Processing math: 31%
Research article Special Issues

The explicit formula and parity for some generalized Euler functions

  • Utilizing elementary methods and techniques, the explicit formula for the generalized Euler function φe(n)(e=8,12) has been developed. Additionally, a sufficient and necessary condition for φ8(n) or φ12(n) to be odd has been obtained, respectively.

    Citation: Shichun Yang, Qunying Liao, Shan Du, Huili Wang. The explicit formula and parity for some generalized Euler functions[J]. AIMS Mathematics, 2024, 9(5): 12458-12478. doi: 10.3934/math.2024609

    Related Papers:

    [1] Feng Qi, Bai-Ni Guo . Several explicit and recursive formulas for generalized Motzkin numbers. AIMS Mathematics, 2020, 5(2): 1333-1345. doi: 10.3934/math.2020091
    [2] Xiaoyong Xu, Fengying Zhou . Orthonormal Euler wavelets method for time-fractional Cattaneo equation with Caputo-Fabrizio derivative. AIMS Mathematics, 2023, 8(2): 2736-2762. doi: 10.3934/math.2023144
    [3] Li Chen, Dmitry V. Dolgy, Taekyun Kim, Dae San Kim . Probabilistic type 2 Bernoulli and Euler polynomials. AIMS Mathematics, 2024, 9(6): 14312-14324. doi: 10.3934/math.2024696
    [4] Jiaye Lin . Evaluations of some Euler-type series via powers of the arcsin function. AIMS Mathematics, 2025, 10(4): 8116-8130. doi: 10.3934/math.2025372
    [5] Mohammed Z. Alqarni, Mohamed Abdalla . Analytic properties and numerical representations for constructing the extended beta function using logarithmic mean. AIMS Mathematics, 2024, 9(5): 12072-12089. doi: 10.3934/math.2024590
    [6] Nadia N. Li, Wenchang Chu . Explicit formulae for Bernoulli numbers. AIMS Mathematics, 2024, 9(10): 28170-28194. doi: 10.3934/math.20241366
    [7] Andromeda Sonea, Irina Cristea . Euler's totient function applied to complete hypergroups. AIMS Mathematics, 2023, 8(4): 7731-7746. doi: 10.3934/math.2023388
    [8] Yanbo Song . On two sums related to the Lehmer problem over short intervals. AIMS Mathematics, 2021, 6(11): 11723-11732. doi: 10.3934/math.2021681
    [9] Zhengjin Bu, Zhefeng Xu . Asymptotic formulas for generalized gcd-sum and lcm-sum functions over r-regular integers (mod nr). AIMS Mathematics, 2021, 6(12): 13157-13169. doi: 10.3934/math.2021760
    [10] Can Kızılateş, Halit Öztürk . On parametric types of Apostol Bernoulli-Fibonacci, Apostol Euler-Fibonacci, and Apostol Genocchi-Fibonacci polynomials via Golden calculus. AIMS Mathematics, 2023, 8(4): 8386-8402. doi: 10.3934/math.2023423
  • Utilizing elementary methods and techniques, the explicit formula for the generalized Euler function φe(n)(e=8,12) has been developed. Additionally, a sufficient and necessary condition for φ8(n) or φ12(n) to be odd has been obtained, respectively.



    Let Z and P denote the set of integers and primes, respectively. In order to generalize Lehmer's congruence (see [4] or [7]) for modulo prime squares to be modulo integer squares, Cai et al. [1] defined the following generalized Euler function for a positive integer n related to a given positive integer e:

    φe(n)=[ne]i=1,gcd(i,n)=11,

    where [x] is the greatest integer not more than x, i.e., φe(n) is the number of positive integers not greater than [ne] and prime to n. It is clear that φ1(n)=φ(n) is just the Euler function of n, φ2(n)=12φ(n), and

    φe(n)=d|nμ(nd)[de], (1.1)

    where μ(n) is the Möbius function. There are some good results for the generalized Euler function and its applications, especially those concerning φe(n)(e=2,3,4,6), which can be seen in [3].

    In 2013, Cai et al [2] gave the explicit formula for φ3(n) and obtained a criterion regarding the parity for φ2(n) or φ3(n), respectively. In [8], the authors derived the explicit formulae for φ4(n) and φ6(n), and then they obtained some sufficient and necessary conditions for the case that φe(n) or φe(n+1) is odd or even, respectively.

    Recently, Wang and Liao [9] gave the formula for φ5(n) in some special cases and then obtained some sufficient conditions for the case that φ5(n) is even. Liao and Luo [5] gave a computing formula for φe(n) (e=p,p2,pq), where p and q are distinct primes, and n satisfies some certain conditions. Liao [6] obtained the explicit formula for a special class of generalized Euler functions. However, the explicit formula for φe(n)(e3,4,6) was not obtained in the general case.

    In this paper, utilizing the methods and techniques given in [2,5,8], we study the explicit formula and the parity for φe(n)(e=8,12), obtain the corresponding computing formula, and then give a sufficient and necessary condition for the case that φe(n)(e=8,12) is odd or even, respectively.

    For convenience, throughout the paper, we denote Ω(n) and ω(n) to be the number of prime factors and distinct prime factors of a positive integer n, respectively. And for k primes p1,,pk, set Pk={p1,,pk},

    RPk={ripiri(mod8),0ri7,piPk,1ik},

    and

    RPk={ripiri(mod12),0ri11,piPk,1ik}.

    We have organized this paper as follows. In Section 2, we obtain the obvious formulas for [m8] and [m12] based on Jacobi symbol, and some important lemmas are given. In Sections 3 and 4, according to (1.1), and by using the property of the Möbius function μ(n), we derive the expressions for φe(8) and φe(12). In Section 5, we give the parities of φ8(n) and φ12(n), respectively. In the last section, we summarize the main advantage of the proposed method, and propose a further problem to be studied.

    In this section, we first present Lemmas 2.1 and 2.2, which are necessary for the derivations of both [m8] and [m12].

    Lemma 2.1. For any odd positive integer m, we have

    [m8]=18(m4+2(2m)+(1m)). (2.1)

    Furthermore, if gcd(m,6)=1, then we have

    [m12]=112(m6+3(1m)+2(3m)), (2.2)

    where (am) is the Jacobi symbol.

    Proof. For any odd positive integer m, by properties of the Jacobi symbol, we have

    (1m)={1,m1(mod4),1,m3(mod4),and(2m)={1,m1,3(mod8),1,m5,7(mod8).

    Thus from m1(mod8), we can get that 18(m4+2(2m)+(1m))=18(m1) and [m8]=18(m1), namely, (2.1) is true. Similarly, if m3,5,7(mod8), by direct computation, (2.1) holds.

    Furthermore, if gcd(m,6)=1, then by the properties for the Jacobi symbol and the quadratic reciprocity law, we have

    (3m)=(1m)(m3)(1)14(31)(m1)={1,m1,7(mod12),1,m5,11(mod12).

    Thus by m1(mod12), we have that 112(m6+3(1m)+2(3m))=112(m1)=[m12], i.e., (2.2) is true. Similarly, if m5,7,11(mod12), one can get (2.2) also.

    This completes the proof of Lemma 2.1.

    Now, we give a property for the Möbius function, which unifies the cases of Lemma 1.5 in [2] and Lemmas 1.4 and 1.5 in [8].

    Lemma 2.2. Let a be a nonzero integer, p1,,pk be distinct odd primes, and α1,,αk be positive integers. Suppose that n=ki=1pαii and gcd(pi,a)=1(1ik); then,

    d|nμ(nd)(ad)=ki=1((api)αi(api)αi1). (2.3)

    Proof. For a given integer x, set fx(m)=d|mμ(md)(xd).

    First, if m=pα, where p is an odd prime and α is a positive integer, then, by the definition of the Möbius function, we have

    fa(m)=μ(1)(apα)+μ(p)(apα1)=(ap)α(ap)α1.

    Second, if m=m1pα, where α is a positive integer, p is an odd prime with gcd(m1,p)=1, and m1 is an odd positive integer, then we have

    fa(m)=d|m1μ(m1d)(adpα)+d|m1μ(p)μ(m1d)(adpα1)=(ap)αd|m1μ(m1d)(ad)(ap)α1d|m1μ(m1d)(ad).=((ap)α(ap)α1)fa(m1).

    This means that fa(m) is a multiplicative function. Now denote pαn to be the case for both pαn and pα+1n; then, we can get

    fa(n)=pαn((ap)α(ap)α1)=ki=1((api)αi(api)αi1).

    This completes the proof of Lemma 2.2.

    The following lemmas are necessary for proving our main results.

    Lemma 2.3. [2] Let p1,,pk be distinct primes and α,α1,,αk be non-negative integers. If n=3αki=1pαii>3 and gcd(pi,3)=1(1ik), then

    φ3(n)={13φ(n)+13(1)Ω(n)2ω(n)α1,if   α=0  or  1,pi2(mod3),13φ(n),otherwise.

    Lemma 2.4. [8] Let p1,,pk be distinct odd primes and α,α1,,αk be non-negative integers. If n=2αki=1pαii>4, then

    φ4(n)={14φ(n)+14(1)Ω(n)2ω(n)α,if  α=0or1,pi3(mod4),14φ(n),otherwise.

    Lemma 2.5. [8] Let p1,,pk be distinct primes and α,β,α1,,αk be non-negative integers. If n=2α3βki=1pαii>6 and gcd(pi,6)=1(1ik), then

    φ6(n)={16φ(n)+16(1)Ω(n)2ω(n)+1β,if  α=0  and  β=0or1,pi5(mod6),16φ(n)+16(1)Ω(n)2ω(n)1β,if  α=1  and  β=0or1,pi5(mod6),16φ(n)16(1)Ω(n)2ω(n)β,if  α2  and  β=0or1,pi5(mod6),16φ(n),otherwise.

