Processing math: 66%
Research article

On the Cauchy problem of compressible Micropolar fluids subjected to Hall current

  • Received: 17 October 2024 Revised: 24 November 2024 Accepted: 28 November 2024 Published: 04 December 2024
  • MSC : 35A01, 35Q35, 76W05

  • In this paper, the large-time behavior of global strong solutions is justified for the three dimensional compressible micropolar fluids subjected to Hall current. Both the global existence and the optimal decay rates of strong solutions are obtained when the smooth initial data are sufficiently close to the non-vacuum equilibrium in H1. In addition, the vanishing limit of the Hall coefficient is also justified.

    Citation: Mingyu Zhang. On the Cauchy problem of compressible Micropolar fluids subjected to Hall current[J]. AIMS Mathematics, 2024, 9(12): 34147-34183. doi: 10.3934/math.20241627

    Related Papers:

    [1] Mingyu Zhang . On the Cauchy problem of 3D nonhomogeneous micropolar fluids with density-dependent viscosity. AIMS Mathematics, 2024, 9(9): 23313-23330. doi: 10.3934/math.20241133
    [2] Yanping Zhou, Xuemei Deng, Qunyi Bie, Lingping Kang . Energy conservation for the compressible ideal Hall-MHD equations. AIMS Mathematics, 2022, 7(9): 17150-17165. doi: 10.3934/math.2022944
    [3] Ru Bai, Tiantian Chen, Sen Liu . Global stability solution of the 2D incompressible anisotropic magneto-micropolar fluid equations. AIMS Mathematics, 2022, 7(12): 20627-20644. doi: 10.3934/math.20221131
    [4] Dayong Huang, Guoliang Hou . Blowup criterion for the Cauchy problem of 2D compressible viscous micropolar fluids with vacuum. AIMS Mathematics, 2024, 9(9): 25956-25965. doi: 10.3934/math.20241268
    [5] Mingyu Zhang . Regularity and uniqueness of 3D compressible magneto-micropolar fluids. AIMS Mathematics, 2024, 9(6): 14658-14680. doi: 10.3934/math.2024713
    [6] K. Jeganathan, S. Selvakumar, N. Anbazhagan, S. Amutha, Porpattama Hammachukiattikul . Stochastic modeling on M/M/1/N inventory system with queue-dependent service rate and retrial facility. AIMS Mathematics, 2021, 6(7): 7386-7420. doi: 10.3934/math.2021433
    [7] Sadek Gala . A note on the Liouville type theorem for the smooth solutions of the stationary Hall-MHD system. AIMS Mathematics, 2016, 1(3): 282-287. doi: 10.3934/Math.2016.3.282
    [8] Abdulaziz H. Alharbi, Ahmed G. Salem . Analytical and numerical investigation of viscous fluid-filled spherical slip cavity in a spherical micropolar droplet. AIMS Mathematics, 2024, 9(6): 15097-15118. doi: 10.3934/math.2024732
    [9] Ahmed G. Salem, Turki D. Alharbi, Abdulaziz H. Alharbi, Anwar Ali Aldhafeeri . Impact of a spherical interface on a concentrical spherical droplet. AIMS Mathematics, 2024, 9(10): 28400-28420. doi: 10.3934/math.20241378
    [10] Jishan Fan, Tohru Ozawa . Magnetohydrodynamics approximation of the compressible full magneto- micropolar system. AIMS Mathematics, 2022, 7(9): 16037-16053. doi: 10.3934/math.2022878
  • In this paper, the large-time behavior of global strong solutions is justified for the three dimensional compressible micropolar fluids subjected to Hall current. Both the global existence and the optimal decay rates of strong solutions are obtained when the smooth initial data are sufficiently close to the non-vacuum equilibrium in H1. In addition, the vanishing limit of the Hall coefficient is also justified.



    In this paper, we are interested in the mathematical analysis of the equations in a viscous, electrically conducting, micropolar fluids in the presence of a magnetic field, taking into account the effect of Hall current. When the strength of the magnetic field is sufficiently large, Ohm's law J=σ(E+u×b) needs to be modified to include Hall current so that the electric current density J satisfies the relation

    J+ωeτe(J×b)=σ(E+u×b+1enepe),

    where E,b, and u stand for the electric field, magnetic induction, and the fluid velocity, respectively. ωe,τe,σ,e, and pe are the cyclotron frequency of electrons, electron collision time, electric conductivity, electron charge, and electron pressure, respectively (see [7, p.101]). Then the electric field E can be written as

    E=1σ(J+ωeτe(J×b))u×b1enepe.

    Faraday's and Ampère's laws yield

    tb+×E=0,×b=μeJ,

    where μe is the magnetic permeability constant. Thus, the generalized magnetic induction equation with the Hall effect has the following form:

    tb+×(1μeσ(×b+ωeτe×b×b))=×(u×b).

    The theory of micropolar fluids was developed by Eringen [10,11,12] and a generalization including the effects of magnetic fields has been developed by Ahmadi and Shahinpoor [2]. It has important engineering applications, such as in the extraction of oils/gas from oil fields, fluid flow in chemical engineering and magnetohydrodynamic (MHD) generators with neutral fluid seeding in the form of rigid microinclusions (see [12] and the references therein).

