This work is devoted to the analysis of Hyers, Ulam, and Rassias types of stabilities for nonlinear fractional integral equations with n-product operators. In some special cases, our considered integral equation is related to an integral equation which arises in the study of the spread of an infectious disease that does not induce permanent immunity. n-product operators are described here in the sense of Riemann-Liouville fractional integrals of order σi∈(0,1] for i∈{1,2,…,n}. Sufficient conditions are provided to ensure Hyers-Ulam, λ-semi-Hyers-Ulam, and Hyers-Ulam-Rassias stabilities in the space of continuous real-valued functions defined on the interval [0,a], where 0<a<∞. Those conditions are established by applying the concept of fixed-point arguments within the framework of the Bielecki metric and its generalizations. Two examples are discussed to illustrate the established results.
Citation: Supriya Kumar Paul, Lakshmi Narayan Mishra. Stability analysis through the Bielecki metric to nonlinear fractional integral equations of n-product operators[J]. AIMS Mathematics, 2024, 9(4): 7770-7790. doi: 10.3934/math.2024377
[1] | Qun Dai, Shidong Liu . Stability of the mixed Caputo fractional integro-differential equation by means of weighted space method. AIMS Mathematics, 2022, 7(2): 2498-2511. doi: 10.3934/math.2022140 |
[2] | Weerawat Sudsutad, Chatthai Thaiprayoon, Sotiris K. Ntouyas . Existence and stability results for $ \psi $-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(4): 4119-4141. doi: 10.3934/math.2021244 |
[3] | Dongming Nie, Usman Riaz, Sumbel Begum, Akbar Zada . A coupled system of $ p $-Laplacian implicit fractional differential equations depending on boundary conditions of integral type. AIMS Mathematics, 2023, 8(7): 16417-16445. doi: 10.3934/math.2023839 |
[4] | J. Vanterler da C. Sousa, E. Capelas de Oliveira, F. G. Rodrigues . Ulam-Hyers stabilities of fractional functional differential equations. AIMS Mathematics, 2020, 5(2): 1346-1358. doi: 10.3934/math.2020092 |
[5] | Ugyen Samdrup Tshering, Ekkarath Thailert, Sotiris K. Ntouyas . Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions. AIMS Mathematics, 2024, 9(9): 25849-25878. doi: 10.3934/math.20241263 |
[6] | Xiaoming Wang, Rizwan Rizwan, Jung Rey Lee, Akbar Zada, Syed Omar Shah . Existence, uniqueness and Ulam's stabilities for a class of implicit impulsive Langevin equation with Hilfer fractional derivatives. AIMS Mathematics, 2021, 6(5): 4915-4929. doi: 10.3934/math.2021288 |
[7] | Sabri T. M. Thabet, Sa'ud Al-Sa'di, Imed Kedim, Ava Sh. Rafeeq, Shahram Rezapour . Analysis study on multi-order $ \varrho $-Hilfer fractional pantograph implicit differential equation on unbounded domains. AIMS Mathematics, 2023, 8(8): 18455-18473. doi: 10.3934/math.2023938 |
[8] | Najla Alghamdi, Bashir Ahmad, Esraa Abed Alharbi, Wafa Shammakh . Investigation of multi-term delay fractional differential equations with integro-multipoint boundary conditions. AIMS Mathematics, 2024, 9(5): 12964-12981. doi: 10.3934/math.2024632 |
[9] | Songkran Pleumpreedaporn, Chanidaporn Pleumpreedaporn, Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Jehad Alzabut . On a novel impulsive boundary value pantograph problem under Caputo proportional fractional derivative operator with respect to another function. AIMS Mathematics, 2022, 7(5): 7817-7846. doi: 10.3934/math.2022438 |
[10] | Kaihong Zhao, Shuang Ma . Ulam-Hyers-Rassias stability for a class of nonlinear implicit Hadamard fractional integral boundary value problem with impulses. AIMS Mathematics, 2022, 7(2): 3169-3185. doi: 10.3934/math.2022175 |
This work is devoted to the analysis of Hyers, Ulam, and Rassias types of stabilities for nonlinear fractional integral equations with n-product operators. In some special cases, our considered integral equation is related to an integral equation which arises in the study of the spread of an infectious disease that does not induce permanent immunity. n-product operators are described here in the sense of Riemann-Liouville fractional integrals of order σi∈(0,1] for i∈{1,2,…,n}. Sufficient conditions are provided to ensure Hyers-Ulam, λ-semi-Hyers-Ulam, and Hyers-Ulam-Rassias stabilities in the space of continuous real-valued functions defined on the interval [0,a], where 0<a<∞. Those conditions are established by applying the concept of fixed-point arguments within the framework of the Bielecki metric and its generalizations. Two examples are discussed to illustrate the established results.
Integral equations represent a significant area of applied mathematics because they are effective tools for modeling a wide range of issues that arise in various branches of science [1,2,3,4,5,6,7]. In several references, the authors have discussed the existence, stability, or other qualitative characteristics of solutions to different kinds of integral equations [7,8,9,10,11,12,13]. For instance, in [7], Gripenberg described an integral equation that arises in the study of the spread of an infectious disease that does not induce permanent immunity and is of the following form:
ω(ϰ)=k(p(ϰ)−∫ϰ0A(ϰ−ℓ)ω(ℓ)dℓ)(f(ϰ)+∫ϰ0˜a(ϰ−ℓ)ω(ℓ)dℓ),ϰ∈[0,∞). | (1.1) |
In establishing Eq (1.1), the main consideration was that the rate at which susceptibles become infected is proportional to the number of susceptibles and the total infectivity. For this purpose, the author made the assumption that the population is of constant size P and that the average infectivity of an individual infected at time ℓ is proportional to ˜a(ϰ−ℓ) at time ϰ. If the rate at which individuals susceptible to the disease have become infected up to time ϰ is ω(ℓ), ℓ<ϰ, then ∫ϰ−∞˜a(ϰ−ℓ)ω(ℓ)dℓ will be approximately proportional to the total infectivity. If at time ℓ, the cumulative probability function for the loss of immunity of an individual infected is 1−A(ϰ−ℓ), ϰ≥ℓ, then P−∫ϰ−∞A(ϰ−ℓ)ω(ℓ)dℓ will approximate the number of susceptibles. In Eq (1.1), k>0 is a constant and the effects of the infection before ϰ=0 are considered by the functions p and f.
Later, in [8], Brestovanská studied some existence and convergence results to the following generalized Gripenberg-type integral equation:
ω(ϰ)=(V1(ϰ)+∫ϰ0A1(ϰ−ℓ)ω(ℓ)dℓ)…(Vn(ϰ)+∫ϰ0An(ϰ−ℓ)ω(ℓ)dℓ),ϰ≥0. |
In [9], Olaru studied some results on solvability for the following integral equation:
ω(ϰ)=n∏i=1(Vi(ϰ)+∫ϰaKi(ϰ,ℓ,ω(ℓ))dℓ),ϰ∈[a,b]. |
Recently, in [10], Metwali and Cichoń studied the existence results for the following integral equation of n-product type:
ω(ϰ)=n∏i=1(Vi(ϰ)+λi⋅hi(ϰ,ω(ϰ))⋅∫baKi(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ),ϰ∈[a,b]. |
The theory of fractional integrals, which deals with integrals of arbitrary order by using the gamma function, is one of the most significant tools for physical investigation, including in fields such as computer networking, image processing, signals, biology, viscoelastic theory, and several others [14,15,16,17,18,19,20,21,22,23,24]. In [24], Jleli and Samet studied the solvability of the following q-fractional integral equation of product type:
ω(ϰ)=n∏i=1(Vi(ϰ)+gi(ϰ,ω(ϰ))Γq(σi)∫ϰ0(ϰ−qℓ)(σi−1)ui(ℓ,ω(ℓ))dqℓ),ϰ∈[0,1], |
where q∈(0,1) and σi>1.
Motivated by the above literature on this significant and interesting topic, we consider here a nonlinear fractional integral equation of n-product type that contains the Riemann-Liouville fractional integral operators as follows:
ω(ϰ)=n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ),ϰ∈[0,a], | (1.2) |
where 0<a<∞, 0<σi≤1, Vi,Gi:[0,a]→R, Fi:[0,a]×R→R, and Ki:[0,a]×[0,a]→R (R is the set of all real numbers and i=1,2,…,n).
Remark 1. In some special cases, when n=2, G1(ϰ)=G2(ϰ)=1 and σ1=σ2=1; then, Eq (1.2) is related to Eq (1.1).
In this paper, we discuss some results on the stability of solutions to Eq (1.2). In order to achieve these aims, we use the concepts of the fixed-point theorem to establish the uniqueness of solutions and analyze some stabilities, namely, Hyers-Ulam (H-U), λ-semi-Hyers-Ulam, and Hyers‐Ulam‐Rassias (H-U-R) stabilities through the use of the Bielecki metric. Two examples are discussed to illustrate the established results.
This paper is structured as follows: Notations and supporting information are included in Section 2. Some results on H-U-R stability are discussed in Section 3. In Section 4, we discuss some results on λ-semi-Hyers-Ulam and H-U stabilities. Section 5 includes two examples to illustrate the established results. Conclusions and suggestions for further research are given in Section 6.
This section includes some notations, definitions and supporting information which are useful to establish the main results.
Let δ>0 be a constant, and Cδ([0,a]) denotes the space of real-valued continuous functions on [0,a], equipped with the Bielecki metric as follows:
dδ(ω,φ)=supϰ∈[0,a]|ω(ϰ)−φ(ϰ)|eδϰ. |
In general, we consider the space Cg([0,a]) of real-valued continuous functions on [0,a], equipped with the Bielecki metric as follows:
dg(ω,φ)=supϰ∈[0,a]|ω(ϰ)−φ(ϰ)|λ(ϰ), |
where λ:[0,a]→(0,∞) is a nondecreasing continuous function. Then, the metric spaces (Cδ([0,a]),dδ) and (Cg([0,a]),dg) are complete [25,26,27,28].
The following definitions of stability are stated in the sense of the paper given in reference [25].
Definition 1. Let λ(ϰ) be a non-negative function on [0,a]. If for each function ω(ϰ) satisfying
|ω(ϰ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)|≤λ(ϰ),∀ϰ∈[0,a], |
there is a solution ω0(ϰ) of Eq (1.2) and a constant ℵ>0 such that
|ω(ϰ)−ω0(ϰ)|≤ℵλ(ϰ),∀ϰ∈[0,a], |
then we say that Eq (1.2) possesses H-U-R stability, where ℵ is independent of ω(ϰ) and ω0(ϰ).
Definition 2. Let ε be a non-negative number. If for each function ω(ϰ) satisfying
|ω(ϰ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)|≤ε,∀ϰ∈[0,a], |
there is a solution ω0(ϰ) of Eq (1.2) and a constant ℵ>0 such that
|ω(ϰ)−ω0(ϰ)|≤ℵε,∀ϰ∈[0,a], |
then we say that Eq (1.2) possesses H-U stability, where ℵ is independent of ω(ϰ) and ω0(ϰ).
Definition 3. Let λ(ϰ) be a nondecreasing function on [0,a] and ε≥0. Then, Eq (1.2) possesses λ-semi-Hyers-Ulam stability if for each function ω(ϰ) satisfying
|ω(ϰ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)|≤ε,∀ϰ∈[0,a], |
there is a solution ω0(ϰ) of Eq (1.2) with
|ω(ϰ)−ω0(ϰ)|≤ℵλ(ϰ),∀ϰ∈[0,a], |
where ℵ>0 is a constant that is independent of ω(ϰ) and ω0(ϰ).
Definition 4. [29,30] The Riemann-Liouville fractional integral of order σ>0 of a function f(ϰ) is described as follows:
σJϰ0f(ϰ)=1Γ(σ)∫ϰ0(ϰ−ℓ)σ−1f(ℓ)dℓ, |
where Γ(σ)=∫∞0e−ttσ−1dt, provided that the right-hand side is point-wise defined on [0,∞).
Theorem 1. [31,32] Let (X,d) be a complete metric space and let Y:X→X. If there exists a nonnegative constant η∈[0,1) such that d(Yy,Yz)≤ηd(y,z), for all y,z∈X, then Y has a unique fixed point.
To establish the main results, we define an operator Y as
(Yω)(ϰ)=n∏i=1(Yiω)(ϰ), | (2.1) |
where
(Yiω)(ϰ)=Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ,ϰ∈[0,a],i=1,2,3,…,n. | (2.2) |
Lemma 1. Let us take ω∈Cg([0,a]). Assume that, for every i∈{1,2,…,n}, the functions Vi:[0,a]→R, Gi:[0,a]→R, Fi:[0,a]×R→R, and Ki:[0,a]×[0,a]→R are all continuous, and that there exist constants ˆVi>0, ˆGi>0, ˆKi>0, and that F0i≥0, such that
|Vi(ϰ)|≤ˆVi,|Gi(ϰ)|≤ˆGi,|Ki(ϰ,ℓ)|≤ˆKi,|Fi(ℓ,ω1)|≤F0i,∀ϰ,ℓ∈[0,a],ω1∈R. |
Then, Yω∈Cg([0,a]).
Proof. To prove this, it is enough to show that if ω∈Cg([0,a]), then the operators denoted by Tiω are continuous on [0,a], where
(Tiω)(ϰ)=1Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ,i=1,2,…,n. |
When σi=1, the result is obvious. So, we prove this for 0<σi<1. To do this, fix i∈{1,2,…,n}, suppose that ω∈Cg([0,a]), ϰ1,ϰ2∈[0,a] with ϰ2>ϰ1 and fix ϵ>0 such that |ϰ2−ϰ1|≤ϵ; then, we get
|(Tiω)(ϰ2)−(Tiω)(ϰ1)|=|1Γ(σi)∫ϰ20(ϰ2−ℓ)σi−1Ki(ϰ2,ℓ)Fi(ℓ,ω(ℓ))dℓ−1Γ(σi)∫ϰ10(ϰ1−ℓ)σi−1Ki(ϰ1,ℓ)Fi(ℓ,ω(ℓ))dℓ|≤1Γ(σi)|∫ϰ20(ϰ2−ℓ)σi−1Ki(ϰ2,ℓ)Fi(ℓ,ω(ℓ))dℓ−∫ϰ20(ϰ2−ℓ)σi−1Ki(ϰ1,ℓ)Fi(ℓ,ω(ℓ))dℓ|+1Γ(σi)|∫ϰ20(ϰ2−ℓ)σi−1Ki(ϰ1,ℓ)Fi(ℓ,ω(ℓ))dℓ−∫ϰ10(ϰ2−ℓ)σi−1Ki(ϰ1,ℓ)Fi(ℓ,ω(ℓ))dℓ|+1Γ(σi)|∫ϰ10(ϰ2−ℓ)σi−1Ki(ϰ1,ℓ)Fi(ℓ,ω(ℓ))dℓ−∫ϰ10(ϰ1−ℓ)σi−1Ki(ϰ1,ℓ)Fi(ℓ,ω(ℓ))dℓ|≤1Γ(σi)∫ϰ20(ϰ2−ℓ)σi−1|Ki(ϰ2,ℓ)−Ki(ϰ1,ℓ)||Fi(ℓ,ω(ℓ))|dℓ+1Γ(σi)∫ϰ2ϰ1(ϰ2−ℓ)σi−1|Ki(ϰ1,ℓ)Fi(ℓ,ω(ℓ))|dℓ+1Γ(σi)∫ϰ10|(ϰ2−ℓ)σi−1−(ϰ1−ℓ)σi−1||Ki(ϰ1,ℓ)Fi(ℓ,ω(ℓ))|dℓ. |
Let U(Ki,ϵ)=sup{|Ki(ϰ2,ℓ)−Ki(ϰ1,ℓ)|:ϰ1,ϰ2,ℓ∈[0,a],|ϰ2−ϰ1|≤ϵ}. Then,
|(Tiω)(ϰ2)−(Tiω)(ϰ1)|≤U(Ki,ϵ)F0iΓ(σi)∫ϰ20(ϰ2−ℓ)σi−1dℓ+ˆKiF0iΓ(σi)∫ϰ2ϰ1(ϰ2−ℓ)σi−1dℓ+ˆKiF0iΓ(σi)∫ϰ10|(ϰ2−ℓ)σi−1−(ϰ1−ℓ)σi−1|dℓ≤U(Ki,ϵ)F0iaσiΓ(σi+1)+ˆKiF0iΓ(σi+1)(ϰ2−ϰ1)σi+ˆKiF0iΓ(σi)∫ϰ10((ϰ1−ℓ)σi−1−(ϰ2−ℓ)σi−1)dℓ≤U(Ki,ϵ)F0iaσiΓ(σi+1)+ˆKiF0iΓ(σi+1)(ϰ2−ϰ1)σi+ˆKiF0iΓ(σi+1)[(ϰ2−ϰ1)σi+ϰσi1−ϰσi2]. |
By utilizing the uniform continuity of the function Ki on [0,a]×[0,a], we have that U(Ki,ϵ)→0 as ϵ→0; thus, it follows that the right side of the above inequality tends to zero as ϰ2→ϰ1. Hence, the operators denoted by Yiω are continuous on [0,a] for i∈{1,2,…,n}, and consequently, Yω∈Cg([0,a]).
Remark 2. By the above conditions of Lemma 1, one can easily conclude that if ω∈Cδ([0,a]), then Yω∈Cδ([0,a]).
Lemma 2. Assume that, for every i∈{1,2,…,n}, the functions Vi:[0,a]→R, Gi:[0,a]→R, Fi:[0,a]×R→R, and Ki:[0,a]×[0,a]→R are all continuous, and that there exist constants ˆVi>0, ˆGi>0, ˆKi>0, and F0i≥0 such that
|Vi(ϰ)|≤ˆVi,|Gi(ϰ)|≤ˆGi,|Ki(ϰ,ℓ)|≤ˆKi,|Fi(ℓ,ω1)|≤F0i,∀ϰ,ℓ∈[0,a],ω1∈R. |
Then for ω,φ∈Cg([0,a]), we get
|(Yω)(ϰ)−(Yφ)(ϰ)|≤Mn−1n∑i=1|(Yiω)(ϰ)−(Yiφ)(ϰ)|, |
where M=max{ˆVi+ˆGiˆKiF0iaσiΓ(σi+1):i=1,2,…,n}.
Proof. For any ω∈Cg([0,a]), we obtain
|(Yiω)(ϰ)|=|Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ|≤|Vi(ϰ)|+|Gi(ϰ)|Γ(σi)∫ϰ0(ϰ−ℓ)σi−1|Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))|dℓ≤ˆVi+ˆGiˆKiF0iaσiΓ(σi+1),i=1,2,…,n. |
Let M=max{ˆVi+ˆGiˆKiF0iaσiΓ(σi+1):i=1,2,…,n}.
This gives
|(Yiω)(ϰ)|≤M,for anyω∈Cg([0,a]),i=1,2,…,n. | (2.3) |
Now, let ω,φ∈Cg([0,a]); then, by using the inequality (2.3), we obtain
|(Yω)(ϰ)−(Yφ)(ϰ)|=|n∏i=1(Yiω)(ϰ)−n∏i=1(Yiφ)(ϰ)|=|(Y1ω)(ϰ)(Y2ω)(ϰ)…(Ynω)(ϰ)−(Y1φ)(ϰ)(Y2φ)(ϰ)…(Ynφ)(ϰ)|=|[(Y1ω)(ϰ)(Y2ω)(ϰ)…(Ynω)(ϰ)−(Y1φ)(ϰ)(Y2ω)(ϰ)…(Ynω)(ϰ)]+[(Y1φ)(ϰ)(Y2ω)(ϰ)…(Ynω)(ϰ)−(Y1φ)(ϰ)(Y2φ)(ϰ)…(Ynω)(ϰ)]+⋯+[(Y1φ)(ϰ)…(Yn−1φ)(ϰ)(Ynω)(ϰ)−(Y1φ)(ϰ)(Y2φ)(ϰ)…(Ynφ)(ϰ)]|≤Mn−1n∑i=1|(Yiω)(ϰ)−(Yiφ)(ϰ)|. |
Some results on H-U-R stability are discussed in this section through the application of the Bielecki metric on the interval [0,a]. All of the theorems are as follows:
Theorem 2. Let 0<p<σi≤1 for i∈{1,2,…,n}. Let β>0 and λ:[0,a]→(0,∞) be a nondecreasing function such that
(∫ϰ0(λ(ℓ))1pdℓ)p≤β,∀ϰ∈[0,a]. |
Moreover, let, for every i∈{1,2,…,n}, the functions Vi:[0,a]→R, Gi:[0,a]→R, Fi:[0,a]×R→R, and Ki:[0,a]×[0,a]→R be continuous and there exist constants ˆVi>0, ˆGi>0, ˆKi>0, ˆFi>0, and F0i≥0 such that
|Vi(ϰ)|≤ˆVi,|Gi(ϰ)|≤ˆGi,|Ki(ϰ,ℓ)|≤ˆKi,|Fi(ℓ,ω1)|≤F0i, |
and|Fi(ℓ,ω2)−Fi(ℓ,ω1)|≤ˆFi|ω2−ω1|,∀ω2,ω1∈R,ℓ,ϰ∈[0,a]. |
If ω∈Cg([0,a]) is such that
|ω(ϰ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)|≤λ(ϰ),∀ϰ∈[0,a], |
and (Mn−1βλ(0)∑ni=1ˆGiˆKiˆFiΓ(σi)(1−pσi−p)1−paσi−p)<1, then there is a unique solution ω0(ϰ)∈Cg([0,a]) of Eq (1.2) such that
|ω(ϰ)−ω0(ϰ)|≤11−(Mn−1βλ(0)n∑i=1ˆGiˆKiˆFiΓ(σi)(1−pσi−p)1−paσi−p)λ(ϰ),ϰ∈[0,a]. | (3.1) |
This means that Eq (1.2) possesses H-U-R stability.
Proof. Let us define an operator Y:Cg([0,a])→Cg([0,a]) by
(Yω)(ϰ)=n∏i=1(Yiω)(ϰ), | (3.2) |
where
(Yiω)(ϰ)=Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ,ϰ∈[0,a],i=1,2,3,…,n. | (3.3) |
Now, to fulfill the criteria of Theorem 1, we take ω,φ∈Cg([0,a]); then,
|(Yiω)(ϰ)−(Yiφ)(ϰ)|=|Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ−Vi(ϰ)−Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,φ(ℓ))dℓ|≤|Gi(ϰ)|Γ(σi)∫ϰ0(ϰ−ℓ)σi−1|Ki(ϰ,ℓ)||Fi(ℓ,ω(ℓ))−Fi(ℓ,φ(ℓ))|dℓ≤ˆGiˆKiˆFiΓ(σi)∫ϰ0(ϰ−ℓ)σi−1|ω(ℓ)−φ(ℓ)|dℓ=ˆGiˆKiˆFiΓ(σi)∫ϰ0(ϰ−ℓ)σi−1λ(ℓ)|ω(ℓ)−φ(ℓ)|λ(ℓ)dℓ≤ˆGiˆKiˆFidg(ω,φ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1λ(ℓ)dℓ≤ˆGiˆKiˆFidg(ω,φ)Γ(σi)(∫ϰ0(ϰ−ℓ)σi−11−pdℓ)1−p(∫ϰ0(λ(ℓ))1pdℓ)p≤ˆGiˆKiˆFidg(ω,φ)βΓ(σi)(1−pσi−p)1−paσi−p,i=1,2,…,n. | (3.4) |
Then by using Lemma 2 and inequality (3.4), we get
|(Yω)(ϰ)−(Yφ)(ϰ)|≤Mn−1n∑i=1|(Yiω)(ϰ)−(Yiφ)(ϰ)|≤Mn−1n∑i=1ˆGiˆKiˆFidg(ω,φ)βΓ(σi)(1−pσi−p)1−paσi−p. | (3.5) |
Now,
dg(Yω,Yφ)=supϰ∈[0,a]|(Yω)(ϰ)−(Yφ)(ϰ)|λ(ϰ)≤supϰ∈[0,a]1λ(ϰ){Mn−1n∑i=1ˆGiˆKiˆFidg(ω,φ)βΓ(σi)(1−pσi−p)1−paσi−p}≤(Mn−1βλ(0)n∑i=1ˆGiˆKiˆFiΓ(σi)(1−pσi−p)1−paσi−p)dg(ω,φ). |
From the condition (Mn−1βλ(0)∑ni=1ˆGiˆKiˆFiΓ(σi)(1−pσi−p)1−paσi−p)<1 and Theorem 2.1, it follows that Y has a unique fixed point and hence, Eq (1.2) has a unique solution.
Let ω0(ϰ)∈Cg([0,a]) be a unique solution of Eq (1.2) and let ω∈Cg([0,a]) be such that
|ω(ϰ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)|≤λ(ϰ),∀ϰ∈[0,a]. |
Then,
dg(ω,ω0)=supϰ∈[0,a]|ω(ϰ)−ω0(ϰ)|λ(ϰ)=supϰ∈[0,a]1λ(ϰ)|ω(ϰ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω0(ℓ))dℓ)|≤supϰ∈[0,a]1λ(ϰ){|ω(ϰ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)|+|n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω0(ℓ))dℓ)|}≤supϰ∈[0,a]1λ(ϰ){λ(ϰ)+|n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω0(ℓ))dℓ)|}=supϰ∈[0,a]1λ(ϰ){λ(ϰ)+|(Yω)(ϰ)−(Yω0)(ϰ)|}. |
By using the inequality (3.5), we get
dg(ω,ω0)≤supϰ∈[0,a]1λ(ϰ){λ(ϰ)+Mn−1n∑i=1ˆGiˆKiˆFidg(ω,ω0)βΓ(σi)(1−pσi−p)1−paσi−p}≤1+Mn−1λ(0)n∑i=1ˆGiˆKiˆFidg(ω,ω0)βΓ(σi)(1−pσi−p)1−paσi−p, |
i.e.,
dg(ω,ω0)≤11−(Mn−1βλ(0)n∑i=1ˆGiˆKiˆFiΓ(σi)(1−pσi−p)1−paσi−p), | (3.6) |
which implies that
supϰ∈[0,a]|ω(ϰ)−ω0(ϰ)|λ(ϰ)≤11−(Mn−1βλ(0)n∑i=1ˆGiˆKiˆFiΓ(σi)(1−pσi−p)1−paσi−p), | (3.7) |
and consequently the inequality (3.1) holds. This ensures the H-U-R stability for Eq (1.2).
Corollary 1. Let 0<p<σi≤1, for i∈{1,2,…,n} and δ>0. Moreover, let, for every i∈{1,2,…,n}, the functions Vi:[0,a]→R, Gi:[0,a]→R, Fi:[0,a]×R→R, and Ki:[0,a]×[0,a]→R be continuous and there exist constants ˆVi>0, ˆGi>0, ˆKi>0, ˆFi>0, and F0i≥0 such that
|Vi(ϰ)|≤ˆVi,|Gi(ϰ)|≤ˆGi,|Ki(ϰ,ℓ)|≤ˆKi,|Fi(ℓ,ω1)|≤F0i, |
and|Fi(ℓ,ω2)−Fi(ℓ,ω1)|≤ˆFi|ω2−ω1|,∀ω2,ω1∈R,ℓ,ϰ∈[0,a]. |
If ω∈Cδ([0,a]) is such that
|ω(ϰ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)|≤eδϰ,∀ϰ∈[0,a], |
and (Mn−1(pδ)p(eδap−1)p∑ni=1ˆGiˆKiˆFiΓ(σi)(1−pσi−p)1−paσi−p)<1, then there is a unique solution ω0(ϰ)∈Cδ([0,a]) of Eq (1.2) such that
|ω(ϰ)−ω0(ϰ)|≤eδϰ1−(Mn−1(pδ)p(eδap−1)pn∑i=1ˆGiˆKiˆFiΓ(σi)(1−pσi−p)1−paσi−p),ϰ∈[0,a]. | (3.8) |
This means that Eq (1.2) possesses H-U-R stability.
Theorem 3. Let 0<σi≤1 and βi>0 for i∈{1,2,…,n} and λ:[0,a]→(0,∞) be a nondecreasing function, such that
1Γ(σi)∫ϰ0(ϰ−ℓ)σi−1λ(ℓ)dℓ≤βiλ(ϰ),∀ϰ∈[0,a],i=1,2,…,n. |
Moreover, let, for every i∈{1,2,…,n}, the functions Vi:[0,a]→R, Gi:[0,a]→R, Fi:[0,a]×R→R, and Ki:[0,a]×[0,a]→R be continuous and there exist constants ˆVi>0, ˆGi>0, ˆKi>0, ˆFi>0, and F0i≥0 such that
|Vi(ϰ)|≤ˆVi,|Gi(ϰ)|≤ˆGi,|Ki(ϰ,ℓ)|≤ˆKi,|Fi(ℓ,ω1)|≤F0i, |
and|Fi(ℓ,ω2)−Fi(ℓ,ω1)|≤ˆFi|ω2−ω1|,∀ω2,ω1∈R,ℓ,ϰ∈[0,a]. |
If ω∈Cg([0,a]) is such that
|ω(ϰ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)|≤λ(ϰ),∀ϰ∈[0,a], |
and (Mn−1∑ni=1ˆGiˆKiˆFiβi)<1, then there is a unique solution ω0(ϰ)∈Cg([0,a]) of Eq (1.2) such that
|ω(ϰ)−ω0(ϰ)|≤11−(Mn−1∑ni=1ˆGiˆKiˆFiβi)λ(ϰ),ϰ∈[0,a]. | (3.9) |
This means that Eq (1.2) possesses H-U-R stability.
Proof. Let us define an operator Y:Cg([0,a])→Cg([0,a]) by
(Yω)(ϰ)=n∏i=1(Yiω)(ϰ), | (3.10) |
where
(Yiω)(ϰ)=Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ,ϰ∈[0,a],i=1,2,3,…,n. | (3.11) |
Now, to fulfill the criteria of Theorem 1, we take ω,φ∈Cg([0,a]); then,
|(Yiω)(ϰ)−(Yiφ)(ϰ)|=|Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ−Vi(ϰ)−Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,φ(ℓ))dℓ|≤|Gi(ϰ)|Γ(σi)∫ϰ0(ϰ−ℓ)σi−1|Ki(ϰ,ℓ)||Fi(ℓ,ω(ℓ))−Fi(ℓ,φ(ℓ))|dℓ≤ˆGiˆKiˆFiΓ(σi)∫ϰ0(ϰ−ℓ)σi−1|ω(ℓ)−φ(ℓ)|dℓ=ˆGiˆKiˆFiΓ(σi)∫ϰ0(ϰ−ℓ)σi−1λ(ℓ)|ω(ℓ)−φ(ℓ)|λ(ℓ)dℓ≤ˆGiˆKiˆFidg(ω,φ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1λ(ℓ)dℓ≤ˆGiˆKiˆFidg(ω,φ)βiλ(ϰ),i=1,2,…,n. | (3.12) |
Then, by using Lemma 2 and inequality (3.12), we obtain
|(Yω)(ϰ)−(Yφ)(ϰ)|≤Mn−1n∑i=1|(Yiω)(ϰ)−(Yiφ)(ϰ)|≤Mn−1n∑i=1ˆGiˆKiˆFidg(ω,φ)βiλ(ϰ). | (3.13) |
Now,
dg(Yω,Yφ)=supϰ∈[0,a]|(Yω)(ϰ)−(Yφ)(ϰ)|λ(ϰ)≤supϰ∈[0,a]1λ(ϰ){Mn−1n∑i=1ˆGiˆKiˆFidg(ω,φ)βiλ(ϰ)}, |
i.e.,
dg(Yω,Yφ)≤(Mn−1n∑i=1ˆGiˆKiˆFiβi)dg(ω,φ). |
From the condition (Mn−1∑ni=1ˆGiˆKiˆFiβi)<1 and Theorem 1, it follows that Y has a unique fixed point and hence, Eq (1.2) has a unique solution.
Let ω0(ϰ)∈Cg([0,a]) be a unique solution of Eq (1.2), and let ω∈Cg([0,a]) be such that
|ω(ϰ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)|≤λ(ϰ),∀ϰ∈[0,a]. |
Then,
dg(ω,ω0)=supϰ∈[0,a]|ω(ϰ)−ω0(ϰ)|λ(ϰ)=supϰ∈[0,a]1λ(ϰ)|ω(ϰ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω0(ℓ))dℓ)|≤supϰ∈[0,a]1λ(ϰ){|ω(ϰ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)|+|n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω0(ℓ))dℓ)|}≤supϰ∈[0,a]1λ(ϰ){λ(ϰ)+|n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω0(ℓ))dℓ)|}. |
By using the inequality (3.13), we get
dg(ω,ω0)≤supϰ∈[0,a]1λ(ϰ){λ(ϰ)+Mn−1n∑i=1ˆGiˆKiˆFidg(ω,ω0)βiλ(ϰ)}, |
i.e.,
dg(ω,ω0)≤1+Mn−1n∑i=1ˆGiˆKiˆFidg(ω,ω0)βi, |
or,
dg(ω,ω0)≤11−(Mn−1∑ni=1ˆGiˆKiˆFiβi), |
which implies that
supϰ∈[0,a]|ω(ϰ)−ω0(ϰ)|λ(ϰ)≤11−(Mn−1∑ni=1ˆGiˆKiˆFiβi), | (3.14) |
consequently, the inequality (3.9) holds. This ensures the H-U-R stability for Eq (1.2).
Theorem 4. Let 0<p<σi≤1, for i∈{1,2,…,n}. Let β>0 and λ:[0,a]→(0,∞) be a nondecreasing function, such that
(∫ϰ0(λ(ℓ))1pdℓ)p≤β,∀ϰ∈[0,a]. |
Moreover, let, for every i∈{1,2,…,n}, the functions Vi:[0,a]→R, Gi:[0,a]→R, Fi:[0,a]×R→R, and Ki:[0,a]×[0,a]→R be continuous and there exist constants ˆVi>0, ˆGi>0, ˆKi>0, ˆFi>0, and F0i≥0 such that
|Vi(ϰ)|≤ˆVi,|Gi(ϰ)|≤ˆGi,|Ki(ϰ,ℓ)|≤ˆKi,|Fi(ℓ,ω1)|≤F0i, |
and|Fi(ℓ,ω2)−Fi(ℓ,ω1)|≤ˆFi|ω2−ω1|,∀ω2,ω1∈R,ℓ,ϰ∈[0,a]. |
If ω∈Cg([0,a]) is such that
|ω(ϰ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)|≤ε,∀ϰ∈[0,a], |
where ε>0 and (Mn−1βλ(0)∑ni=1ˆGiˆKiˆFiΓ(σi)(1−pσi−p)1−paσi−p)<1, then there is a unique solution ω0(ϰ)∈Cg([0,a]) of Eq (1.2) such that
|ω(ϰ)−ω0(ϰ)|≤ελ(0)−(Mn−1β∑ni=1ˆGiˆKiˆFiΓ(σi)(1−pσi−p)1−paσi−p)λ(ϰ),ϰ∈[0,a]. | (4.1) |
This means that Eq (1.2) possesses λ-semi-Hyers-Ulam stability.
Proof. We define the operator Y:Cg([0,a])→Cg([0,a]) by
(Yω)(ϰ)=n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ),ϰ∈[0,a]. | (4.2) |
Given that (Mn−1βλ(0)∑ni=1ˆGiˆKiˆFiΓ(σi)(1−pσi−p)1−paσi−p)<1, similar to Theorem 3.1, we have that Eq (1.2) has a unique solution. To establish the λ-semi-Hyers-Ulam stability, let ω0(ϰ)∈Cg([0,a]) be a unique solution of Eq (1.2) and let ω∈Cg([0,a]) be such that
|ω(ϰ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)|≤ε,∀ϰ∈[0,a]. |
Then,
dg(ω,ω0)=supϰ∈[0,a]|ω(ϰ)−ω0(ϰ)|λ(ϰ)=supϰ∈[0,a]1λ(ϰ)|ω(ϰ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω0(ℓ))dℓ)|≤supϰ∈[0,a]1λ(ϰ){|ω(ϰ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)|+|n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω0(ℓ))dℓ)|}≤supϰ∈[0,a]1λ(ϰ){ε+|n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω0(ℓ))dℓ)|}. |
By using Lemma 2 and following a procedure similar to that for inequality (3.4), we get
|n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω0(ℓ))dℓ)|=|(Yω)(ϰ)−(Yω0)(ϰ)|≤Mn−1n∑i=1|(Yiω)(ϰ)−(Yiω0)(ϰ)|≤Mn−1n∑i=1ˆGiˆKiˆFidg(ω,ω0)βΓ(σi)(1−pσi−p)1−paσi−p. | (4.3) |
By using the inequality (4.3), we get
dg(ω,ω0)≤supϰ∈[0,a]1λ(ϰ){ε+Mn−1n∑i=1ˆGiˆKiˆFidg(ω,ω0)βΓ(σi)(1−pσi−p)1−paσi−p},≤ελ(0)+Mn−1n∑i=1ˆGiˆKiˆFidg(ω,ω0)βλ(0)Γ(σi)(1−pσi−p)1−paσi−p, |
i.e.,
dg(ω,ω0)≤ελ(0)−(Mn−1βn∑i=1ˆGiˆKiˆFiΓ(σi)(1−pσi−p)1−paσi−p), | (4.4) |
which implies that
supϰ∈[0,a]|ω(ϰ)−ω0(ϰ)|λ(ϰ)≤ελ(0)−(Mn−1β∑ni=1ˆGiˆKiˆFiΓ(σi)(1−pσi−p)1−paσi−p), | (4.5) |
consequently, the inequality (4.1) holds. This ensures the λ-semi-Hyers-Ulam stability for Eq (1.2).
Corollary 2. Let 0<p<σi≤1, for i∈{1,2,…,n} and δ>0. Moreover, let, for every i∈{1,2,…,n}, the functions Vi:[0,a]→R, Gi:[0,a]→R, Fi:[0,a]×R→R, and Ki:[0,a]×[0,a]→R be continuous and there exist constants ˆVi>0, ˆGi>0, ˆKi>0, ˆFi>0, and F0i≥0 such that
|Vi(ϰ)|≤ˆVi,|Gi(ϰ)|≤ˆGi,|Ki(ϰ,ℓ)|≤ˆKi,|Fi(ℓ,ω1)|≤F0i, |
and|Fi(ℓ,ω2)−Fi(ℓ,ω1)|≤ˆFi|ω2−ω1|,∀ω2,ω1∈R,ℓ,ϰ∈[0,a]. |
If ω∈Cδ([0,a]) is such that
|ω(ϰ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)|≤ε,∀ϰ∈[0,a], |
where ε>0 and (Mn−1(pδ)p(eδap−1)p∑ni=1ˆGiˆKiˆFiΓ(σi)(1−pσi−p)1−paσi−p)<1, then there is a unique solution ω0(ϰ)∈Cδ([0,a]) of Eq (1.2) such that
|ω(ϰ)−ω0(ϰ)|≤εeδϰ1−(Mn−1(pδ)p(eδap−1)p∑ni=1ˆGiˆKiˆFiΓ(σi)(1−pσi−p)1−paσi−p),ϰ∈[0,a]. | (4.6) |
This means that Eq (1.2) possesses λ-semi-Hyers-Ulam stability.
Corollary 3. Let 0<p<σi≤1 for i∈{1,2,…,n}. Let β>0 and λ:[0,a]→(0,∞) be a nondecreasing function such that
(∫ϰ0(λ(ℓ))1pdℓ)p≤β,∀ϰ∈[0,a]. |
Moreover, let, for every i∈{1,2,…,n}, the functions Vi:[0,a]→R, Gi:[0,a]→R, Fi:[0,a]×R→R, and Ki:[0,a]×[0,a]→R be continuous and there exist constants ˆVi>0, ˆGi>0, ˆKi>0, ˆFi>0, and F0i≥0 such that
|Vi(ϰ)|≤ˆVi,|Gi(ϰ)|≤ˆGi,|Ki(ϰ,ℓ)|≤ˆKi,|Fi(ℓ,ω1)|≤F0i, |
and|Fi(ℓ,ω2)−Fi(ℓ,ω1)|≤ˆFi|ω2−ω1|,∀ω2,ω1∈R,ℓ,ϰ∈[0,a]. |
If ω∈Cg([0,a]) is such that
|ω(ϰ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)|≤ε,∀ϰ∈[0,a], |
where ε>0 and (Mn−1βλ(0)∑ni=1ˆGiˆKiˆFiΓ(σi)(1−pσi−p)1−paσi−p)<1, then there is a unique solution ω0(ϰ)∈Cg([0,a]) of Eq (1.2) such that
|ω(ϰ)−ω0(ϰ)|≤λ(a)λ(0)−(Mn−1βn∑i=1ˆGiˆKiˆFiΓ(σi)(1−pσi−p)1−paσi−p)ε,ϰ∈[0,a]. | (4.7) |
This means that Eq (1.2) possesses H-U stability.
Corollary 4. Let 0<p<σi≤1 for i∈{1,2,…,n} and δ>0. Moreover, let, for every i∈{1,2,…,n}, the functions Vi:[0,a]→R, Gi:[0,a]→R, Fi:[0,a]×R→R, and Ki:[0,a]×[0,a]→R be continuous and there exist constants ˆVi>0, ˆGi>0, ˆKi>0, ˆFi>0, and F0i≥0 such that
|Vi(ϰ)|≤ˆVi,|Gi(ϰ)|≤ˆGi,|Ki(ϰ,ℓ)|≤ˆKi,|Fi(ℓ,ω1)|≤F0i, |
and|Fi(ℓ,ω2)−Fi(ℓ,ω1)|≤ˆFi|ω2−ω1|,∀ω2,ω1∈R,ℓ,ϰ∈[0,a]. |
If ω∈Cδ([0,a]) is such that
|ω(ϰ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)|≤ε,∀ϰ∈[0,a], |
where ε>0 and (Mn−1(pδ)p(eδap−1)p∑ni=1ˆGiˆKiˆFiΓ(σi)(1−pσi−p)1−paσi−p)<1, then there is a unique solution ω0(ϰ)∈Cδ([0,a]) of Eq (1.2) such that
|ω(ϰ)−ω0(ϰ)|≤eδa1−(Mn−1(pδ)p(eδap−1)pn∑i=1ˆGiˆKiˆFiΓ(σi)(1−pσi−p)1−paσi−p)ε,ϰ∈[0,a]. | (4.8) |
This means that Eq (1.2) possesses H-U stability.
We will discuss two examples in this section to illustrate the established results.
Example 1. Consider the following integral equation:
ω(ϰ)=(V1(ϰ)+G1(ϰ)Γ(12)∫ϰ0(ϰ−ℓ)−12(ϰ+ℓ)sin(ω(ℓ))dℓ)(V2(ϰ)+G2(ϰ)Γ(12)∫ϰ0(ϰ−ℓ)−12ℓ(ℓ+cos(ω(ℓ)))dℓ),ϰ∈[0,1], | (5.1) |
where V1(ϰ)=2π, V2(ϰ)=1−(16ϰ52+20ϰ32)sin(ϰ)1800Γ(12), G1(ϰ)=ϰ264, and G2(ϰ)=sin(ϰ)120. Comparing Eq (5.1) with Eq (1.2), we have that n=2, a=1, K1(ϰ,ℓ)=ϰ+ℓ, F1(ℓ,ω(ℓ))=sin(ω(ℓ)), K2(ϰ,ℓ)=ℓ, F2(ℓ,ω(ℓ))=ℓ+cos(ω(ℓ)), and σ1=σ2=12.
It can be observed that the functions V1, G1, K1, F1, V2, G2, K2, and F2 are all continuous and satisfy the following conditions:
|Vi(ϰ)|≤ˆVi,|Gi(ϰ)|≤ˆGi,|Ki(ϰ,ℓ)|≤ˆKi,|Fi(ℓ,ω1)|≤F0i, |
and|Fi(ℓ,ω2)−Fi(ℓ,ω1)|≤ˆFi|ω2−ω1|,∀ω2,ω1∈R,ℓ,ϰ∈[0,1],fori=1,2; |
where ˆV1=2π, ˆG1=1264, ˆK1=2, F01=1, ˆF1=1, ˆV2=1, ˆG2=1120, ˆK2=1, F02=2, and ˆF2=1.
Thus, all conditions of Lemmas 1 and 2 are satisfied and we get
M=max{ˆVi+ˆGiˆKiF0iaσiΓ(σi+1):i=1,2}≈6.292.
We choose p=13 such that 0<p<σi≤1 holds for i=1,2, and we consider the nondecreasing function λ:[0,1]→(0,∞) given by λ(ϰ)=ϰ+2π. Then, the following condition
(∫ϰ0(λ(ℓ))1pdℓ)p≤β,∀ϰ∈[0,1], |
is satisfied by β=(313.8010)13.
Now, (Mn−1βλ(0)∑ni=1ˆGiˆKiˆFiΓ(σi)(1−pσi−p)1−paσi−p)≈0.1539<1.
If we take ω(ϰ)=0, then
|ω(ϰ)−2∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)|=|0−2π|≤ϰ+2π=λ(ϰ),∀ϰ∈[0,1]. |
Thus, by Theorem 3.1, there exists a unique solution ω0(ϰ)∈Cg([0,a]) of Eq (5.1) such that
|ω(ϰ)−ω0(ϰ)|≤11−(Mn−1βλ(0)n∑i=1ˆGiˆKiˆFiΓ(σi)(1−pσi−p)1−paσi−p)λ(ϰ),ϰ∈[0,1]. |
This ensures the H-U-R stability for Eq (5.1).
Again, since (Mn−1βλ(0)∑ni=1ˆGiˆKiˆFiΓ(σi)(1−pσi−p)1−paσi−p)≈0.1539<1, and if we take ω(ϰ)=0, then, for ε≥2π, we get
|ω(ϰ)−2∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)|=|0−2π|≤ε,∀ϰ∈[0,1]. |
Hence, by Theorem 4.1, there exists a unique solution ω0(ϰ)∈Cg([0,a]) of Eq (5.1) such that
|ω(ϰ)−ω0(ϰ)|≤ελ(0)−(Mn−1β∑ni=1ˆGiˆKiˆFiΓ(σi)(1−pσi−p)1−paσi−p)λ(ϰ),ϰ∈[0,a], |
which ensures the λ-semi-Hyers-Ulam stability for Eq (5.1); also, by Corollary 3, we can conclude the H-U stability for Eq (5.1).
Example 2. Consider the following integral equation:
ω(ϰ)=(V1(ϰ)+G1(ϰ)Γ(13)∫ϰ0(ϰ−ℓ)−23(1+ℓ)1+|ω(ℓ)|e−ℓdℓ)(V2(ϰ)+G2(ϰ)Γ(13)∫ϰ0(ϰ−ℓ)−23cos(π2ω(ℓ)e−ℓ)dℓ),ϰ∈[0,1], | (5.2) |
where V1(ϰ)=1−eϰ(9ϰ43+12ϰ13)2592Γ(13), V2(ϰ)=eϰ, G1(ϰ)=eϰ324, and G2(ϰ)=eϰ224. Comparing Eq (5.2) with Eq (1.2), we have that n=2, a=1, K1(ϰ,ℓ)=1+ℓ, F1(ℓ,ω(ℓ))=11+|ω(ℓ)|e−ℓ, K2(ϰ,ℓ)=1, F2(ℓ,ω(ℓ))=cos(π2ω(ℓ)e−ℓ), and σ1=σ2=13.
It can be observed that the functions V1, G1, K1, F1, V2, G2, K2, and F2 are all continuous and satisfy the following conditions:
|Vi(ϰ)|≤ˆVi,|Gi(ϰ)|≤ˆGi,|Ki(ϰ,ℓ)|≤ˆKi,|Fi(ℓ,ω1)|≤F0i, |
and|Fi(ℓ,ω2)−Fi(ℓ,ω1)|≤ˆFi|ω2−ω1|,∀ω2,ω1∈R,ℓ,ϰ∈[0,1],fori=1,2; |
where ˆV1=1, ˆG1=0.0084, ˆK1=2, F01=1, ˆF1=1, ˆV2=2.7183, ˆG2=0.0121, ˆK2=1, F02=1, and ˆF2=π2.
Thus, all conditions of Lemmas 1 and 2 are satisfied and we get the following:
M=max{ˆVi+ˆGiˆKiF0iaσiΓ(σi+1):i=1,2}≈2.732.
We consider the nondecreasing function λ:[0,1]→(0,∞) given by λ(ϰ)=4ϰ+2. Then, the condition
1Γ(σi)∫ϰ0(ϰ−ℓ)σi−1λ(ℓ)dℓ≤βiλ(ϰ),∀ϰ∈[0,1],i=1,2, |
is satisfied by β1=β2=2.7996.
Now, (Mn−1∑ni=1ˆGiˆKiˆFiβi)≈0.274<1.
If we take ω(ϰ)=3eϰ, then
|ω(ϰ)−2∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)|=|3eϰ−(1−eϰ(9ϰ43+12ϰ13)5184Γ(13))eϰ|≤4ϰ+2=λ(ϰ),∀ϰ∈[0,1]. |
Thus, by Theorem 3.2, there exists a unique solution ω0(ϰ)∈Cg([0,1]) of Eq (5.2) such that
|ω(ϰ)−ω0(ϰ)|≤11−(Mn−1∑ni=1ˆGiˆKiˆFiβi)λ(ϰ),ϰ∈[0,1]. |
This ensures the H-U-R stability for Eq (5.2).
Three types of stabilities, namely, H-U, λ-semi-Hyers-Ulam, and H-U-R stabilities, have been analyzed in this paper for Eq (1.2) through the application of the Bielecki metric in the space of continuous real-valued functions defined on the finite interval [0,a]. In Theorem 3.1, conditions for H-U-R stability have been established in the space Cg([0,a]) through the application of the metric dg. In Corollary 1, we stated the conditions for H-U-R stability in the space Cδ([0,a]) through the application of the metric dδ. Some easily checked conditions for H-U-R stability have been provided in Theorem 3.2. In Theorem 4.1, conditions for λ-semi-Hyers-Ulam stability have been discussed in the space Cg([0,a]) through the application of the metric dg. In Corollary 2, we stated the conditions for λ-semi-Hyers-Ulam stability in the space Cδ([0,a]) through the application of the metric dδ. In Corollary 3, conditions for H-U stability have been discussed in the space Cg([0,a]) through the application of the metric dg, and in Corollary 4, we stated the conditions for H-U stability in the space Cδ([0,a]) through the application of the metric dδ. These results indicate that there is a close analytic solution of Eq (1.2) that is stable in the sense of the above stabilities. Two examples have been discussed on the interval [0,1] to illustrate the established results. In the future, one can extend the concept presented here to the system of fractional integral equations of n-product type. Also, new results can be obtained by considering more generalized kernels. Subsequently, interested researchers can extend this concept to two-dimensional integral equations of fractional order.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors declare no conflict of interest.
[1] | A. M. Wazwaz, Applications of integral equations, In: Linear and nonlinear integral equations, Berlin, Heidelberg: Springer, 2011,569–595. https://doi.org/10.1007/978-3-642-21449-3_18 |
[2] |
M. A. Abdou, On a symptotic Methods for Fredholm-Volterra integral equation of the second kind in contact problems, J. Comput. Appl. Math., 154 (2003), 431–446. https://doi.org/10.1016/S0377-0427(02)00862-2 doi: 10.1016/S0377-0427(02)00862-2
![]() |
[3] |
V. K. Pathak, L. N. Mishra, On solvability and approximating the solutions for nonlinear infinite system of fractional functional integral equations in the sequence space ℓp,p>1, J. Integral Equ. Appl., 35 (2023), 443–458. https://doi.org/10.1216/jie.2023.35.443 doi: 10.1216/jie.2023.35.443
![]() |
[4] |
V. K. Pathak, L. N. Mishra, Application of fixed point theorem to solvability for non-linear fractional Hadamard functional integral equations, Mathematics, 10 (2022), 2400. https://doi.org/10.3390/math10142400 doi: 10.3390/math10142400
![]() |
[5] |
V. C. Boffi, G. Spiga, An equation of hammerstein type arising in particle transport theory, J. Math. Phys., 24 (1983), 1625–1629. https://doi.org/10.1063/1.525857 doi: 10.1063/1.525857
![]() |
[6] |
S. Hu, M. Khavanin, W. Zhuang, Integral equations arising in the kinetic theory of gases, Appl. Anal., 34 (1989), 261–266. https://doi.org/10.1080/00036818908839899 doi: 10.1080/00036818908839899
![]() |
[7] | G. Gripenberg, On some epidmic models, Q. Appl. Math., 39 (1981), 317–327. https://doi.org/10.1090/qam/636238 |
[8] |
E. Brestovanská, Qualitative behaviour of an integral equation related to some epidemic model, Demonstr. Math., 36 (2003), 603–610. https://doi.org/10.1515/dema-2003-0312 doi: 10.1515/dema-2003-0312
![]() |
[9] | I. M. Olaru, Generalization of an integral equation related to some epidemic models, Carpathian J. Math., 26 (2010), 92–96. |
[10] |
M. M. A. Metwali, K. Cichoń, Solvability of the product of n-integral equations in Orlicz spaces, Rend. Circ. Mat. Palermo, 73 (2024), 171–187. https://doi.org/10.1007/s12215-023-00916-1 doi: 10.1007/s12215-023-00916-1
![]() |
[11] |
A. M. A. El-Sayed, S. M. Al-issa, Monotonic solutions for a quadratic integral equation of fractional order, AIMS Mathematics, 4 (2019), 821–830. https://doi.org/10.3934/math.2019.3.821 doi: 10.3934/math.2019.3.821
![]() |
[12] |
X. Liu, M. Zhou, L. N. Mishra, V. N. Mishra, B. Damjanović, Common fixed point theorem of six self-mappings in Menger spaces using (CLRST) property, Open Math., 16 (2018), 1423–1434. https://doi.org/10.1515/math-2018-0120 doi: 10.1515/math-2018-0120
![]() |
[13] |
S. K. Paul, L. N. Mishra, V. N. Mishra, D. Baleanu, Analysis of mixed type nonlinear Volterra-Fredholm integral equations involving the Erdélyi-Kober fractional operator, J. King Saud Univ. Sci., 35 (2023), 102949. https://doi.org/10.1016/j.jksus.2023.102949 doi: 10.1016/j.jksus.2023.102949
![]() |
[14] |
I. A. Bhat, L. N. Mishra, A comparative study of discretization techniques for augmented Urysohn type nonlinear functional Volterra integral equations and their convergence analysis, Appl. Math. Comput., 470 (2024), 128555. https://doi.org/10.1016/j.amc.2024.128555 doi: 10.1016/j.amc.2024.128555
![]() |
[15] | S. K. Paul, L. N. Mishra, V. N. Mishra, Approximate numerical solutions of fractional integral equations using Laguerre and Touchard polynomials, Palestine Journal of Mathematics, 12 (2023), 416–431. |
[16] |
V. K. Pathak, L. N. Mishra, Existence of solution of Erdelyi-kober fractional integral equations using measure of non-compactness, Discontinuity, Nonlinearity, and Complexity, 12 (2023), 701–714. https://doi.org/10.5890/DNC.2023.09.015 doi: 10.5890/DNC.2023.09.015
![]() |
[17] |
M. S. Hogeme, M. M. Woldaregay, L. Rathour, V. N. Mishra, A stable numerical method for singularly perturbed Fredholm integro differential equation using exponentially fitted difference method, J. Comput. Appl. Math., 441 (2024), 115709. https://doi.org/10.1016/j.cam.2023.115709 doi: 10.1016/j.cam.2023.115709
![]() |
[18] |
K. Zhao, S. Ma, Ulam-Hyers-Rassias stability for a class of nonlinear implicit Hadamard fractional integral boundary value problem with impulses, AIMS Mathematics, 7 (2022), 3169–3185. https://doi.org/10.3934/math.2022175 doi: 10.3934/math.2022175
![]() |
[19] |
J. V. da C. Sousa, E. C. de Oliveira, F. G. Rodrigues, Ulam-Hyers stabilities of fractional functional differential equations, AIMS Mathematics, 5 (2020), 1346–1358. https://doi.org/10.3934/math.2020092 doi: 10.3934/math.2020092
![]() |
[20] |
S. T. M. Thabet, M. S. Abdo, K. Shah, T. Abdeljawad, Study of transmission dynamics of COVID-19 mathematical model under ABC fractional order derivative, Results Phys., 19 (2020), 103507. https://doi.org/10.1016/j.rinp.2020.103507 doi: 10.1016/j.rinp.2020.103507
![]() |
[21] |
V. K. Pathak, L. N. Mishra, V. N. Mishra, On the solvability of a class of nonlinear functional integral equations involving Erdélyi-Kober fractional operator, Math. Method. Appl. Sci., 46 (2023), 14340–14352. https://doi.org/10.1002/mma.9322 doi: 10.1002/mma.9322
![]() |
[22] |
C. Ionescu, A. Lopes, D. Copot, J. A. T. Machado, J. H. T. Bates, The role of fractional calculus in modeling biological phenomena: a review, Commun. Nonlinear Sci., 51 (2017), 141–159. https://doi.org/10.1016/j.cnsns.2017.04.001 doi: 10.1016/j.cnsns.2017.04.001
![]() |
[23] |
I. A. Bhat, L. N. Mishra, Numerical solutions of Volterra integral equations of third kind and its convergence analysis, Symmetry, 14 (2022), 2600. https://doi.org/10.3390/sym14122600 doi: 10.3390/sym14122600
![]() |
[24] |
M. Jleli, B. Samet, Solvability of a q-fractional integral equation arising in the study of an epidemic model, Adv. Differ. Equ., 2017 (2017), 21. https://doi.org/10.1186/s13662-017-1076-7 doi: 10.1186/s13662-017-1076-7
![]() |
[25] |
L. P. Castro, A. M. Simõoes, Hyers-Ulam-Rassias stability of nonlinear integral equations through the Bielecki metric, Math. Method. Appl. Sci., 41 (2018), 7367–7383. https://doi.org/10.1002/mma.4857 doi: 10.1002/mma.4857
![]() |
[26] |
C. C. Tisdell, A. Zaidi, Basic qualitative and quantitative results for solutions to nonlinear, dynamic equations on time scales with an application to economic modelling, Nonlinear Anal. Theor., 68 (2008), 3504–3524. https://doi.org/10.1016/j.na.2007.03.043 doi: 10.1016/j.na.2007.03.043
![]() |
[27] |
L. Cădariu, L. Găvruţa, P. Găvruţa, Weighted space method for the stability of some nonlinear equations, Appl. Anal. Discr. Math., 6 (2012), 126–139. https://doi.org/10.2298/AADM120309007C doi: 10.2298/AADM120309007C
![]() |
[28] | S. Rolewicz, Functional analysis and control theory, Dordrecht: Springer, 1987. https://doi.org/10.1007/978-94-015-7758-8 |
[29] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006. |
[30] |
S. K. Paul, L. N. Mishra, V. N. Mishra, D. Baleanu, An effective method for solving nonlinear integral equations involving the Riemann-Liouville fractional operator, AIMS Mathematics, 8 (2023), 17448–17469. https://doi.org/10.3934/math.2023891 doi: 10.3934/math.2023891
![]() |
[31] |
S. Banach, Sur les operations dans les ensembles abstracts ET leur applications aux equations integrals, Fund. Math., 3 (1922), 133–181. https://doi.org/10.4064/FM-3-1-133-181 doi: 10.4064/FM-3-1-133-181
![]() |
[32] |
B. Alamri, J. Ahmad, Fixed point results in b-metric spaces with applications to integral equations, AIMS Mathematics, 8 (2023), 9443–9460. https://doi.org/10.3934/math.2023476 doi: 10.3934/math.2023476
![]() |
1. | Ilhame Amirali, Muhammet Enes Durmaz, Gabil M. Amiraliyev, A Monotone Second-Order Numerical Method for Fredholm Integro-Differential Equation, 2024, 21, 1660-5446, 10.1007/s00009-024-02746-6 | |
2. | Supriya Kumar Paul, Lakshmi Narayan Mishra, Asymptotic Stability and Approximate Solutions to Quadratic Functional Integral Equations Containing ψ-Riemann–Liouville Fractional Integral Operator, 2025, 65, 0965-5425, 320, 10.1134/S096554252470204X | |
3. | M. Sudha, M. Saravanakumar, Pradeep Jangir, Elangovan Muniyandy, An enhanced asymmetric quantization Boolean encryption for secure routing in wireless sensor networks, 2025, 16, 1793-9623, 10.1142/S179396232550028X |