    Lemma 2.6. [6] Let p1,,pk be distinct primes and α1,,αk be positive integers. If n=ki=1pαii and e=ki=1pβii with 0βiαi1(1ik), then

    φe(n)=1eφ(n). (2.4)

    First, for a fixed positive integer α and n=2α, by Lemma 2.6 we can obtain the following:

    φ8(2α)={0,if   α=1,2,1,if  α=3,2α4,if  α4. (3.1)

    Next, we consider the case that n=2αn1, where n1>1 is an odd integer. We have the following theorem.

    Theorem 3.1. Suppose that α is a non-negative integer, p1,,pk are distinct odd primes, and n=2αki=1pαii>8. Then we have the following:

    φ8(n)={18φ(n)+14(1)Ω(n)2ω(n)α,if  α=0,1,and RPk={5,7},{5};18φ(n)+18(1)Ω(n)[α+12]2ω(n)12(1(1)α),if   α=0,1,2,and RPk={3,7},{3};18φ(n)+18(1)Ω(n)[α2]2ω(n)12(1(1)α)+1[α+12]4(1)Ω(n)2ω(n),if  α=0,1,2,and RPk={7};18φ(n),otherwise. (3.2)

    Proof. For n=2αki=1pαii>8, set n1=ki=1pαii; then, gcd(n1,2)=1. There are 4 cases as follows.

    Case 1. α=0, i.e., n=n1>8. By (1.1), (2.1) and Lemmas 2.1 and 2.2, we have

    φ8(n)=d|n1μ(n1d)[d8]=18d|n1μ(n1d)(d4+2(2d)+(1d))=18d|n1μ(n1d)d12d|n1μ(n1d)+14d|n1μ(n1d)(2d)+18d|n1μ(n1d)(1d)=18φ(n1)+14ki=1((2pi)αi(2pi)αi1)+18ki=1((1pi)αi(1pi)αi1). (3.3)

    If 1RPk, i.e., there exists an i(1ik) such that pi1(mod8), then (2pi)=(1pi)=1. Now by (3.3) we have

    φ8(n)=18φ(n1)=18φ(n). (3.4)

    If {3,5}RPk, i.e., there exist ij such that pi3(mod8) and pj5(mod8), which means that (2pi)=(1pj)=1, then, by (3.3) we also have

    φ8(n)=18φ(n1)=18φ(n).

    If RPk={5,7} or {5}, i.e., for any pPk, we have that p5,7(mod8) or p5(mod8), respectively. This means that there exists a prime p such that (2p)=1 and (1p)=1. Thus by (3.3) we can obtain

    φ8(n)=18φ(n1)+14ki=1(2(1)αi)=18φ(n)+14(1)Ω(n)2ω(n). (3.5)

    If RPk={3,7} or {3}, i.e., for any pPk,p3,7(mod8) or p3(mod8), respectively. This implies that for any pPk,(1p)=1, and there exists a prime pPk such that p3(mod8); then, (2p)=1. Thus by (3.3) we have

    φ8(n)=18φ(n1)+18ki=1(2(1)αi)=18φ(n)+18(1)Ω(n)2ω(n). (3.6)

    If RPk={7}, i.e., for any pPk,p7(mod8), then (2p)=(1p)=1. Thus by (3.3) we have

    φ8(n)=18φ(n1)+38ki=1(2(1)αi)=18φ(n)+38(1)Ω(n)2ω(n). (3.7)

    Now from (3.4)–(3.7) we know that Theorem 3.1 is true.

    Case 2. α=1, i.e., n=2n1>8. Then from the definition we have

    φ8(n)=d|n1μ(2n1d)[d8]+d|n1μ(2n12d)[2d8]=φ8(n1)+φ4(n1).

    Now by Lemma 2.4 and the proof for Case 1, we can get the following:

    φ8(n)={18φ(n)+14(1)Ω(n)2ω(n)1,if  RPk={5,7},{5};18φ(n)+18(1)Ω(n)12ω(n)1,if  RPk={3,7},{3};18φ(n)+18(1)Ω(n)2ω(n)1,if  RPk={7};18φ(n),otherwise. (3.8)

    This means that Theorem 3.1 is true in this case.

    Case 3. α=2, i.e., n=4n1>8. Then from the definition we have

    φ8(n)=d|n1μ(4n1d)[d8]+d|n1μ(4n12d)[2d8]+d|n1μ(4n14d)[4d8]=d|n1μ(2n1d)[d4]+d|n1μ(n1d)[d2]=φ2(n1)φ4(n1)=12φ(n1)φ4(n1).

    Now from Lemma 2.4 and the proof for Case 1, we can also get the following:

    φ8(n)={18φ(n),if  RPk={5,7},{5},18φ(n)+18(1)Ω(n)12ω(n),if  RPk={3,7},{3};18φ(n)+18(1)Ω(n)12ω(n),if   RPk={7};18φ(n),otherwise. (3.9)

    This means that Theorem 3.1 holds in this case.

    Case 4. α3. Note that μ(2γ)=0 for any positive integer γ2; thus, by (1.1) and Lemma 2.4 we have

    φ8(n)=d|n1μ(2n1d)[2α1d8]+d|n1μ(n1d)[2αd8]. (3.10)

    If α=3, then

    φ8(n)=d|n1μ(n1d)[d2]+d|n1μ(n1d)d=12φ(n1)+φ(n1)=12φ(n1)=18φ(n)

    If α4, then φ8(n)=2α4φ(n1)+2α3φ(n1)=2α4φ(n1)=18φ(n), which means that Theorem 3.1 also holds.

    From the above, we have completed the proof of Theorem 3.1.

    In this section, we give the explicit formula for φ12(n). Obviously, φ12(n)=0 when n<12, and φ12(n)=1 when n=12 or 24; then, we consider n>12 and n24.

    Theorem 4.1. Let α and β be non-negative integers. If n=2α3β>12 and n24, then the following holds:

    φ12(n)={12(3β2(1)α+β),if  α=0,orα1,β2;2α23β2,if   α2,β2;13(2α+β3+(1)α+β),if  α4,β=0,1. (4.1)

    Proof. (1) For the case that α=0, i.e., n=3β>12, and β3, then we have

    φ12(3β)=d|3βμ(3βd)[d12]=[3β12][3β112]=[3β14][3β24]=14(3β12+(1)β1)14(3β22+(1)β2)=12(3β2(1)β).

    (2) For the case that α=1, i.e., n=23β>12, and β2, by Lemma 2.5,

    φ12(23β)=d|3βμ(23βd)[d12]+d|3βμ(23β2d)[2d12]=φ12(3β)+φ6(3β)=112φ(3β)+12(1)β+16φ(3β)=12(3β2(1)β+1).

    (3) For the case that α=2, i.e., n=43β>12, and so β2, then we have

    φ12(43β)=d|43βμ(43βd)[d12]=μ(1)[43β12]+μ(2)[23β12]+μ(3)[43β112]+μ(6)[23β112]=3β1[3β12]3β2+[3β22]=3β2.

    (4) For the case that α=3, i.e., n=83β>12 and n24, and β2, then

    φ12(83β)=d|83βμ(83βd)[d12]=μ(1)[83β12]+μ(2)[43β12]+μ(3)[83β112]+μ(6)[43β112]=23β13β123β2+3β2=23β2.

    (5) For the case that α4, i.e., n=2α3β>12, and so β0, if β=0, i.e., n=2α(α4), then we have

    φ12(2α)=d|2αμ(2αd)[d12]=[2α23][2α33]=13(2α212(3(1)α2))13(2α312(3(1)α3))=13(2α3+(1)α)

    If β=1, i.e., n=32α, then we have

    φ12(32α)=d|32αμ(32αd)[d12]=2α22α3[2α23]+[2α33]=13(2α2+(1)α+1).

    If β2, we have

    φ12(2α3β)=d|2α3βμ(2α3βd)[d12]=μ(1)[2α3β12]+μ(2)[2α13β12]+μ(3)[2α3β112]+μ(6)[2α13β112]=2α23β1[2α23β12]2α23β2+[2α23β22]=2α23β2.

    This completes the proof of Theorem 4.1.

    Now consider the case that n=2α3βn1, where n1>1 and gcd(n1,6)=1. We have the following theorem.

    Theorem 4.2. Let α and β be non-negative integers, k,αi(1ik) be positive integers, and p1,,pk be distinct primes. Suppose that gcd(pi,6)=1\, (1ik) and n=2α3βki=1pαii>12; then, we have the following:

    φ12(n)={112φ(n)+14(1)Ω(n)2ω(n)α,if  α=0,1,β=0,  and  RPk={7,11},{7};112φ(n)+14(1)Ω(n)+12ω(n)α,if  α=0,1,β2,  and  RPk={7,11},{7},{11};112φ(n)+16(1)Ω(n)+[α+12]2ω(n)[α+12]β,if   α=0,1,2,β=0,1,  and  RPk={5,11},{5},or   α=0,1,β=1,  and  RPk={11};orα=2,β=0,1,  and  RPk={11};112φ(n)+16(1)Ω(n)2ω(n)β,if  α3,β=0,1,  and  RPk={5,11},{5},{11};112φ(n)+512(1)Ω(n)2ω(n),if   α=0,β=0,  and  RPk={11};112φ(n)+112(1)Ω(n)2ω(n)1,if   α=1,β=0,  and  RPk={11};112φ(n),otherwise. (4.2)

    Proof. Set n1=ki=1pαii; then, gcd(n1,6)=1 and n=2α3βn1.

    Case 1. α=0.