    This paper is concerned with the mathematical analysis of the equations describing the flow in viscous, electrically conducting, micropolar fluids in the presence of a magnetic field, taking into account the effect of Hall current. The three-dimensional (3D) compressible, viscous micropolar fluids subject to Hall current occupying a domain ΩR3 are given by

    {ρt+div(ρu)=0,(ρu)t+div(ρuu)+p(ρ)=(μ1+ζ)Δu+(μ1+λ1ζ)divu+2ζ×w+(×b)×b,(ρw)t+div(ρuw)+4ζw=μ2Δw+(μ2+λ2)divw+2ζ×u,bt×(u×b)+β×((×b)×bρ)=νΔb,divb=0. (1.1)

    Here, ρ0,u=(u1,u3,u3),w=(w1,w2,w3) and b=(b1,b2,b3) stand for the density, velocity, micro-rotational velocity and magnetic field, respectively. p(ρ)=aργ(a>0,γ>1) is the pressure. The constants μ1 and λ1 denote the shear and bulk viscosity coefficients, ζ is the dynamics micro-rotation viscosity, μ2, and λ2 are the angular viscosities, ν is the magnetic diffusivity of the magnetic field and β is the Hall coefficient, and they satisfy

    μ1>0,μ2>0,ζ>0,ν>0,β>0,2μ1+3λ14ζ0,2μ2+3λ20.

    Let Ω=R3. We consider the Cauchy problem of (1.1) with the far-field behavior

    (ρ,u,w,b)(x,t)||x|(1,0,0,0),t0, (1.2)

    and the initial data

    (ρ,u,w,b)(x,t)|t=0=(ρ0,u0,w0,b0)(x),xR3. (1.3)

    Micropolar fluids are fluids with microstructures belonging to a class of fluids with a nonsymmetric stress tensor. They exhibit micro-rotation effects and micro-rotational inertia. Liquids, fluids with additives, some polymeric fluids, colloidal fluids, and animal blood are a few examples of micropolar fluids. The theory of micropolar fluids was introduced by Eringen [10] and subsequently extended widely to the case of electrically conducting fluids in the magnetic field and to polarized fluids in an electric field. With the deepening of the research of micropolar fluid theory, the fluids considering the Hall effect attracted more and more attention. It has important engineering applications, such as in the extraction of oils/gas from oil fields, fluid flow in chemical engineering, and magnetohydrodynamic generators with neutral fluids seeding in the form of microinclusions.

    There is much literature on the Cauchy problems of the micropolar system. If the magnetic field b=0, then the system (1.1) reduces to the classical micropolar fluid system, which has been successfully applied for modeling rheologically complex liquids such as blood and suspensions (see, e.g., [10,11,12]). Physically it may represent the fluids consisting of bar-like elements. Mujakoviˊc [24,25] studied the one-dimensional problem. Amirat, Hamdache [3] proved the existence of a global weak solution in a bounded domain in R3. Later, Chen et al. [5] obtained the global weak solutions of 3D compressible micropolar fluids with discontinuous initial data and vacuum.

    From the mathematical viewpoint, the system (1.1) becomes the classical compressible magneto-micropolar fluids provided β=0. Compared with the classical magneto-micropolar fluids, the system (1.1) has the Hall term (×b)×bρ in (1.1)4, which is very important in describing many phenomena such as magnetic reconnection in space plasmas, star formation, neutron stars and geo-dynamo (see [16,23,27,29] and references therein). When the Hall term is neglected, the system (1.1) reduces to the well-known compressible magneto-micropolar fluid system, which has received many studies (see [17,28,30,32,33,35,36]). Wei et al. [30] established the existence of global-in-time smooth solutions under the condition of the small perturbations of initial data in H3-norm and also obtained the long-time behavior of magneto-micropolar fluids. Based on the time-weighted energy estimate, Zhang in [35] proved the asymptotic stability of steady state with the strictly positive constant density, vanishing velocity, micro-rotational velocity, and magnetic field. Their results were later improved by Tong and Tan [28], where they showed that the solution of the magneto-micropolar fluids converges to its constant equilibrium state at the exact same L2-decay rate as the linearized equations, which shows that the convergence rate is optimal (see [6,8,35] for related results).

    If we consider the effects of the Hall term in the MHD system, Xiang [31] investigated the large-time behavior of solutions to the 3D compressible Hall magneto-hydrodynamics equations in addition, he also obtained that the smooth solution of the compressible Hall-magneto-hydrodynamics system converges globally in time to the smooth solution of the compressible magneto-hydro-dynamics system as β0. Later, Lai et al. [18] considered the 3D compressible full Hall-MHD equations, and they obtained the global existence and optimal decay rates when the initial data are appropriately small. Lai and Xu [19] established the global existence of strong solutions for planar compressible, viscous, heat-conductive Hall-MHD equations with large initial data (see also [13,15,34] for related results).

    For the magneto-micropolar fluids with Hall term, it has attracted the attention of many physicists and mathematicians due to their important background, rich phenomena, mathematical complexity, and challenges (see [4,21,26]). Mekheimer and El Kot [21] investigated the influence of magnetic field and Hall current on blood flow through a stenotic artery. Rani and Tomar [26] investigated the thermal instability of a micropolar fluid layer heated from below in the presence of the Hall current, and showed that the Hall current parameter has a destabilizing effect on the system. Amirat and Hamdache [4] studied the system, which is a combination of the generalized magnetic induction, the equations of micropolar fluids, and the temperature equation, and obtained the global existence of weak solutions in a bounded domain of R3.

    Motivated by the results as in [4,18,31], the aim of this paper is to study the large-time behavior of solutions to the 3D compressible micropolar fluids subjected to Hall current. Before stating the main results, we explain the notation and conventions used throughout this paper. We denote

    f(x)dx=R3f(x)dx.

    For 1r,kZ and α>0, we denote the standard homogeneous and inhomogeneous Sobolev spaces:

    {Lr=Lr(R3),Dk,r={uL1loc|kuLr<},uDk,r=kuLr,Wk,r=LrDk,r,Hk=Wk,2,Dk=Dk,2,D1={uL6|uL2<}.

    We use , to denote the inner product over the Hilbert space L2(R3), i.e.,

    f,gR3f(x)g(x)dx,

    and set

    (f,g)HpfHp(R3)+gHp(R3),forp0.

    We now state the definition of strong solutions of (1.1)–(1.3) as follows.

    Definition 1.1. A pair of functions (ρ,u,w,b) is called a strong solution to the problem (1.1)(1.3) in R3×(0,), if and only if (ρ,u,w,b) satisfies (1.1) almost everywhere in R3×(0,), and belongs to the following class of functions in which the uniqueness can be shown to hold

    {ρ1C([0,T];H3)L2(0,T;H4),inf(x,t)R3×(0,)ρ(x,t)>0,(u,w,b)C([0,T];H3)L2(0,T;H4),

    for any 0<T<.

    Now, we state our main results as follows. First, we will give the global existence and decay rates of strong solutions of the system (1.1) as follows.

    Theorem 1.1. I. Global existence. Suppose that (ρ01,u0,w0,b0)H3. Then there exists a positive constant ε0, depending only on 2(ρ01,u0,w0,b0)H1, μ1,λ1,ζ,μ1,λ2,ν,γ, and a, such that the system (1.1)(1.3) possesses a unique global strong solution (ρ,u,w,b) on R3×(0,) satisfying

    (ρ1,u,w,b)(t)2H3+t0(ρ(s)2H2+(u,w,b)(s)2H3)dsC(ρ01,u0,w0,b0)2H3, (1.4)

    for all t0, provided

    (ρ01,u0,w0,b0)H1ε0, (1.5)

    where the positive constant C is independent of β and t.

    II. Decay rates. Assume further that (ρ01,u0,w0,b0)L1. Then there exists a positive constant ε1(0,ε0], depending on 2(ρ01,u0,w0,b0)H1 and (ρ01,u0,w0,b0)L1, such that for any t0

    m(ρ1,u,w,b)(t)L2C(1+t)(34+m2),m=0,1, (1.6)

    and that for any t˜T with ˜T>0 being large enough and depending on 2(ρ01,u0,w0,b0)H1 and (ρ01,u0,w0,b0)L1,

    {(2(ρ1,u,w)(t)L2C(1+t)74,mb(t)L2C(1+t)(34+m2),m=2,3, (1.7)

    provided (ρ01,u0,w0,b0)H1ε1.

    Remark 1.1. It was worth noting that all of our estimates are uniform in the Hall coefficient β in Theorem 1.1.

    Remark 1.2. Compared with the decay estimates of the linear system (cf. Lemma 2.1), the decay rates stated in the second part of Theorem 1.1 are optimal, except for the one of 3(ρ1,u,w,b)L2. Indeed, if (ρ01,u0,w0,b0)Hm with m4, then the optimal decay rates of the solutions can be obtained up to the (m1)-th order derivatives of (ρ1,u,w,b) and the m-th order derivatives of b. The lack of the optimal decay estimates of m(ρ1,u,w,b)L2 is mainly due to the insufficient dissipation of density and the strong coupling of fluid quantities.

    Next, we will show that the unique smooth solution of the 3D compressible micropolar fluids subjected to Hall current converges globally in time to a smooth solution of the 3D compressible magneto-micropolar system as the Hall coefficient β0.

    Theorem 1.2 (Vanishing Hall limit). Suppose that (ρβ,uβ,wβ,bβ) and (ρ0,u0,w0,b0) are two smooth solutions to Eq (1.1) obtained in Theorem 1.1 corresponding to β>0 and β=0, respectively. Then for any T(0,), it holds that

    ρβρ0,uβu0,wβw0andbβb0inC([0,T];H2), (1.8)

    as β0. Moreover, there exists a positive constant c depending on T such that

    supt[0,T](ρβρ0,uβu0,wβw0,bβb0)(t)2H2cβ2. (1.9)

    The proofs of Theorems 1.1 and 1.2 are similar to the ones in [18,31,37], based on the standard L2-method and the origin ideas developed by Matsumura and Nishida [22]. It is worth noting that though the H1-perturbation of initial data is small, the higher-order derivatives could be of large oscillations. Compared with the results in [37], where the authors only obtained the optimal decay estimates for the Lp-norm (p[2,6]) of the solution and the L2-norm of its first-order derivative, the decay rates of both (2ρ,2u,2w,2b)(t)L2 and 3bL2 for large t>0 are also optimal in the present paper. This will be achieved by making full use of the H1-decay estimates and the Sobolev interpolation inequalities (see (3.81) and (3.82)). The key point here is that all the estimates are uniform in the Hall coefficient β.

    In this section, the global strong solutions near the state (1,0,0,0) to the Cauchy problem (1.1)–(1.3) will be constructed. Define

    ϱρ1,vu,ωw,hb.

    Then, the quantities (ϱ,v,ω,h) satisfy

    {ϱt+divv=R1,vt(μ1+ζ)Δv(μ1+λ1ζ)divv+aγϱ2ζ×ω=R2,ωtμ2Δω(μ2+λ2)divω+4ζω2ζ×v=R3,htνΔh=R4,divh=0,(ϱ,v,ω,h)|t=0=(ϱ0,v0,ω0,h0)=(ρ01,u0,w0,b0),(ϱ0,v0,ω0,h0)(0,0,0,0),as|x|, (2.1)

    where the functions R1,R2,R3, and R4 are defined as

    {R1ϱdivvvϱ,R2vvf(ϱ)[(μ1+ζ)Δv+(μ1+λ1ζ)divv]+g(ϱ)(×h)×hh(ϱ)ϱ2ζf(ϱ)×ω,R3vωf(ϱ)[μ2Δω+(μ2+λ2)divω]+4ζf(ϱ)ω2ζf(ϱ)×v,R4vhhdivv+hvβ×[g(ϱ)[(×h)×h]], (2.2)

    and f(ϱ),g(ϱ), and h(ϱ) given by

    f(ϱ)ϱ1+ϱ,g(ϱ)11+ϱ,andh(ϱ)aγ((ϱ+1)γ21). (2.3)

    The left-hand side of (2.1) is indeed the linearized magneto-micropolar fluid equations. Thus, the LpLp time decay property of the linearized magneto-micropolar fluid equations of (2.1) can be obtained in similar arguments as used in [35, Theorem 2.1]. Thus, we can rewrite the solution of (2.1) as

    V(t)=etLV0+t0e(tτ)L(R1,R2,R3,R4)dτ,

    where V(ϱ,v,ω,h),V0(ϱ0,v0,ω0,h0), and L is a matrix-valued differential operator given by

    L(0div00γ(μ1+ζ)Δ(μ1+λ1ζ)div2ζ×002ζ×4ζμ2Δ(μ2+λ2)div0000νΔ). (2.4)

    Therefore, due to [35], we have the following lemma.

    Lemma 2.1. Suppose that V0L1H3. Let VV(x,t), be the smooth solution of Vt+LV=0. Then for any m{0,1,2,3,4},

    mV(t)L2C(1+t)(34+m2)(V0L1+mV0L2), (2.5)

    where C>0 is a generic constant depending only on μ1,λ1,ζ,μ2,λ2 and ν.

    Lemma 2.1, together with the Duhamel principle, gives rise to the following lemma.

    Lemma 2.2. Assume that a quadruple of (ϱ,v,ω,h) is the smooth solution of (2.1) with the initial data (ϱ0,v0,ω0,h0)L1H3. Then for any m0,1,2,3,

    m(ϱ,v,ω,h)(t)L2C(1+t)(34+m2)(ϱ0,v0,ω0,h0)L1Hm+Ct0(1+tτ)(34+m2)(R1,R2,R3,R4)L1Hmdτ, (2.6)

    where C>0 is a generic constant depending only on μ1,λ1,ζ,μ2,λ2 and ν.

    Next, we will give the product and commutator estimates, which can be found in [20].

    Lemma 2.3. Suppose that f and g are the smooth functions in the Schwartz class. Then, for any s>0 and 1<p<+, there exists a generic positive constant C such that

    Ds(fg)LpC(fLp1DsgLq1+DsfLp2gLq2), (2.7)

    and

    Ds(fg)fDsgLpC(fLp1Ds1gLq1+DsfLp2gLq2), (2.8)

    where p1,p2>1 satisfying

    1p=1p1+1q1=1p2+1q2. (2.9)

    The following lemma, which can be found in [37], is essential for deriving the decay rates.

    Lemma 2.4. Suppose that a,b,cR satisfy a[0,b],b(1,) and c(0,). Then, there exists a positive constant C, depending only on a,b, and c, such that for any t>0,

    t0(1+tτ)a(1+τ)bdτ+t0(1+τ)aec(tτ)dτC(1+t)a. (2.10)

    Finally, we recall the local existence theorem of (1.1)–(1.3) (also cf. Eqs (2.1)–(2.3)), which can be proved in a similar way to [13].

    Lemma 2.5. Suppose that the initial data satisfies

    (ρ01,u0,w0,b0)H3,infxR3ρ0(x)>0,divb0=0. (2.11)

    Then there exists a small positive time T such that the problem (1.1)(1.3) possesses a unique classical solution (ρ,u,w,b) on R3×[0,T] satisfying

    (ρ1,u,w,b)C([0,T];H3)L2(0,T;H4),inf(x,t)R3×[0,T]ρ(x,t)>0. (2.12)

    Proof. In order to prove Lemma 2.5, we denote the Banach space

    B{˜u|˜uBK}

    with the form

    ˜uB˜uL(0,T;H3)+˜uL2(0,T;H4)+t˜uL(0,T;H1)+t˜uL2(0,T;H2). (2.13)

    Let ˜u,˜w,˜b be given, the linear problem of (1.1)–(1.3) can be written as

    {ρt+div(ρ˜u)=0,lim|x|ρ(x,t)=1,ρ(,0)=ρ0,ρut+ρ˜uu+p(ρ)=(μ1+ζ)Δu+(μ1+λ1ζ)divu+2ζ×w+(×b)×b,u(,0)=u0,lim|x|u(x,t)=0,ρwt+ρ˜uw+4ζw=μ2Δw+(μ2+λ2)divw+2ζטu,w(,0)=w0,lim|x|w(x,t)=0,bt×(˜u×b)+β×((×b)טbρ)=νΔb,divb=0,b(,0)=b0,lim|x|b(x,t)=0. (2.14)

    Let (u,w,b) be the unique strong solution to the problem (2.14). We define the fixed point map:

    F:(˜u,˜w,˜b)B×B×B(u,w,b)B×B×B

    with

    ˜u(,0)=u0,˜w(,0)=w0,˜b(,0)=b0,div˜b=0,lim|x|(˜u,˜w,˜b)=(0,0,0).

    We will prove the map F mapping B×B×B into B×B×B for suitable constant K and small T, and F is a contraction mapping on B×B×B, and thus F has a unique fixed point in B×B×B. In order to do this, we will divide the proof into five steps.

    Step I. For given ˜uB, we will prove that for some small 0<T1, the problems (2.14)1 and (2.14)2 has a unique solution ρ satisfying

    C1ρC,ρL(0,T;H2)C,ρtL(0,T;H2)CK, (2.15)

    here and later on, C will denote a constant independent of K.

    Since (2.14)1 is linear with regular ˜u, the existence and uniqueness are well-known. We only need to establish (2.15). In order to prove (2.15), we know from (2.14)1 that

    ρ(x,t)=ρ0exp(t0div˜uds), (2.16)

    which yields

    infρ0exp(T0div˜uLdt)ρ(x,t)supρ0exp(T0div˜uLdt),

    thus

    Cinfρ0infρ0exp(CKT1/2)ρ(x,t)supρ0exp(CKT1/2)Cρ0L,

    provided that KT1/21 and T1.

    In a similar way, we use (2.16) to denote the expression of ρ,Δρ and Δρ, and then give the estimation of ρ, Δρ, and Δρ as follows:

    ρL(0,T;L2)Cexp(t0div˜uLds)(1+T0˜uH2dt)C(1+TK)C,
    ΔρL(0,T;L2)Cexp(T0div˜uLdt)[1+T0˜uH3dt+(T0˜uH2dt)2]C(1+T1/2K+T2K2)C,

    and

    ΔρL(0,T;L2)Cexp(T0div˜uLdt)[1+T0˜uH4dt+(T0˜uH3dt)2]C(1+T1/2K+T2K2)C,

    provided that T1/2K1 and T1.

    Similarly,

    ρtL(0,T;L2)˜uL(0,T;L)ρL(0,T;L2)+ρL(0,T;L)div˜uL(0,T;L2)CK,ρtL(0,T;L2)˜uL(0,T;H2)ρL(0,T;H1)+ρL(0,T;L)˜uL(0,T;H2)CK,2ρtL(0,T;L2)˜uL(0,T;H2)ρL(0,T;H2)+ρL(0,T;L)˜uL(0,T;H3)CK,

    provided that KT1/21 and T1, and thus (2.15) hold.

    Step II. For given ˜u,˜bB, we will prove that for some small 0<T1, the problem (2.14)7 and (2.14)8 have a unique solution b satisfying

    bL(0,T;H3)+bL2(0,T;H4)+btL(0,T;H1)+btL2(0,T;H2)C1. (2.17)

    Since (2.14)7 is linear with regular ρ,˜u, and ˜b, the existence and uniqueness are well-known we only need to establish (2.17). In order to prove (2.17), we multiply (2.14)7 by b and integrate over R3, after integration by parts, we have from the Gronwall inequality that

    bL(0,T;L2)+bL2(0,T;H1)C1,

    provided that K2T1.

    Applying Δ to (2.14)7, and then multiplying it by Δb, after integration by parts, we get

    12ddt|Δb|2dx+|Δb|2dx=Δ(˜u×b)Δ(×b)dxΔ(×b)טbρΔ(×b)dx:=J1+J2.

    We bound J1 as follows:

    J1Δ(˜u×b)L2Δ(×b)L2CKbH2ΔbL214Δb2L2+CK2b2H2.

    Using (2.15), we bound J2 as follows:

    J2=((×b)×Δ˜bρ+2ii(×b)×i˜bρ)Δ(×b)dx[Δ1ρ((×b)טb)+21ρ((×b)טb)]Δ(×b)dxCKΔb1/2L2Δb1/2L2+CKΔbL2ΔbL214Δb2L2+CK4Δb2L2.

    Due to the Gronwall inequality, one has

    bL(0,T;H2)+bL2(0,T;H3)C1,

    provided that K4T+K2T1.

    Applying Δ to (2.14)7, then multiplying it by Δb, after integration by parts, we get from Gronwall inequality that

    bL(0,T;H3)+bL2(0,T;H4)C1,

    provided that K6T+K4T+K2T1.

    Applying t to (2.14)7, then multiplying it by tb, after integration by parts, we infer that

    12ddt|bt|2dx+|bt|2dx=t(˜u×b)(×bt)dxt(˜b×(×b))ρ(×bt)dxC(t˜uL2bL+˜uLbtL2)×btL2+C(tρL6˜bL6×bL6+t˜bL3×bL6)×btL212bt2L2+CK2+CK4+CK(t˜b2L2+t˜b2L2).

    Using Gronwall's inequality, one has

    btL(0,T;L2)+btL2(0,T;H1)C1,

    provided that K4T1. In the same way, applying Δt to (2.14)7, then multiplying it by Δbt, after integration by parts, we get from Gronwall's inequality that

    btL(0,T;H1)+btL2(0,T;H2)C1,

    provided that K6T1, which yields (2.17).

    Step III. For given ρ,˜uB, we will prove that for some small 0<T1, the problems (2.14)5 and (2.14)6 have a unique solution w satisfying

    wL(0,T;H3)+wL2(0,T;H4)+wtL(0,T;H1)+wtL2(0,T;H2)C2. (2.18)

    Since (2.14)5 in linear with regular ρ and ˜u, the existence and uniqueness are well-known, we only need to establish (2.18). In order to prove (2.18), we multiply (2.14)5 by w and integrate over R3. After integration by parts, we have

    12ddtρ|w|2dx+[μ2|w|2+(μ2+λ2)|divw|2+4ζ|w|2]dx=2ζטuwdxC˜uL2wL2CwL2,

    which, yields

    wL(0,T;L2)+wL2(0,T;H1)C2.

    Multiplying (2.14)5 by wt and integrating over R3, after integrating by parts, one deduces from (2.15) that

    12ddt[μ2|w|2+(μ2+λ2)|divw|2+4ζ|w|2]dx+ρ|wt|2dx=ρ˜uwwtdx+2ζטuwtdxC˜uLwL2ρ1/2wtL2+C˜uL2wtL212ρ1/2wt2L2+C+CK2w2L2,

    which gives

    wL(0,T;H1)+wtL2(0,T;L2)C2,

    provided K2T1.

    Applying t to (2.14)5, then multiplying it by tw and integrating over R3, after integrating by parts, one deduce

    12ddtρ|wt|2dx+[μ2|wt|2+(μ2+λ2)|divwt|2+4ζ|wt|2]dx=2ζטutwtdx(ρ˜uw)twtdxρt|wt|2dxCK2ρ1/2wtL2+CK2,

    which gives

    wtL(0,T;L2)+wtL2(0,T;H1)C2,

    provided K2T1.

    In a similar way, we deduce from the ˙H3-theory of the elliptic system that

    wL(0,T;H3)+wL2(0,T;H4)C2,

    and

    wtL(0,T;H1)+wtL2(0,T;H2)C2,

    provided K2T1.

    Step IV. For given ρ,˜u,˜w,˜bB, we will prove that for some small 0<T1, the problem (2.14)3 and (2.14)4 have a unique solution u satisfying

    uL(0,T;H3)+uL2(0,T;H4)+utL(0,T;H1)+utL2(0,T;H2)C3. (2.19)

    Since (2.14)3 is linear with regular ρ,˜u,˜b and ˜w, the existence and uniqueness are well-known, we only need to establish (2.19). In order to prove (2.19), we multiply (2.14)3 by u and integrate over R3. After integration by parts and taking (2.16)–(2.18) into consideration, we obtain

    12ddtρ|u|2dx+[(μ1+ζ)|u|2+(μ1+λ1ζ)|divu|2]dx=(×b)×budx+p(ρ)udx+2ζ×wudxCbLbL2uL2+CρL2uL2+CwL2uL2CuL2,

    which, yields

    uL(0,T;L2)+uL2(0,T;H1)C2.

    Multiplying (2.14)3 by ut and integrating over R3, after integrating by parts, one deduces

    12ddt[(μ1+ζ)|u|2+(μ1+λ1ζ)|divu|2]dx+ρ|ut|2dx=ρ˜uuutdxp(ρ)utdx+2ζ×wutdx+(×b)×butdxC˜uLuL2ρ1/2utL2+CρL2utL2+CwL2utL2+bLbL2utL212ρ1/2ut2L2+C+CK2u2L2,

    which gives

    uL(0,T;H1)+utL2(0,T;L2)C2,

    provided K2T1.

    Applying t to (2.14)3, then multiplying it by tu and integrating over R3, after integrating by parts, one deduces

    12ddtρ|ut|2dx+[(μ1+ζ)|ut|2+(μ1+λ1ζ)|divut|2]dx=2ζטwtutdx(ρ˜uu)tutdxρt|ut|2dxp(ρ)tutdx+[(×b)×b]tutdxCK2ρ1/2utL2+CK2,

    which gives

    utL(0,T;L2)+utL2(0,T;H1)C2,

    provided K2T1.

    In a similar way, we deduce from the ˙H3-theory of the elliptic system that

    uL(0,T;H3)+uL2(0,T;H4)C2,

    and

    utL(0,T;H1)+utL2(0,T;H2)C2,

    provided K2T1.

    Step V. Due to the above analysis, we can take K=max{C1,C2,C3}, and thus F maps B×B×B into B×B×B. Therefore, in this step, we will prove that F is contracted in the sense of a weaker norm, that is, there is a constant α(0,1) such that for any (˜ui,˜bi,˜wi)(i=1,2) and some small 0<T1, the following estimate holds:

    F(˜u1,˜w1,˜b1)F(˜u2,˜w2,˜b2)L2(0,T;H1)α(˜u1˜u2,˜w1˜w2,˜b1˜b2)L2(0,T;H1). (2.20)

    In order to obtain (2.20), we suppose that (ρi,ui,wi,bi)(i=1,2) are the solutions to the problem (2.14) corresponding to (˜ui,˜wi,˜bi). Denote

    ρ=ρ1ρ2,u=u1u2,w=w1w2,b=b1b2,˜u=˜u1˜u2,˜w=˜w1˜w2,˜b=˜b1˜b2.

    Then, we obtain that

    {ρt+div(ρ˜u1)=div(ρ2˜u),ρ1ut+ρ1˜u1u+[p(ρ1)p(ρ2)](μ1+ζ)Δu(μ1+λ1ζ)divu+2ζ×w+(×b)×b1+(×b2)×bρu2t(ρ1˜u1ρ2˜u2)u2ρ1wt+ρ1˜u1w+4ζwμ2Δw(μ2+λ2)divw=2ζטuρw2t(ρ1˜w1ρ2˜w2)w2,bt+×(b1טu)+×(bטu2)+β×[(1ρ11ρ2)((×b1)טb1)]+β×(1ρ2(×b)טb1)+β×(1ρ2(×b2)טb)=νΔb. (2.21)

    Texting (2.21)1 by ρ, we obtain that for any ε(0,1),

    12|ρ|2dxC˜u1Lρ2L2+C(˜uLρ2L+˜uL6ρ2L3)ρL2C˜u1H3ρ2L2+C˜uL2ρL2ε˜u2L2+C(1+˜u1H3)ρ3L2.

    Multiplying (2.21)4 by b, after integration by parts, we see that for any ε(0,1),

    12ddtb2L2+νb2L2=(˜u×b1+˜u2×b)(×b)dx+β(1ρ11ρ2)((×b1)טb1)(×b)dxβ1ρ2(×b2)טb(×b)dxC˜uL2bL2+CbL2bL2+CρL2bL2b11/2H3+C˜bL2bL2b21/2H312b2L2+ε˜u2L2+ε˜b2L2+Cb2L2+Cρ2L2b1H3+b2H3b2L2.

    Multiplying (2.21)3 by w and integrating over R3, we obtain that for any ε(0,1) and ϵ(0,1),

    12ddtρ1/21w2L2+μ2w2L2+(μ2+λ2)divw2L2+4ζw2L2=ρw2twdx(ρ˜w1+ρ2˜w)w2wdx+2ζ(טu)wdxCw2tL3ρL2wL6+CρL2wL3+C˜wL2wL2+C˜uL2wL2μ22w2L2+ϵ˜w2L2+ε˜u2L2+C(ρ2L2+u2L2+w2L2+w2tL6ρ2L2).

    Multiplying (2.21)2 by u and integrating over R3, we obtain that for any ε(0,1) and ϵ(0,1),

    12ddtρ1/21u2L2+(μ1+ζ)u2L2+(μ1+λ1ζ)divu2L2=[p(ρ1)p(ρ2)divu]dx+[(×b)×b1+(×b2)×b]udxρu2tudx(ρ˜u1+ρ2˜u)u2udx+2ζ(×w)udxCρL2uL2+CbL2uL2+CbL2uL3+CwL2uL2+Cu2tL3ρL2uL6+CρL2uL3+C˜uL2uL2μ1+ζ2u2L2+ϵb2L2+ε˜u2L2+C(ρ2L2+u2L2+b2L2+u2tL6ρ2L2).

    Combining the above inequalities and using the Gronwall inequality, and taking ε and ϵ suitably small, we conclude that (2.20) holds true.

    Due to the above steps and the Banach fixed point theorem, we finish the proof of Lemma 2.5.

    Lemma 2.6. Let p[2,3s3s] for s[2,3), or p[2,] for s=3, and let q(1,),r(3,). There exists some generic constant C>0 which may depend on s and r such that for fL2D1,s0 and gLqD1,r0, we have

    fpLpCfp3s(p2)/(5s6)L2f3s(p2)/(5s6)Ls, (2.22)

    and

    gLCgq(r3)/(3r+q(r3))Lqg3r/(3r+q(r3))Lr. (2.23)

    In this section, we will establish some necessary a priori bounds for smooth solution to the system (2.1)–(2.3) to extend the local classical solution guaranteed by Lemma 2.5. Thus, let T>0 be a fixed time, and (ϱ,v,ω,h) be the smooth solution to (2.1)–(2.3) on R3×[0,T] in the class (2.12) with smooth initial data (ϱ0,v0,ω0,h0) satisfying (2.11). To estimate this solution, we make the following a priori assumptions. For any given L>1, (not necessarily small), suppose that

    supt[0,T]2(ϱ,v,ω,h)(t)H1L, (3.1)

    and

    supt[0,T](ϱ,v,ω,h)(t)H1α, (3.2)

    where α is a positive constant, depending on L, and satisfies

    0<αα014C2L. (3.3)

    Here C is the Sobolev embedding constant of (3.8).

    We have the following key a priori estimates on (ϱ,v,ω,h).

    Proposition 3.1. For any given positive constant M>0 (not necessarily small), suppose that

    (ϱ0,v0,ω0,h0)H3,2(ϱ0,v0,ω0,h0)H1M. (3.4)

    Then there exists a positive constant ε, depending only on μ1,λ1,ζ,μ2,λ2,ν and M, such that for any t>0, the system (2.1) possesses a unique global classical solution (ϱ,v,ω,h)R3×[0,) satisfying

    (ϱ,v,ω,h)(t)2H2+t0(2(v,ω,h)2H2+2ϱ2H1)dτC(ϱ0,v0,ω0,h0)2H2, (3.5)

    and

    (ϱ,v,ω,h)(t)2H1+t0((v,ω,h)2H1+ϱ2L2)dτC(ϱ0,v0,ω0,h0)2H1, (3.6)

    provided

    (ϱ0,v0,ω0,h0)H1ε. (3.7)

    In order to prove Theorem 1.1, it was suffices to prove Proposition 3.1. However, the assumptions of (3.1) and (3.2) are crucial to prove Proposition 3.1. Therefore, our main aim in the next is to close the a priori assumptions (3.1) and (3.2). Obviously, we can infer from (3.1)–(3.3) and the Sobolev embedding inequality (cf. [1]) that

    ϱ(t)LCϱ1/2L22ϱ1/2L212,t[0,T], (3.8)

    which implies that

    12inf(x,t)R3×[0,T]ϱ(x,t)+1sup(x,t)R3×[0,T]ϱ(x,t)+132, (3.9)

    moreover

    |f(ϱ)|C|ϱ|,|g(ϱ)|C,|h(ϱ)|C|ϱ|, (3.10)

    and

    |f(m)(ϱ)|C,|g(m)(ϱ)|C,|h(m)(ϱ)|C, (3.11)

    for any m1. We now begin to derive a series of a priori estimates.

    Lemma 3.1. Let the assumptions (3.1) and (3.2) be in force. Then

    ddt(aγϱ,v,ω,h)2L2+(v,ω,h)2L2Cα1/2L1/2(ϱ,v,ω,h)2L2. (3.12)

    Proof. Multiplying (2.1)1–(2.1)4 by aγϱ,v,ω, and h in L2, respectively, and integrating by parts, we obtain after adding them together that

    12ddt(aγϱ,v,ω,h)2L2+(μ1v2L2+(μ1+λ1)divv2L2+νh2L2+μ2ω2L2+(μ2+λ2)divω2L2+ζ×v2ω2L2)=R1,aγϱ+R2,v+R3,ω+R4,h. (3.13)

    To deal with the right-hand side of (3.13), we notice from (2.2) and (3.2) that

    R1,aγϱCϱL3vL2ϱL2CϱH1vL2ϱL2Cα(v2L2+ϱ2L2). (3.14)

    By using (3.1), (3.2), (3.9)–(3.11), and the Sobolev inequality (2.22), we deduce from (2.2) and the integration by parts that

    R2,vCvL3vL2vL6+CϱL2vL3vL6+CvL2vL3ϱL6+ChL2hL3vL6+CϱL3ϱL2vL6+CϱL3ωL2vL6C((ϱ,v,h)H1+v1/2L22v1/2L2)(ϱ,v,ω,h)2L2Cα1/2L1/2(ϱ2L2+v2L2+ω2L2+h2L2), (3.15)

    where we have used the fact that α(0,1) and L>1. According to the observation of (3.13), one has

    ω2L2C(×v2ω2L2+v2L2),

    thus, by using a similar manner to (3.15) and choosing δ1=min{ζC,μ14C} in (3.16), we can deduce from the above inequality that

    R3,ωCvL3ωL2ωL6+CϱL2ωL3ωL6+CωL2ωL3ϱL6+CϱL3ωL2ωL6+CϱL3vL2ωL6C((ϱ,v,ω)H1+ω1/2L22ω1/2L2)((ϱ,v,ω)2L2)+δ1ω2L2Cα1/2L1/2(ϱ2L2+v2L2+ω2L2+h2L2)+ζ×v2ω2L2+μ14v2L2, (3.16)

    and

    R4,hCvL3hL2hL6+ChL3vL2hL6+ChL3hL6hL2C((v,h)H1+h1/2L22h1/2L2)(v,h)2L2Cα1/2L1/2(v2L2+h2L2). (3.17)

    Substituting (3.14)–(3.17) into (3.13) immediately yields (3.12).

    Lemma 3.2. Let the assumptions (3.1) and (3.2) be in force. Then

    ddt(aγϱ,v,ω,h)2L2+2(v,ω,h)2L2+(×v2ω)2L2Cα1/2L3/2(2(v,ω,h)2L2+ϱ2L2). (3.18)

    Proof. Operating to (2.1)1–(2.1)4, multiplying them by aγϱ, v, ω, and h in L2, respectively, and integrating by parts, we obtain that

    12ddt(aγϱ,v,ω,h)2L2+(μ12v2L2+(μ1+λ1)divv2L2+ν2h2L2+μ22ω2L2+(μ2+λ2)divω2L2+ζ(rotv2ω)2L2)=R1,aγϱR2,ΔvR3,ΔωR4,Δh. (3.19)

    It follows from (3.1), (3.2), and the integration by parts that

    R1,aγϱCϱL3ϱL2vL6+CϱL62vL2ϱL3Cϱ1/2L22ϱ1/2L2(ϱ2L2+2v2L2)Cα1/2L1/2(ϱ2L2+2v2L2). (3.20)

    Due to the Sobolev inequalities (2.22), (2.23), (3.10), and (3.11), it can be obtained by direct calculation that

    (R2,R3,R4)L2CvL3vL6+CϱL2vL2+ChL3hL6+CϱLϱL2+CϱL3ωL6+CvL3ωL6+CