equality, ¥, becomes totally geodesic and X, becomes totally umbilical in X.

4. Submanifolds of the Second Class

First, we construct an example of a submanifold of the Second Class.

Example 2. Consider the semi-Euclidean space R?' with the cartesian coordinates

(U1, vi,up, va, - -+ , Uj0, V10, 1) and para contact structure
0 0 0 0 0
— == — ==, ¢|=|=0, 1<i,j<10.
¢(8u,~) v, ¢(avj) au, ¢(az) b

It is clear that R*' is a Lorentzian manifold with usual semi-Euclidean metric tensor. For any non-zero
A, T, and B,y € [0, 2], let T be a submanifold of R*' defined by the immersion map y : R’ — R*! as

xA, T, B, W, u, 0, 1) =(AcosB, AsinB, Tcosf, TsinB, Acosy, Asiny, Tcosy,
Tsiny, 48 + 3y, 3B + 4y, —tcos B, TsinB, —Acosf, Asinf, —Tcosy, Tsiny
—Acosy, Asiny, u, o,t).

Then the tangent space of X is spanned by the following vectors

cos,Bi + sm,Bi + cos 1,//i + sin wi

J =
! (9”1 5V3
— cos,B—(9 + sm,/:?i — CcoS w—a + sin wi
Ouy V7 Ug 5\’9
J = cos,B—(9 + sm,Bi + Ccos w—a + sin wi
Ou, V2 Uy Ovy
0 0 (9 0
- cosfp—+ s1n/3— — COs w— + siny—,
01/{6 V6 ug 8V8
0 0 0 0 0
J; = —-Asinf— + /lcos,B— - Tsmﬁ— + Tcosﬁ— +4—
ou u Vi aMS
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+ 3i + Tsin,Eé’i +‘rcosﬁi + /lsin,Bi + /lcosﬁi
0ve Ouz

8\/5 al/t(, 6\}7,
Jy = —/lsinw(,jiMS+/lcosw(,jiv3—7'sinzpaiu4 +7'cos¢aiv4+3a%5
+ 4i+rsin i+7-cos i+/lsin i+/lcos 9
Gvs w@ug wa\)g wﬁug wa\h) ’
0 0 0
Js = —,Jo=7—,andJ; = —.
> Ouo 6 vy and.Jz ot

Then we have

oJ1 = cos,Bi + sin,Bi + cos i + sin i
b vy duy Vo Y o,

0 0 0
- COS’B0_V7 + sin,Ba—u7 — COs a,ba—vg + sinwa—ug,

J, = cos,Bi + sin,Bi + cos i + sin i
¢ 27 0\12 auz w8v4 w8u4

a . 0 o . 0
— cosf— +sinff— —cosyYy— + sinyy—
6u6 an

0ve dug’
oJ; = —/lsin,Bé%+/lcos,Ba%l—Tsinﬁ6iv2+Tcosﬁ8iu2+4aiv5
3 0 . 0 0 .0 0
+ 0_145+Tsmﬁ8_v6 +Tcos,6’6—u6+/ls1n,86—v7+/lcos,6’6—m,
_ . 0 0 . 0 0 3 0
oJy = —/ls1nwa—v3+/lcoswa—u3—7'smwa—w+rcoswa—m+ 0—‘)5
4 0 . 0 0 1si 0 1 0
+ a—us+rsm¢/a—v8+rcoswa—u8+ s1nv,[/0—v9+ coswa—ug,
0 0
¢J5 = —, ¢J6 = —, and¢J7 =0.
0\)10 31410

Therefore, it is clear that D' = span{Js, Js, J7} is an invariant distribution, DY = span{Js, Ju} is a
pointwise slant distribution with pointwise slant function cos‘l(m), and D+ = span{Js, J4} is
an anti-invaiant distribution. Hence X is a CR-slant submanifold. Denote the integral manifolds of D',

D+, and DY by 1, X, and Zp, respectively. Then the product metric g of X is given by
g = —df* + 4(dX* + dt*) + (dy* + do®) + (4% + 477 + 25)(dB* + dy?).
Consequently ¥ is a warped product CR-slant submanifold of type £, X; g of R*, where £, = £, X %,
with warping function i = V422 + 472 + 25,
Now we prove the following lemmas:

Lemma 3. Let ¥ = %, X%, be a warped product submanifold of £ such that £ is tangent to £, = L;xX,.
Then we have

8W(P, Q). kU) = g({(P,U),¢Z) = g({(P,Z),kU) = 0, 4.1)
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and

8(L(Z, PU), ¢W) + g({(Z, W), khU) = 0, (4.2)
forevery P, Qe l'(Z)), Z, W eI'(X,), and U € I'(Z).
Proof. For P, Q € I'(Z)), Z, W eTI'(X,),and U € I'(Zy), we find

(P, 0).kU) = —g(¢P. VoU) — g((Vo$)P, U), (4.3)
8P, U), ¢Z) = ~g(VypP,Z) - (Vup)P,Z) + g(P,Vy, 2), (4.4)
and

8({(P,2),kU) = g(¢pP,VzU) — g(Vz$)P, U). (4.5)

Using (2.5) and (2.14) in (4.3)—(4.5), we get (4.1).

Also,

g, V), ¢Z) = —g(hV,VyZ) - g(Vup)V, Z) + g(VukV, Z). (4.6)
Using (2.5) and (2.14) in (3.6), we get (3.2). O

Lemma 4. Let £ = %, X; X5 be a warped product CR-slant submanifold of T such that ¢ is tangent to
2y =2 X X,. Then we have

g (P,U),kV) = {(¢PIni) — an(P)}g(U, V) — (PIni)g(U, hV), 4.7)
gW(¢P,U),kV) = {(PIni) + an(P)}g(U, V) — (¢PIni)g(U, hV), (4.8)

and
g(L(U,hV), ¢Z) + g(L(U, Z),khV) = — cos* y(ZIni)g(U, V) — n(Z)g(U, hV), 4.9)

forevery Pel'(X)), Zel'(X)), and U, V € I'(Zy).
Proof. For P eI'(Z)), Ze€I'(X,),and U, V € I'(Z), we find

8P, U),KV) = —g(VygP, V) = g(Vyg)P, V). (4.10)

Using (2.5) and (2.14) in (4.10), we get (4.7) and replacing P by ¢P in (4.7), we get (4.8).
Also we have
g, hV),¢Z) = —g(VyZ,hV) + g(VykhV,Z) — g(Vyp)hV, 2). (4.11)

Using (2.5) and (2.14) in (4.11), we get (4.9). O

Corollary 2. Let = = 3, X; £, be a D+ — DY mixed geodesic warped product submanifold of £ such
that € is tangent to X, = X; X X, then we have

g((U,hV), ¢Z) = — cos* y(ZIni)g(U, V) — an(Z)g(U, hV), (4.12)

and

g, V), ¢Z) = —(Z1Ini)g(U, hV) — an(Z)g(U, V). (4.13)

Now we establish the following inequality on a warped product submanifold ¥ of X of the
Second Class.
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Theorem 3. Let X = %, X, %, be a D — DY mixed geodesic warped product submanifold of £ such that
& is tangent to X;, where X, = X; XX, . Then the squared norm of the second fundamental form satisfies

12117 = 2¢[{(csc® B+ cot? B) || VIni ||*} + cos®y || VX Ini |7, (4.14)

where V! Ini and V*1ni are the gradient of Ini along ¥; and X, respectively, and for the case of
equality, T, becomes totally geodesic and T, becomes totally umbilical in X.

Proof. For our constructed frame field, the second fundamental form ¢ satisfies the relation (3.16).
Now, similar to Theorem 3.1, we leave the positive third, sixth, ninth, twelfth, fifteenth, and eighteenth
terms of (3.16).

Also, using Lemma 4.1 and the D* — 9 mixed geodesic property of %, from (3.16), we get

(4.15)
b 2a+l
P = > D 8l x), k) + Z Z 2Ly, x;), 9,
r= lpq 1 r= lpq 1
+ Z Z LRy, %), ¢ + Z Z (R, 7). kS)?
r=1 p,g=1 r=1 p,g=1
b 2a+1 b 2¢ 2a+1 2c
EDIDIPN CIEARIS DY PP AN S
r=1 p=1 ¢g=1 r=1 p=1 ¢g=1

Also, we have no relation for a warped product of the forms g(/(Z, W), ¢D*Y), g(Z(P, Q), kDY),
gW(P,Z),¢D"), and g({(U,V),kD") for any P, Q € T(D' @ {¢)), Z, W € [(D"), U, V € T(DY).
So, we leave these terms from (4.15) and obtain

2¢ 2a+1 2c¢
IIP > Z Z LRy, £, X7 +2 ) " > &Lk, By), kR, (4.16)
r=1 p,g=1 r=1 p=1 g=1

Now

b 2c b c
DD 8 5 % = D D 8Ly, %), 6,0

r=1 p,g=1 r=1 p,g=1
b c b c
+2 seczwz Z gL (%), hi,), X0 + sec4wz Z g(L(h&y, hi,), ¢x').
r=1 p,g=1 r=1 p,g=1

Using Corollary 4.1, the above relation reduces to

b 2c b
>0 8(lGp k) 9x)* = 2¢ Y [n(x)] + 2ccos® wZ (x"In ). 4.17)

r=1 p,g=1 r=1

Now, since n(x;) = 0, forevery r = 1,2,--- b, (4.17) turns into

b 2
D0 8y i) ¢x)? = 2ccos? y[IVE Inil?]. (4.18)
r=1 p,g=1
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On the other hand
2¢ 2a+1 c a
DN g i) kS = 5Py Y Y gLy B kS
rg=1 p=1 r,g=1 p=1

c  2a

+osc2y Z Z 8(L(@xp, 2,), k2,)* + csc® yrsec® Z Z g(L(x,, k). k%)

r,g=1 p=1 rg=1 p=1
+os? U D BULE 8 kR +es s Y Y (E(@xp, hiy), k2
r,g=1 rg=1 p=1

+csc y sec? i Z S(L(£ h2y), k&)? + csc® rsec® Z Z (L (xy, hi,), kh#,)

r,g=1 r,g=1 p=1

c 2a

rosc?ysec? ¥ DN (L(dxy, hiy), khi)? + esc?ysec?y ) (L€, hRy) k)

rg=1 p=1 r,g=1

rosclysec y DN @(L(xy, hiy) kh,)? + osc?yrsect Y Y ({(€, hiy), khi,)

rg=1 p=1 rq=1

rosc?ysect y DN g(L(xy, hiy), khi,).

rg=1 p=1

Using Lemma 4.4 in the above relation, we obtain

2¢ 2a+1 a
DU 8@ ) k2P = cesy Y (@, Ind) = ()]
rg=1 p=1 p=1

+cesc’ Z [(x,1Ini) + cm(xp)]2 +2ca’ csc> Y + ccot? Z(xp Ini)®
p=1 p=1
+ccot’ Y Z(qﬁxp Ini)> + ¢ cot? W Z(XP Ini)®
p=1 p=1
+ccot’ Y Z(gbxp Ini)? + cesc’y Z [(¢x,Ini) — r)(xp)]2
p=1 p=1

+cesc’ Yy Z [(x,Ini0) + cm(xp)]2 + 2ca’ cot? .

p=1
Since n(x,) = 0 for every p = 1,2, --- , a, the above equation reduces to

2¢ 2a+1

DU 8y k) ki) = 2c(cos®y + cot? YV Inilf.

rg=1 p=1

Using (4.18) and (4.19) in (4.17), we get the inequality (4.14).

Proof of the equalty case is similar to the proof of the equality case of Theorem 3.1.

(4.19)

O
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Theorem 4. Let X = %, X, %, be a D — DY mixed geodesic warped product submanifold of £ such that
Eistangentto X, where Xy = XXX . Then the squared norm of the second fundamental form satisfies

211> > 2¢c[(csc® y + cot? ) || VVIni ||* + cos? {|| V*1ni |* —a?}], (4.20)

where V' Ini and V*1ni are the gradient of Ini along ¥; and X, respectively, and for the case of
equality, £, becomes totally geodesic and %, becomes totally umbilical in X.

5. Conclusions

This paper investigated different types of submanifolds in the context of a Lorentzian concircular
structure manifold. We examined invariant, anti-invariant, proper slant, and pointwise slant
submanifolds, and further explored two distinct categories of warped product submanifolds.

In the first category, we considered the fiber submanifold as an anti-invariant submanifold, while in
the second category, the fiber submanifold was treated as a pointwise slant submanifold. Throughout
our analysis, we established several fundamental results and derived important inequalities for the
squared norm of the second fundamental form.

Our research not only provided a theoretical framework for understanding the properties and
characteristics of these submanifold classes but also demonstrated the existence of such submanifold
classes through specific examples. By examining these examples, we gained valuable insights
into the behavior and geometric structures of the submanifolds within the Lorentzian concircular
structure manifold.

Overall, this study contributes to the field of differential geometry by expanding our understanding
of submanifolds and their relationships within a Lorentzian concircular structure manifold. The results
and inequalities derived in this paper can serve as valuable tools for future research in this area, and
we hope that they will inspire further investigations into the geometric properties of submanifolds in
related contexts.
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