    (A) If β=0, then n1>1. Thus by (1.1), (2.2) and Lemmas 2.1 and 2.2, we have

    φ12(n)=φ12(n1)=d|n1μ(n1d)[d12]=112d|n1μ(n1d)(d6+3(1d)+2(3d))=112d|n1μ(n1d)d12d|n1μ(n1d)+14d|n1μ(n1d)(1d)+16d|n1μ(n1d)(3d)=112φ(n1)+14ki=1((1pi)αi(1pi)αi1)+16ki=1((3pi)αi(3pi)αi1). (4.3)

    If 1RPk or {5,7}RPk, then there exists pi1(mod12), or there exist pj and pl such that pj5(mod12) and pl7(mod12); then, (1pi)=(3pi)=1 or (1pj)=(3pl)=1, respectively. Thus by (4.3) we can get

    φ12(n)=112φ(n1)=112φ(n). (4.4)

    If RPk={7,11} or {7}, i.e., for any pPk, we have that p7,11(mod12) or p7(mod12), respectively. This means that (1p)=1 and there exists a prime p7(mod12), i.e., (3p)=1, in either of the two cases. Thus by (4.3) we can obtain

    φ12(n)=112φ(n1)+14ki=1(2(1)αi)=112φ(n)+14(1)Ω(n)2ω(n). (4.5)

    If RPk={5,11} or {5}, i.e., for any pPk, p5,11(mod12) or p5(mod12), respectively. Then (3p)=1, and there exists a prime p5(mod12), i.e., (1p)=1 in either case. Thus by (4.3) we can get

    φ12(n)=112φ(n1)+16ki=1(2(1)αi)=112φ(n)+16(1)Ω(n)2ω(n). (4.6)

    If RPk={11}, i.e., for any pPk, p11(mod12); then, (1p)=(3p)=1. Thus by (4.3) we have

    φ12(n)=112φ(n1)+512ki=1(2(1)αi)=112φ(n)+512(1)Ω(n)2ω(n). (4.7)

    (B) If β1, then by (1.1) we have

    φ12(n)=φ12(3βn1)=d|n1μ(3βn1d)[d12]+d|3β1n1μ(3βn13d)[3d12]=μ(3β)φ12(n1)+φ4(3β1n1).

    Now from β=1, Lemma 2.4 and Case 1, we can get the following:

    φ12(n)=φ12(n1)+φ4(n1)={112φ(n),if  RPk={7,11},{7},112φ(n)+16(1)Ω(n)2ω(n)1,if   RPk={5,11},{5},112φ(n)+16(1)Ω(n)2ω(n)1,if   RPk={11},112φ(n),otherwise. (4.8)

    For the case that β2, note that μ(3γ)=0 with γ2; thus, by Lemma 2.4 we have the following:

    φ12(n)=φ4(3β1n1)={112φ(n)+14(1)Ω(n)+12ω(n),if   RPk={7,11},{7},112φ(n),if  RPk={5,11},{5},112φ(n)+14(1)Ω(n)+12ω(n),if   RPk={11},112φ(n),otherwise. (4.9)

    From the above (4.3)–(4.9), Theorem 4.2 is proved in this case.

    Case 2. α=1.

    (A) If β=0, i.e., n=2n1, then by (1.1), Case 1 and Lemma 2.4, we have

    φ12(n)=d|n1μ(2n1d)[d12]+d|n1μ(2n12d)[2d12]=φ12(n1)+φ6(n1)={112φ(n)+14(1)Ω(n)2ω(n)1,if   RPk={7,11},{7},112φ(n)+112(1)Ω(n)+12ω(n),if  RPk={5,11},{5},112φ(n)+112(1)Ω(n)2ω(n)1,if   RPk={11},112φ(n),otherwise. (4.10)

    (B) If β=1, i.e., n=6n1, then from (1.1) we can get

    φ12(n)=d|n1μ(6n1d)[d12]+d|n1μ(6n12d)[2d12]+d|n1μ(6n13d)[3d12]+d|n1μ(6n16d)[6d12]=φ12(n1)φ6(n1)φ4(n1)+φ2(n1).

    Now by Lemmas 2.4 and 2.5 and Case 1, we have the following:

    φ12(n)={112φ(n),if  RPk={7,11},{7},112φ(n)+112(1)Ω(n)+12ω(n)1,if   RPk={5,11},{5},112φ(n)+112(1)Ω(n)+12ω(n)1,if   RPk={11},112φ(n),otherwise. (4.11)

    (C) If β2, then by (1.1) one can easily see that

    φ12(n)=d|n1μ(23βn1d)[d12]+d|n1μ(23βn12d)[2d12]+d|3β1n1μ(23βn13d)[3d12]+d|3β1n1μ(23βn16d)[6d12]=φ4(3β1n1)+φ2(3β1n1).

    Now by Lemma 2.4 we can get the following:

    φ12(n)={112φ(n)+14(1)Ω(n)+12ω(n)1,if  RPk={7,11},{7},112φ(n),if  RPk={5,11},{5},112φ(n)+14(1)Ω(n)+12ω(n)1,if  RPk={11},112φ(n),otherwise. (4.12)

    From the above (4.10) and (4.12), Theorem 4.2 is true in this case.

    Case 3. α=2.

    (A) If β=0, i.e., n=4n1, then from Lemmas 2.3 and 2.5, we can obtain

    φ12(n)=d|4n1μ(4n1d)[d12]=d|n1μ(4n1d)[d12]+d|n1μ(4n12d)[2d12]+d|n1μ(4n14d)[4d12]=φ6(n1)+φ3(n1)={112φ(n),if  RPk={7,11},{7},112φ(n)+112(1)Ω(n)+12ω(n),if  RPk={5,11},{5},112φ(n)+112(1)Ω(n)+12ω(n),if  RPk={11},112φ(n),otherwise. (4.13)

    (B) If β=1, i.e., n=12n1, then by the definition we have

    φ12(n)=d|12n1μ(12n1d)[d12]=d|n1μ(12n1d)[d12]+d|n1μ(12n12d)[2d12]+d|n1μ(12n14d)[4d12]+d|n1μ(12n13d)[3d12]+d|n1μ(12n16d)[6d12]+d|n1μ(12n112d)[12d12]=φ6(n1)φ3(n1)φ2(n1)+φ(n1).

    Now by Lemmas 2.3 and 2.4 and Case 1, we can get the following:

    φ12(n)={112φ(n),if   RPk={7,11},{7},112φ(n)+112(1)Ω(n)+12ω(n)1,if  RPk={5,11},{5},112φ(n)+112(1)Ω(n)+12ω(n)1,if   RPk={11},112φ(n),otherwise. (4.14)

    (C) If β2, then from n=43βn1 and the definition, we know that

    φ12(n)=d|43βn1μ(43βn1d)[d12]=d|23β1n1μ(43βn16d)[6d12]=d|3β1n1μ(23βn12d)[2d2]+d|3β1n1μ(23βn1d)[d2]=φ(3β1n1)φ2(3β1n1)=12φ(3β1n1)=112φ(43βn1)=112φ(n). (4.15)

    From the above (4.13)–(4.15), Theorem 4.2 is proved in this case.

    Case 4. α3.

    (A) If β=0, i.e., n=2αn1, then by Lemma 2.5 we have

    φ12(n)=d|n1μ(2αn1d)[d12]+d|2α1n1μ(2αn12d)[2d12]=φ6(2α1n1)={112φ(n),if   RPk={7,11},{7},112φ(n)+16(1)Ω(n)2ω(n),if  RPk={5,11},{5},112φ(n)+16(1)Ω(n)2ω(n),if   RPk={11},112φ(n),otherwise. (4.16)

    (B) If β=1, i.e., n=32αn1, then by the definition we have

    φ12(n)=d|n1μ(32αn1d)[d12]+d|2α1n1μ(32αn12d)[2d12]+d|n1μ(32αn13d)[3d112]+d|2α1n1μ(32αn16d)[6d12]=φ6(2α1n1)+φ2(2α1n1)={112φ(n),if  RPk={7,11},{7},112φ(n)+112(1)Ω(n)2ω(n),if  RPk={5,11},{5},112φ(n)+112(1)Ω(n)2ω(n),if  RPk={11},112φ(n),otherwise. (4.17)

    (C) If \beta\geq 2 , then by Lemma 2.6 we can get

    \begin{eqnarray} \varphi_{12}(n) = \frac{1}{12}\varphi(2^{\alpha}\cdot3^{\beta}n_{1}) = \frac{1}{12}\varphi(n). \end{eqnarray} (4.18)

    Now from (4.16)–(4.18), Theorem 4.2 is proved in this case.

    From the above, we complete the proof for Theorem 4.2.

    Based on Theorems 3.1, 4.1 and 4.2, this section gives the parity of \varphi_{8}(n) and \varphi_{12}(n) , respectively.

    Theorem 5.1. If n is a positive integer, then \varphi_{8}(n) is odd if and only if n = 8, 16 or n is given by Table 1. In the above table, p, p_{1}, p_{2} are odd primes with p_1\neq p_2 , and \alpha, \alpha_{1}, \alpha_{2} are positive integers.

    Table 1.  the conditions of \varphi_{8}(n) is odd.
    n Conditions
    p^{\alpha} p\equiv9, 15\, (\mathrm{mod}\, 16) ; p\equiv3, 5\, (\mathrm{mod}\, 16) , 2\, |\alpha ; p\equiv11, 13\, (\mathrm{mod}\, 16) , 2\nmid\alpha ;
    2p^{\alpha} p\equiv7, 9\, (\mathrm{mod}\, 16) ; p\equiv3, 13\, (\mathrm{mod}\, 16) , 2\, |\alpha ; p\equiv5, 11\, (\mathrm{mod}\, 16) , 2\nmid\alpha ;
    4p^{\alpha} p\equiv3, 5\, (\mathrm{mod}\, 8) ;
    8p^{\alpha} p\equiv3, 7\, (\mathrm{mod}\, 8) ;
    p_{1}^{\alpha_{1}}p_{2}^{\alpha_{2}} p_{1}\equiv p_{2}\equiv3\, (\mathrm{mod}\, 8) ; p_{1}\equiv p_{2}\equiv5\, (\mathrm{mod}\, 8) ; p_{1}\equiv3\, (\mathrm{mod}\, 8), p_{2}\equiv5\, (\mathrm{mod}\, 8) ;
    2p_{1}^{\alpha_{1}}p_{2}^{\alpha_{2}} p_{1}\equiv p_{2}\equiv3\, (\mathrm{mod}\, 8) ; p_{1}\equiv p_{2}\equiv5\, (\mathrm{mod}\, 8) ; p_{1}\equiv3\, (\mathrm{mod}\, 8), p_{2}\equiv5\, (\mathrm{mod}\, 8) .

     | Show Table
    DownLoad: CSV

    Proof. For n = 2^{\alpha} , by (3.1) we know that \varphi_{8}(n) is odd if and only if n = 8, 16 .

    Now suppose that n = 2^{\alpha}\, \prod_{i = 1}^{k} p_{i}^{\alpha_{i}} , where \alpha \geq0 , \alpha_{1}, \ldots, \alpha_k are positive integers, and p_{1}, \ldots, p_k are distinct odd primes. Set n_{1} = \prod_{i = 1}^{k} p_{i}^{\alpha_{i}} ; then, n_{1} > 1 is odd. By Theorem 3.1, we have the following four cases.

    Case 1. R_{\mathbb{P}_{k}} = \{5, 7\} or \{5\} .

    (A) If \alpha = 0 , i.e., n = n_1 is odd, then, by (3.2) we have that \varphi_{8}(n) = \frac{1}{8}\varphi(n)+\frac{1}{4}(-1)^{\Omega(n)}2 ^{\omega(n)} . Note that there exists a prime factor p of n such that p\equiv5 \, (\mathrm{mod}\, 8) ; thus, we must have that \omega(n)\leq2 if \varphi_{8}(n) is odd. For \omega(n) = 2 , i.e., n = p_{1}^{\alpha_{1}}p_{2}^{\alpha_{2}} , by (3.2) we have

    \begin{eqnarray} \varphi_{8}(n) = \frac{1}{8}\, p_{1}^{\alpha_{1}-1}(p_{1}-1)\, p_{2}^{\alpha_{2}-1}(p_{2}-1)+(-1)^{\alpha_{1}+\alpha_{2}}. \end{eqnarray}

    Therefore \varphi_{8}(n) is odd if and only if p_{1}\equiv p_{2}\equiv5\, (\mathrm{mod}\, 8) , which is true. Now for \omega(n) = 1 , i.e., n = p_1^{\alpha_1} with p_1\equiv 5\, (\mathrm{mod}\, 8) , similarly, by (3.2) we have

    \begin{eqnarray} \varphi_{8}(n) = \frac{1}{8}\, p_1^{\alpha_{1}-1}(p_{1}-1)+\frac{1}{2}(-1)^{\alpha_{1}} = \frac{1}{8}\, \big(p_{1}^{\alpha_{1}-1}(p_{1}-1)+4\cdot(-1)^{\alpha_{1}}\big). \end{eqnarray}

    From p_{1}\equiv5\, (\mathrm{mod}\, 8) , we have that p_{1}\equiv5, 13\, (\mathrm{mod}\, 16) . If p_{1}\equiv5\, (\mathrm{mod}\, 16) , then

    p_{1}^{\alpha_{1}-1}(p_{1}-1)+4(-1)^{\alpha_{1}}\equiv4\cdot5^{\alpha_{1}-1}+4(-1)^{\alpha_{1}}(\mathrm{mod}\, 16).

    Thus, \varphi_{8}(n) is odd if and only if 2\mid\alpha_{1} . If p_{1}\equiv13\, (\mathrm{mod}\, 16) , then

    p_{1}^{\alpha_{1}-1}(p_{1}-1)+4(-1)^{\alpha_{1}}\equiv12\cdot(-3)^{\alpha_{1}-1}+4(-1)^{\alpha_{1}}(\mathrm{mod}\, 16).

    Thus, \varphi_{8}(n) is odd if and only if \alpha_{1} is odd.

    (B) If \alpha = 1 , i.e., \omega(n)\geq 2 , by (3.2) we have that \varphi_{8}(n) = \frac{1}{8}\varphi(n)+\frac{1}{4}(-1)^{\Omega(n)}2 ^{\omega(n)-1} . Then we must have that \omega(n)\leq3 if \varphi_{8}(n) is odd. For \omega(n) = 3 , namely, n = 2p_{1}^{\alpha_{1}}p_{2}^{\alpha_{2}} , using the same method as (A), \varphi_{8}(n) is odd if and only if p_{1}\equiv p_{2}\equiv5\, (\mathrm{mod}\, 8) . Now for \omega(n) = 2 , i.e., n = 2p_{1}^{\alpha_{1}} with p_{1}\equiv5\, (\mathrm{mod}\, 8) , similar to (A), \varphi_{8}(n) is odd if and only if p_{1}\equiv5\, (\mathrm{mod}\, 16) and \alpha_{1} is odd, or if p_{1}\equiv13\, (\mathrm{mod}\, 16) and 2\mid \alpha_{1} .

    (C) If \alpha = 2 , i.e., \omega(n)\geq2 , then by (3.2), we have that \varphi_{8}(n) = \frac{1}{8}\varphi(n) = \frac{1}{4}\prod _{i = 1}^{k} p_{i}^{\alpha_{i}-1}(p_{i}-1) . Thus from the assumption that p_{i}\equiv 5, 7\, (\mathrm{mod}\, 8) or p_{i}\equiv 5\, (\mathrm{mod}\, 8) , we know that \omega(n) = 2 if \varphi_{8}(n) is odd. In this case, n = 4p_{1}^{\alpha_{1}} with p_{1}\equiv5\, (\mathrm{mod}\, 8) ; then, p_{1}^{\alpha_{1}-1}(p_{1}-1)\equiv4\, (\mathrm{mod}\, 8) , namely, \varphi_{8}(n) is odd.

    (D) If \alpha\geq3 , then by (3.2), \varphi_{8}(n) = \frac{1}{8}\varphi(n) = 2^{\alpha-4}\prod _{i = 1} ^{k} p_{i}^{\alpha_{i}-1}(p_{i}-1) . Thus we must have that \alpha = 3 and k = 1 if \varphi_{8}(n) is odd, namely, n = 8p_1^{\alpha_1} with p_{1}\equiv 5\, (\mathrm{mod}\, 8) . In this case, \varphi_{8}(n) = \frac{1}{8}\varphi(n) = \frac{1}{2}p_{1}^{\alpha_{1}-1}(p_{1}-1) is always even.

    Case 2. R_{\mathbb{P}_{k}} = \{3, 7\} or \{3\} .

    (A) If \alpha = 0 , by (3.2) we have that \varphi_{8}(n) = \frac{1}{8}\varphi(n)+\frac{1}{8}(-1)^{\Omega(n)}2 ^{\omega(n)} . Thus we must have that \omega(n)\leq 3 if \varphi_{8}(n) is odd. For the case that \omega(n) = 3 , i.e, n = p_1^{\alpha_1}p_2^{\alpha_2}p_3^{\alpha_3} , where p_i\equiv 3\, (\mathrm{mod}\, 4) \, (i = 1, 2, 3) , it is easy to see that \varphi_{8}(n) is always even in this case. Therefore we must have that \omega(n) = 1, 2 . Consider that \omega(n) = 2 , i.e., n = p_{1}^{\alpha_{1}}p_{2}^{\alpha_{2}} . Note that R_{\mathbb{P}_{k}} = \{3, 7\} or \{3\} ; then, by (3.2), \varphi_{8}(n) = \frac{1}{8}\big(p_{1}^{\alpha_{1}-1}(p_{1}-1)\, p_{2}^{\alpha_{2}-1}(p_{2}-1)+4\cdot(-1)^{\alpha_{1}+\alpha_{2}}\big) is odd if and only if p_1\equiv p_2\equiv3\, (\mathrm{mod}\, 8) . Now, for \omega(n) = 1 , i.e., n = p_{1}^{\alpha_{1}} with p_{1}\equiv3\, (\mathrm{mod}\, 8) , then by (3.2) we have that \varphi_{8}(n) = \frac{1}{8}\big(p_{1}^{\alpha_{1}-1}(p_{1}-1)+2(-1)^{\alpha_{1}}\big). Thus, \varphi_{8}(n) is odd if and only if p_{1}\equiv 3\, (\mathrm{mod}\, 16) and 2\mid\alpha_{1} , or if p_{1}\equiv 11\, (\mathrm{mod}\, 16) and \alpha_{1} is odd.

    (B) If \alpha = 1 , i.e., \omega\geq2 , by (3.2) we have that \varphi_{8}(n) = \frac{1}{8}\varphi(n)+\frac{1}{8}(-1)^{\Omega(n)-1}2 ^{\omega(n)-1} . Thus we must have that \omega(n)\leq 3 if \varphi_{8}(n) is odd. Using the same method as (A) in case 1, we can get that \varphi_{8}(n) is odd if and only if n = 2p_{1}^{\alpha_{1}}p_{2}^{\alpha_{2}} with p_{1}\equiv p_{2}\equiv3\, (\mathrm{mod}\, 8) , or if n = 2p_{1}^{\alpha_{1}} with p_{1}\equiv3\, (\mathrm{mod}\, 16) and 2\mid \alpha_{1} , or if p_{1}\equiv11\, (\mathrm{mod}\, 16) and \alpha_{1} is odd.

    (C) If \alpha = 2 , i.e., \omega(n)\geq2 , by (3.2) we have that \varphi_{8}(n) = \frac{1}{8}\varphi(n)+\frac{1}{8}\, (-1)^{\Omega(n)-1}\, 2 \, ^{\omega(n)} . Therefore we must have that \omega(n)\leq3 if \varphi_{8}(n) is odd. For the case that \omega(n) = 3 , i.e., n = 4p_{1}^{\alpha_{1}}p_{2}^{\alpha_{2}} , we know that

    \varphi_{8}(n) = \frac{1}{4}p_{1}^{\alpha_{1}-1}(p_1-1)p_{2}^{\alpha_{2}-1}(p_2-1)+(-1)^{\alpha_{1}+\alpha_{2}+1},

    which is always even. Now for the case that \omega(n) = 2 , i.e., n = 4p_{1}^{\alpha_{1}} with p_{1}\equiv 3\, (\mathrm{mod}\, 8) , by (3.2) we have that \varphi_{8}(n) = \frac{1}{4}(p_{1}^{\alpha_{1}-1}(p_1-1)+2(-1)^{\alpha_{1}+1}) . Since

    p_{1}^{\alpha_{1}-1}(p_1-1)+2(-1)^{\alpha_{1}+1}\equiv2\cdot3^{\alpha_{1}-1}+2(-1)^{\alpha_{1}+1}\equiv 4\, (\mathrm{mod}\, 8),

    it follows that \varphi_{8}(n) is odd.

    (D) If \alpha\geq3 , by (3.2) we have that \varphi_{8}(n) = \frac{1}{8}\varphi(n) = 2^{\alpha-4}\prod _{i = 1} ^{k} p_{i}^{\alpha_{i}-1}(p_{i}-1) . From R_{\mathbb{P}_{k}} = \{3, 7\} or \{3\} , we must have that \alpha = 3 and k = 1 if \varphi_{8}(n) is odd, namely, n = 8p_{1}^{\alpha_{1}} with p_{1}\equiv3\, (\mathrm{mod}\, 8) . Obviously, \varphi_{8}(n) = \frac{1}{2}\, p_{1}^{\alpha_{1}-1}(p_{1}-1) is odd in this case.

    Case 3. R_{\mathbb{P}_{k}} = \{7\} .

    (A) If \alpha = 0 , by (3.2), \varphi_{8}(n) = \frac{1}{8}\varphi(n)+\frac{3}{8}\, (-1)^{\Omega(n)}\, 2 \, ^{\omega(n)} . Then we must have that \omega(n)\leq2 if \varphi_{8}(n) is odd. For \omega(n) = 2 , i.e., n = p_{1}^{\alpha_{1}}p_{2}^{\alpha_{2}} , it follows that

    \varphi_{8}(n) = \frac{1}{2}\Big(p_{1}^{\alpha_{1}-1}p_{2}^{\alpha_{2}-1}\cdot\frac{p_{1}-1}{2}\cdot\frac{p_{2}-1}{2} +3\cdot(-1)^{\alpha_{1}+\alpha_{2}}\Big).

    Since p_{1}\equiv p_{2}\equiv7\, (\mathrm{mod}\, 8) , we have that \frac{p_{1}-1}{2}\cdot\frac{p_{2}-1}{2}\equiv1\, (\mathrm{mod}\, 4) and

    p_{1}^{\alpha_{1}-1}p_{2}^{\alpha_{2}-1}\cdot\frac{p_{1}-1}{2}\cdot\frac{p_{2}-1}{2} +3\cdot(-1)^{\alpha_{1}+\alpha_{2}} \equiv (-1)^{\alpha_{1}+\alpha_{2}-2}+3\cdot(-1)^{\alpha_{1}+\alpha_{2}} \equiv 0\, (\mathrm{mod}\, 4),

    which means that \varphi_{8}(n) is even. Now for \omega(n) = 1 , i.e., n = p_{1}^{\alpha_{1}} , by (3.2) we have

    \varphi_{8}(n) = \frac{1}{4}\Big(p_{1}^{\alpha_{1}-1}\cdot\frac{p_{1}-1}{2}+3\cdot(-1)^{\alpha_{1}}\Big).

    Now from p_{1}\equiv7\, (\mathrm{mod}\, 8) , we have that p_{1}\equiv7, 15\, (\mathrm{mod}\, 16) . If p_{1}\equiv7\, (\mathrm{mod}\, 16) , then

    p_{1}^{\alpha_{1}-1}\cdot\frac{p_{1}-1}{2}+3\cdot(-1)^{\alpha_{1}}\equiv3\cdot(-1)^{\alpha_{1}-1}+3\cdot(-1)^{\alpha_{1}}\equiv0\, (\mathrm{mod}\, 8),

    namely, \varphi_{8}(n) is even. Thus, p_{1}\equiv15(\mathrm{mod}\, 16) , then

    p_{1}^{\alpha_{1}-1}\cdot\frac{p_{1}-1}{2}+3\cdot(-1)^{\alpha_{1}}\equiv7\cdot(-1)^{\alpha_{1}-1}+3\cdot(-1)^{\alpha_{1}}\equiv4\, (\mathrm{mod}\, 8),

    namely, \varphi_{8}(n) is odd.

    (B) If \alpha = 1 , by (3.2), \varphi_{8}(n) = \frac{1}{8}\varphi(n)+\frac{1}{8}(-1)^{\Omega(n)}2\, ^{\omega(n)-1} . Using a similar proof as that for (A) in case 1, \varphi_{8}(n) is odd if and only if n = 2p_{1}^{\alpha_{1}} and p_{1}\equiv7\, (\mathrm{mod}\, 16) .

    (C) If \alpha = 2 , i.e., \omega(n)\geq2 , by (3.2), \varphi_{8}(n) = \frac{1}{8}\varphi(n)+\frac{1}{8}\, (-1)^{\Omega(n)-1}\, 2 \, ^{\omega(n)} . Then we must have that \omega(n)\leq3 if \varphi_{8}(n) is odd. For \omega(n) = 3 , i.e., n = 4p_{1}^{\alpha_{1}}p_{2}^{\alpha_{2}} with p_{1}\equiv p_{2}\equiv7\, (\mathrm{mod}\, 8) , we know that

    \varphi_{8}(n) = p_{1}^{\alpha_{1}-1}p_{2}^{\alpha_{2}-1}\cdot\frac{p_{1}-1}{2}\cdot\frac{p_{2}-1}{2} +(-1)^{\alpha_{1}+\alpha_{2}-1}

    is always even. Now for \omega(n) = 2 , i.e., n = 4p_{1}^{\alpha_{1}} with p_{1}\equiv7\, (\mathrm{mod}\, 8) , we can verify that

    \varphi_{8}(n) = \frac{1}{2}\Big(p_{1}^{\alpha_{1}-1}\cdot\frac{p_{1}-1}{2}+(-1)^{\alpha_{1}-1}\Big)

    is also even.

    (D) If \alpha\geq3 , by (3.2), \varphi_{8}(n) = \frac{1}{8}\varphi(n) = 2^{\alpha-4}\prod _{i = 1} ^{k} p_{i}^{\alpha_{i}-1}(p_{i}-1) . Hence, by R_{\mathbb{P}_{k}} = \{7\} we know that \varphi_{8}(n) is odd if and only if \alpha = 3 and k = 1 , i.e., n = 8p_{1}^{\alpha_{1}} with p_{1}\equiv7\, (\mathrm{mod}\, 8) .

    Case 4. \{3, 5\}\subseteq R_{\mathbb{P}_{k}} or 1\in R_{\mathbb{P}_{k}} .

    (A) If \{3, 5\}\subseteq R_{\mathbb{P}_{k}} , i.e., k\geq 2 , then by (3.2) we have that \varphi_{8}(n) = \frac{1}{8}\varphi(n) = \frac{1}{8}\varphi(2^{\alpha})\prod _{i = 1} ^{k}p_{i}^{\alpha_{i}-1} (p_{i}-1) . Thus we must have that k = 2 and \alpha\leq1 if \varphi_{8}(n) is odd, namely, n = p_{1}^{\alpha_{1}}p_{2}^{\alpha_{2}} or 2p_{1}^{\alpha_{1}}p_{2}^{\alpha_{2}} , where p_{1}\equiv3\, (\mathrm{mod}\, 8) and p_{2}\equiv5\, (\mathrm{mod}\, 8) . Obviously, \varphi_{8}(n) = \frac{1}{8}p_{1}^{\alpha_{1}-1}(p_{1}-1)p_{2}^{\alpha_{2}-1}(p_{2}-1) is always odd in this case.

    (B) If 1\in R_{\mathbb{P}_{k}} , by (3.2), \varphi_{8}(n) = \frac{1}{8}\varphi(n) = \frac{1}{8}\varphi(2^{\alpha})\prod _{i = 1} ^{k} p_{i}^{\alpha_{i}-1}(p_{i}-1) . Thus, we must have that \alpha\leq1 and k = 1 if \varphi_{8}(n) is odd. Namely, n = p_{1}^{\alpha_{1}}, 2p_{1}^{\alpha_{1}} with p_{1}\equiv1\, (\mathrm{mod}\, 8) ; then, \varphi_{8}(n) = \frac{1}{8}p^{\alpha_{1}-1}(p_{1}-1) . Obviously, \varphi_{8}(n) is odd if and only if p_{1}\equiv9\, (\mathrm{mod}\, 16) .

    From the above, we have completed the proof of Theorem 5.1.

    Theorem 5.2. If n is a positive integer, then \varphi_{12}(n) is odd if and only if n = 2^{\alpha}\, (\alpha\geq4) , 3\cdot2^{\alpha}\, (\alpha\geq2) , 2\cdot3^{\beta}\, (\beta\geq2) , 4\cdot3^{\beta}\, (\beta\geq2) , or if it satisfies the conditions given in Table 2. Here, p > 3 is an odd prime and \alpha\geq 1 .

    Table 2.  the conditions of \varphi_{12}(n) is odd.
    n Conditions
    p^{\alpha} p\equiv13, 17, 19, 23\, (\mathrm{mod}\, 24) ;
    2p^{\alpha} p\equiv7, 11, 13, 17\, (\mathrm{mod}\, 24) ;
    3p^{\alpha} p\equiv5, 7\, (\mathrm{mod}\, 12) ;
    4p^{\alpha} p\equiv5, 7\, (\mathrm{mod}\, 12) ;
    6p^{\alpha} p\equiv5, 7\, (\mathrm{mod}\, 12) ;
    12p^{\alpha} p\equiv5, 11\, (\mathrm{mod}\, 12) .

     | Show Table
    DownLoad: CSV

    Proof. Obviously, by the definition of \varphi_{12}(n) we can get that \varphi_{12}(n) = 0 for n < 12 and \varphi_{12}(n) = 1 for n = 12, 24 ; then, we consider that n > 12 and n\neq 24 . First, we consider the case that n = 2^{\alpha}\cdot3^{\beta} .

    If \alpha = 0 , we have that \beta\geq3 ; then, by (4.1), \varphi_{12}(n) = \frac{1}{2}\big(3^{\beta-2}-(-1)^{\beta}\big) is even.

    If \alpha = 1 , we have that \beta\geq2 ; then, by (4.1), \varphi_{12}(n) = \frac{1}{2}\big(3^{\beta-2}-(-1)^{\beta+1}\big) is odd.

    If \alpha = 2 , we have that \beta\geq2 ; then, by (4.1), \varphi_{12}(n) = 3^{\beta-2} is odd.

    If \alpha = 3 , we have that \beta\geq2 ; then, by (4.1), \varphi_{12}(8\cdot3^{\beta}) = 2\cdot3^{\beta-2} is even.

    If \alpha\geq4 , then that \beta\geq0 . For \beta = 0 , by (4.1), \varphi_{12}(n) = \frac{1}{3}(2^{\alpha-3}+(-1)^{\alpha}) is odd. For \beta = 1 , by (4.1), \varphi_{12}(n) = \frac{1}{3}\big(2^{\alpha-2}+(-1)^{\alpha+1}\big) is odd. For \beta\geq2 , by (4.1), \varphi_{12}(2^{\alpha}\cdot3^{\beta}) = 2^{\alpha-2}\cdot3^{\beta-2}, which is always even.

    Next, we consider the case that n = 2^{\alpha}\, 3^{\beta}n_{1} , where \alpha \geq0 , \beta \geq0 , n_{1} > 1 and \gcd(n_{1}, 6) = 1 . For convenience, we set n = 2^{\alpha}\, 3^{\beta}\prod_{i = 1}^{k} p_{i}^{\alpha_{i}} , where \alpha_{i} \geq1 , p_{i} is an odd prime and p_{i} > 3\, (1\leq i\leq k) . By Theorem 4.2 we have the following four cases.

    Case 1. R_{\mathbb{P}_{k}}' = \{7, 11\} or \{7\} .

    (A) \alpha = 0 . If \beta = 0 , i.e., \omega(n)\geq 1 , from (4.2) we have that \varphi_{12}(n) = \frac{1}{12}\varphi(n)+\frac{1}{4}\, (-1)^{\Omega(n)}\, 2 \, ^{\omega(n)} . Thus, from the assumption that R_{\mathbb{P}_{k}}' = \{7, 11\}\ \text{or}\ \{7\} , we must have that \omega(n)\leq 2 if \varphi_{12}(n) is odd. For \omega(n) = 2 , i.e., n = p_{1}^{\alpha_{1}}p_{2}^{\alpha_{2}} , note that R_{\mathbb{P}_{k}}' = \{7, 11\}\ \text{or}\ \{7\} ; then,

    \varphi_{12}(n) = \frac{1}{3}\, p_{1}^{\alpha_{1}-1}\, p_{2}^{\alpha_{2}-1}\cdot\frac{p_{1}-1}{2}\cdot\frac{p_{2}-1}{2}+(-1)^{\alpha_{1} +\alpha_{2}}

    is always even in this case. Thus, \omega(n) = 1 , i.e., n = p_{1}^{\alpha_{1}} ; then, by (4.5),

    \varphi_{12}(n) = \frac{1}{12}\big(p_{1}^{\alpha_{1}-1}(p_{1}-1) +6\cdot(-1)^{\alpha_{1}}\big).

    Note that p_{1}\equiv7\, (\mathrm{mod}\, 12) , i.e., p_{1}\equiv7, 19\, (\mathrm{mod}\, 24) . If p_{1}\equiv7\, (\mathrm{mod}\, 24) , then p_{1}^{\alpha_{1}-1}(p-1)+6\cdot(-1)^{\alpha_{1}}\equiv0\, (\mathrm{mod}\, 24) , which means that \varphi_{12}(n) is even. Thus, p_{1}\equiv19\, (\mathrm{mod}\, 24) ; then, p_{1}^{\alpha_{1}-1}(p_{1}-1)+6\cdot(-1)^{\alpha_{1}}\equiv12\, (\mathrm{mod}\, 24) , namely, \varphi_{12}(n) is odd.

    If \beta = 1 , i.e., \omega(n)\geq 2 , by (4.2), \varphi_{12}(n) = \frac{1}{12}\varphi(n) = \frac{1}{6}\prod _{i = 1} ^{k} p_{i}^{\alpha_{i}-1}(p_{i}-1) . Similarly, we must have that \omega(n) = 2 if \varphi_{12}(n) is odd. In this case, n = 3p_{1}^{\alpha} with p_{1}\equiv7\, (\mathrm{mod}\, 12) ; then, \varphi_{12}(n) = \frac{1}{6}p_{1}^{\alpha-1}(p_{1}-1) , easy to see that \varphi_{12}(n) is always even. If \beta\geq2 , i.e., \omega(n)\geq 2 , by (4.2), \varphi_{12}(n) = \frac{1}{12}\varphi(n)+\frac{1}{4}\, (-1)^{\Omega(n)+1}\, 2 \, ^{\omega(n)} . Similarly, we must have that \omega(n) = 2 , i.e., n = 3^{\beta}p_{1}^{\alpha_{1}} if \varphi_{12}(n) is odd. Since p_{1}\equiv7\, (\mathrm{mod}\, 12) , it follows that \varphi_{12}(n) = 3^{\beta-2}p_{1}^{\alpha_{1}-1}\cdot\frac{p_{1}-1}{2}+(-1)^{\beta+\alpha_{1}+1} is always even.

    (B) \alpha = 1 . If \beta = 0 , i.e., \omega(n)\geq2 , by (4.10), \varphi_{12}(n) = \frac{1}{12}\varphi(n)+\frac{1}{4}(-1)^{\Omega(n)}2^{\omega(n)-1} . Similarly, we must have that \omega(n)\leq3 if \varphi_{12}(n) is odd. For \omega(n) = 3 , i.e., n = 2p_{1}^{\alpha_{1}}p_{2}^{\alpha_{2}} , note that R_{\mathbb{P}_{k}}' = \{7, 11\}\ \text{or}\ \{7\} ; then, it is easy to see that \varphi_{12}(n) is always even. Thus, \omega(n) = 2 , i.e., n = 2p_{1}^{\alpha_{1}} ; note that p_{1}\equiv7\, (\mathrm{mod}\, 12) , namely, p_{1}\equiv7, 19\, (\mathrm{mod}\, 24) . In this case, \varphi_{12}(n) is odd if and only if p_{1}\equiv7\, (\mathrm{mod}\, 24) .

    If \beta = 1 , i.e., \omega(n)\geq3 , by (4.2), \varphi_{12}(n) = \frac{1}{12}\varphi(n) = \frac{1}{6}\prod _{i = 1} ^{k} p_{i}^{\alpha_{i}-1}(p_{i}-1) . Similarly, from R_{\mathbb{P}_{k}}' = \{7, 11\}\ \text{or}\ \{7\} , we can get that \varphi_{12}(n) is odd if and only if \omega(n) = 3 , i.e., n = 6p_{1}^{\alpha} with p_{1}\equiv7\, (\mathrm{mod}\, 12) .

    If \beta\geq2 , i.e., \omega(n)\geq3 , by(4.2), \varphi_{12}(n) = \frac{1}{12}\varphi(n)+\frac{1}{4}(-1)^{\Omega(n)+1}2 ^{\omega(n)-1} . Then we must have that \omega(n) = 3 if \varphi_{12}(n) is odd, namely, n = 2\cdot3^{\beta}p_{1}^{\alpha_{1}} with p_{1}\equiv7\, (\mathrm{mod}\, 12) . Obviously, \varphi_{12}(n) = 3^{\beta-2}p^{\alpha-1}\cdot\frac{p-1}{2}+(-1)^{2+\beta+\alpha} is always even in this case.

    (C) \alpha = 2 . If \beta = 0 , i.e., \omega(n)\geq 2 , by (4.2), \varphi_{12}(n) = \frac{1}{12}\varphi(n) = \frac{1}{6}\prod _{i = 1} ^{k} p_{i}^{\alpha_{i}-1}(p_{i}-1) . Thus, we must have that \omega(n) = 2 if \varphi_{12}(n) is odd. In this case, n = 4p_{1}^{\alpha_{1}} with p_{1}\equiv7\, (\mathrm{mod}\, 12) ; then, p_1^{\alpha_1}(p_1-1)\equiv 6\, (\mathrm{mod}\, 12) , which means that \varphi_{12}(n) is always odd in this case.

    If \beta\geq1 , i.e., \omega(n)\geq 3 , by (4.2), \varphi_{12}(n) = \frac{1}{12}\varphi(n) = 3^{\beta-2}\prod _{i = 1} ^{k} p_{i}^{\alpha_{i}-1}(p_{i}-1) . Note that R_{\mathbb{P}_{k}}' = \{7, 11\}\ \text{or}\ \{7\} ; then, \varphi_{12}(n) is always even.

    (D) \alpha\geq3 . By (4.2) and R_{\mathbb{P}_{k}}' = \{7, 11\}\ \text{or}\ \{7\} , \varphi_{12}(n) = \frac{1}{12}\varphi(n) = \frac{1}{3}\cdot2^{\alpha-3}\varphi(3^{\beta}n_{1}) is always even in this case.

    Case 2. R_{\mathbb{P}_{k}}' = \{5, 11\} or \{5\} .

    (A) \alpha = 0 . If \beta = 0 , i.e., \omega(n)\geq1 , from (4.6), we can get that \varphi_{12}(n) = \frac{1}{12}\, \varphi(n)+\frac{1}{6}\, (-1)^{\Omega(n)}\, 2^{\omega(n)} . Thus, we must have that \omega(n) = 1 if \varphi_{12}(n) is odd, namely, n = p_{1}^{\alpha_{1}} with p_{1}\equiv5\, (\mathrm{mod}\, 12) . Hence

    \varphi_{12}(p_{1}^{\alpha_{1}}) = \frac{1}{12}\, p_{1}^{\alpha_{1}-1}(p_{1}-1)+\frac{1}{3}\, (-1)^{\alpha_{1}} = \frac{1}{3}\Big(p_{1}^{\alpha_{1}-1}\cdot\frac{p_{1}-1}{4}+(-1)^{\alpha_{1}}\Big).

    Note that p_{1}\equiv5\, (\mathrm{mod}\, 12) , i.e., p_{1}\equiv5, 17\, (\mathrm{mod}\, 24) . If p_{1}\equiv5(\mathrm{mod}\, 24) , then p_{1}^{\alpha-1}\cdot\frac{p_{1}-1}{4}+(-1)^{\alpha_{1}}\equiv0(\mathrm{mod}\, 6) , which means that \varphi_{12}(p_{1}^{\alpha}) is always even. Thus, p_{1}\equiv17\, (\mathrm{mod}\, 24) , in this case p_{1}^{\alpha_{1}-1}\cdot\frac{p_{1}-1}{4}+(-1)^{\alpha_{1}}\equiv3\, (\mathrm{mod}\, 6) , namely, \varphi_{12}(p^{\alpha_{1}}) is odd.

    If \beta = 1 , i.e., \omega(n)\geq2 , from (4.8) we have that \varphi_{12}(n) = \frac{1}{12}\, \varphi(n)+\frac{1}{6}\, (-1)^{\Omega(n)}\, 2^{\omega(n)-1} . Thus, we must have that \omega(n) = 2 if \varphi_{12}(n) is odd, namely, n = 3p_{1}^{\alpha_{1}} with p_{1}\equiv5\, (\mathrm{mod}\, 12) ; in this case

    \varphi_{12}(3p_{1}^{\alpha_{1}}) = \frac{1}{3}\Big(2\, p_{1}^{\alpha_{1}-1}\cdot\frac{p_{1}-1}{4}+(-1)^{\alpha_{1}}\Big)

    is always odd.

    If \beta\geq2 , i.e., \omega(n)\geq2 , from (4.9) we can get that \varphi_{12}(n) = \frac{1}{12}\, \varphi(n) . We must have that \omega(n) = 2 , i.e., n = 3^{\beta}p^{\alpha}(\beta\geq2) , if \varphi_{12}(n) is odd. From the assumption p_{1}\equiv5\, (\mathrm{mod}\, 12) , \varphi_{12}(3^{\beta}\, p_{1}^{\alpha_{1}}) = \frac{1}{12}\, \varphi(3^{\beta}\, p_{1}^{\alpha_{1}}) = 2\cdot 3^{\beta-1}\, p_{1}^{\alpha_{1}-1}\cdot\frac{p_{1}-1}{4} is always even.

    (B) \alpha = 1 , i.e., \omega(n)\geq 2 . By (4.10)–(4.12), we must have \omega(n)\leq3 if \varphi_{12}(n) is odd. Namely, n = 2p_{1}^{\alpha_{1}}, 2p_{1}^{\alpha_{1}}p_{2}^{\alpha_{2}}, 6p_{1}^{\alpha_{1}} , or 2\cdot3^{\beta}p_{1}^{\alpha_{1}}\, (\beta\geq2) . Similar to the proof of (A) in case 1, \varphi_{12}(n) is odd if and only if n = 2p_{1}^{\alpha_{1}} with p_{1}\equiv17\, (\mathrm{mod}\, 24) , or if n = 6p_{1}^{\alpha_{1}} with p_{1}\equiv5\, (\mathrm{mod}\, 12) .

    (C) \alpha = 2 . If \beta = 0 , i.e., \omega(n)\geq2 , by (4.13), \varphi_{12}(n) = \frac{1}{12}\varphi(n)+\frac{1}{12}(-1)^{\Omega(n)+1}2^{\omega(n)} ; then, we must have that \omega(n) = 2 if \varphi_{12}(n) is odd. In this case, n = 4p_{1}^{\alpha_{1}} with p_{1}\equiv5\, (\mathrm{mod}\, 12) . Hence, \varphi_{12}(n) = \frac{1}{6}\, p_{1}^{\alpha_{1}-1}(p_{1}-1)+\frac{1}{3}\, (-1)^{\alpha_{1}+3} = \frac{1}{3}\Big(p_{1}^{\alpha_{1}-1}\frac{p_{1}-1}{2}+(-1)^{\alpha_{1}+3}\Big) is always odd.

    If \beta = 1 , i.e., \omega(n)\geq3 , by (4.14), \varphi_{12}(n) = \frac{1}{12}\varphi(n)+\frac{1}{12}(-1)^{\Omega(n)+1}2^{\omega(n)-1} ; we must have that \omega(n) = 3 if \varphi_{12}(n) is odd. In this case, n = 12 \, p_{1}^{\alpha_{1}} with p_{1}\equiv5\, (\mathrm{mod}\, 12) ; then, \varphi_{12}(n) = \frac{1}{3}\, p_{1}^{\alpha_{1}-1}(p_{1}-1)+\frac{1}{3}\, (-1)^{\alpha_{1}+4} = \frac{1}{3}\big(p_{1}^{\alpha_{1}-1}(p_{1}-1)+(-1)^{\alpha_{1}+4}\big) is odd.

    If \beta\geq 2 , i.e., \omega(n)\geq3 , by (4.15), \varphi_{12}(n) = \frac{1}{12}\varphi(n) ; we must have that \omega(n) = 3 if \varphi_{12}(n) is odd. Namely, n = 4\cdot3^{\beta} p_{1}^{\alpha_{1}} with p_{1}\equiv5\, (\mathrm{mod}\, 12) ; then,

    \varphi_{12}(n) = \frac{1}{12}\, \varphi(n) = 3^{\beta-2}p_{1}^{\alpha_{1}-1}(p_{1}-1)

    is always even.

    (D) \alpha\geq3 , i.e., \omega(n)\geq 2 . If \beta = 0 , then by (4.16) and R_{\mathbb{P}_{k}}' = \{5, 11\}\ \text{or}\ \{5\} , we konw that \varphi_{12}(n) = \frac{1}{12}\varphi(n)+\frac{1}{6}(-1)^{\Omega(n)}\, 2 \, ^{\omega(n)} is always even in this case.

    If \beta = 1 , by (4.17) and R_{\mathbb{P}_{k}}' = \{5, 11\}\ \text{or}\ \{5\} , we know that \varphi_{12}(n) = \frac{1}{12}\varphi(n)+\frac{1}{12}(-1)^{\Omega(n)}\, 2 \, ^{\omega(n)} is always even in this case.

    If \beta\geq2 , by (4.18) and R_{\mathbb{P}_{k}}' = \{5, 11\}\ \text{or}\ \{5\} , \varphi_{12}(n) = \frac{1}{12}\varphi(n) is always even in this case.

    Case 3. R_{\mathbb{P}_{k}}' = \{11\} .

    (A) \alpha = 0 , i.e., \omega(n)\geq 1 . From (4.7)–(4.9), we must have that \omega(n)\leq2 if \varphi_{12}(n) is odd. Consider that \omega(n) = 2 , i.e., n = p_{1}^{\alpha_{1}}p_{2}^{\alpha_{2}} , or 3^{\beta} p_{1}^{\alpha_{1}}\, (\beta\geq1) with p_{1}\equiv p_{2}\equiv11\, (\mathrm{mod}\, 12) . Thus, by (4.7)–(4.9), \varphi_{12}(n) is always even. Hence, \omega(n) = 1 , i.e., n = p_{1}^{\alpha_{1}} with p\equiv11\, (\mathrm{mod}\, 12) ; then, (4.7) we can get

    \varphi_{12}(p_{1}^{\alpha_{1}}) = \frac{1}{12}\, p_{1}^{\alpha_{1}-1}(p_{1}-1)+\frac{5}{6}\, (-1)^{\alpha_{1}} = \frac{1}{6}\Big(p_{1}^{\alpha_{1}-1}\cdot\frac{p_{1}-1}{2}+5(-1)^{\alpha_{1}}\Big).

    Note that p_{1}\equiv11(\mathrm{mod}\, 12) , i.e., p_{1}\equiv11, 23\, (\mathrm{mod}\, 24) . If p_{1}\equiv11\, (\mathrm{mod}\, 24) , then

    p_{1}^{\alpha_{1}-1}\cdot\frac{p_{1}-1}{2}+5(-1)^{\alpha_{1}} \equiv5(-1)^{\alpha_{1}-1}+5(-1)^{\alpha_{1}}\equiv0\, (\mathrm{mod}\, 12),

    namely, \varphi_{12}(n) is even. If p_{1}\equiv23\, (\mathrm{mod}\, 24) , then

    p_{1}^{\alpha_{1}-1}\cdot\frac{p_{1}-1}{2}+5(-1)^{\alpha_{1}} \equiv11(-1)^{\alpha_{1}-1}+5(-1)^{\alpha_{1}}\equiv6\, (\mathrm{mod}\, 12),

    namely, \varphi_{12}(n) is odd.

    (B) \alpha = 1 , i.e., \omega(n)\geq 2 . From (4.10)–(4.12), we must have that \omega(n)\leq3 if \varphi_{12}(n) is odd. Namely, n = 2p_{1}^{\alpha_{1}} , 2p_{1}^{\alpha_{1}}p_{2}^{\alpha_{2}} , 6p_{1}^{\alpha_{1}} , or 2\cdot3^{\beta} p_{1}^{\alpha_{1}}\, (\beta\geq2) with p_{1}\equiv p_{2}\equiv11\, (\mathrm{mod}\, 12) . Using the same method as for (A) in case 1, \varphi_{12}(n) is odd if and only if n = 2p_{1}^{\alpha_{1}} with p_{1}\equiv11\, (\mathrm{mod}\, 24) .

    (C) \alpha = 2 , i.e., \omega(n)\geq 2 . If \beta = 0 , by (4.13), we must have that \omega(n) = 2 if \varphi_{12}(n) is odd, namely, n = 4p_{1}^{\alpha_{1}} with p_{1}\equiv11\, (\mathrm{mod}\, 12) . Then by (4.13),

    \varphi_{12}(4p_{1}^{\alpha_{1}}) = \frac{1}{3}\Big(p_{1}^{\alpha_{1}-1}\frac{p_{1}-1}{2}+(-1)^{\alpha_{1}+3}\Big)

    is always even.

    If \beta\geq1 , i.e., \omega(n)\geq3 , by (4.14)–(4.15), we must have that \omega(n) = 3 if \varphi_{12}(n) is odd. Namely, n = 4\cdot3^{\beta} p_{1}^{\alpha_{1}}\, (\beta\geq 1) with p_{1}\equiv11\, (\mathrm{mod}\, 12) . If \beta\geq2 , then by (4.15),

    \varphi_{12}(4\cdot3^{\beta} p_{1}^{\alpha_{1}}) = \frac{1}{12}\varphi(4\cdot3^{\beta} p_{1}^{\alpha_{1}}) = 3^{\beta-2}\, p_{1}^{\alpha_{1}-1}(p_{1}-1)

    is always even. Thus, \beta = 1 ; by (4.14), \varphi_{12}(12\, p_{1}^{\alpha_{1}}) = \frac{1}{3}\big(p_{1}^{\alpha_{1}-1}(p_{1}-1)+(-1)^{\alpha_{1}+3}\big) is odd.

    (D) \alpha\geq3 . If \beta = 0 , i.e., \omega(n)\geq 2 , then by (4.16) and R_{\mathbb{P}_{k}}' = \{11\} , we know that \varphi_{12}(n) = \frac{1}{12}\varphi(n)+\frac{1}{6}(-1)^{\Omega(n)}\, 2 \, ^{\omega(n)} is always even in this case.

    If \beta = 1 , i.e., \omega(n)\geq 3 , then by (4.17) and R_{\mathbb{P}_{k}}' = \{11\} , we know that \varphi_{12}(n) = \frac{1}{12}\varphi(n)+\frac{1}{12}(-1)^{\Omega(n)}\, 2 \, ^{\omega(n)} is always even in this case.

    If \beta\geq2 , i.e., \omega(n)\geq 3 , then by (4.18) and R_{\mathbb{P}_{k}}' = \{11\} , we know that \varphi_{12}(n) = \frac{1}{12}\varphi(n) = 2^{\alpha-2}\cdot3^{\beta-1}\prod_{i = 1}^{k} p_{i}^{\alpha_{i}-1}(p_{i}-1) is always even.

    Case 4. \{5, 7\}\subseteq R_{\mathbb{P}_{k}}' or 1\in R_{\mathbb{P}_{k}}' .

    (A) If \{5, 7\}\subseteq R_{\mathbb{P}_{k}}' , by (4.2) we have that \varphi_{12}(n) = \frac{1}{12}\varphi(n) is always even.

    (B) If 1\in R_{\mathbb{P}_{k}}' , then by (4.2), \varphi_{12}(n) = \frac{1}{12}\varphi(n) ; thus, we must have that k = 1 , \alpha\leq1 , and \beta = 0 if \varphi_{12}(n) is odd. Namely, n = p_{1}^{\alpha_{1}} or 2p_{1}^{\alpha_{1}} with p_{1}\equiv1\, (\mathrm{mod}\, 12) . In this case, \varphi_{12}(n) = \frac{1}{12}\, p_{1}^{\alpha_{1}-1}(p_{1}-1) is odd if and only if p_{1}\equiv13\, (\mathrm{mod}\, 24) .

    From the above, we have completed the proof of Theorem 5.2.

    In [2,8], Cai, et al. gave the explicit formulae for the generalized Euler functions denoted by \varphi_{e}(n) for e = 3, 4, 6 . The key point is that the derivation of [\frac{n}{e}] can be obtained by utilizing the corresponding Jacobi symbol for e = 3, 4, 6 . In the present paper, by applying Lemmas 2.1 and 2.2, the exact formulae for \varphi_8(n) and \varphi_{12}(n) have been given and the parity has been determined. Therefore, the obvious expression for [\frac{n}{e}] depends on the Jacobi symbol, seems to be the key to finding the exact formulae for \varphi_e(n) .

    We propose the following conjecture.

    Conjecture 6.1. Let e > 1 be a given integer. For any integer d > 2 with \gcd(d, e) = 1 , there exist u\in\mathbb{Q} , a_{1}, a_{2}, a_{3} , b_{i}\, (1\leq j\leq r) \in \mathbb{Z} , and q_{j}\, (1\leq j\leq r)\in \mathbb{P} , such that

    \begin{eqnarray} \;\;\;\;\;\;\Big[\frac{d}{e}\Big] = u\Big(a_{1}d+a_{2}+a_{3}\Big(\frac{-1}{d}\Big)+\sum\limits_{j = 1}^{r}b_{j}\Big(\frac{\varepsilon_{j}\, q_{j}}{d}\Big)\Big)\;\;{ ( 2\nmid d ) }, \end{eqnarray} (6.1)

    or

    \begin{eqnarray} \Big[\frac{d}{e}\Big] = u\Big(a_{1}d+a_{2}+\sum\limits_{j = 1}^{r}b_{j}\Big(\frac{\varepsilon_{j}\, d}{q_{j}}\Big)\Big) \;\;{ ( 2\, |\, d ) }, \end{eqnarray} (6.2)

    where r\geq 1 and \varepsilon_{j}\in\{1, -1\} .

    It is easy to see that Conjecture 6.1 is true for e = 2, 3, 4, 6, 8 and 12 . (see [2,8] and (2.1), (2.2)). If the formulas for (6.1) and (6.2) in the above conjecture can be obtained, then, by (1.1), using the properties of Möbius functions, we can find the exact formulae for \varphi_e(n) .

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported by Natural Science Foundation of China under grant numbers 12361001, 12161001 and 12071321, and Research Projects of ABa Teachers University (AS-XJPT2023-02, AS-KCTD2023-02).

    The authors sincerely thanks Professor Cai Tianxin for his guidance and help, as he visited ABa Teachers University in October 2023.

    We would like to thank the referee for his/her detailed comments.

    The authors declare that there are no conflicts of interest regarding the publication of this paper.



    [1] T. X. Cai, X. D. Fu, X. Zhou, A congruence involving the quotients of Euler and its applications (II), Acta Arith., 130 (2007), 203–214. https://doi.org/10.4064/aa130-3-1 doi: 10.4064/aa130-3-1
    [2] T. X. Cai, Z. Y. Shen, M. J. Hu, On the parity of the generalized Euler function (I), Adv. Math., 42 (2013), 505–510.
    [3] T. X. Cai, H. Zhong, S. Chern, A congruence involving the quotients of Euler and its applications (III), Acta Math. Sinica. Chin. Ser., 62 (2019), 529–540.
    [4] E. Lehmer, On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Ann. Math., 39 (1938), 350–360. https://doi.org/10.2307/1968791 doi: 10.2307/1968791
    [5] Q. Y. Liao, W. L. Luo, The computing formula for two classes of generalized Euler functions, J. Math., 39 (2019), 97–110.
    [6] Q. Y. Liao, The explicit formula for a special class of generalized Euler functions (Chinese), Journal of Sichuan Normal University (Natural Science Edition), 42 (2019), 354–357. 10.3969/j.issn.1001-8395.2019.03.010 doi: 10.3969/j.issn.1001-8395.2019.03.010
    [7] P. Ribenboim, 13 Lectures on Fermat's last theorem, New York: Springer, 1979. https://doi.org/10.1007/978-1-4684-9342-9
    [8] Z. Y. Shen, T. X. Cai, M. J. Hu, On the parity of the generalized Euler function (II), Adv. Math., 45 (2016), 509–519.
    [9] R. Wang, Q. Y. Liao, On the generalized Euler function \varphi_{5}(n) (Chinese), Journal of Sichuan Normal University (Natural Science Edition), 42 (2018), 445-449. 10.3969/j.issn.1001-8395.2018.04.003 doi: 10.3969/j.issn.1001-8395.2018.04.003
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1155) PDF downloads(40) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog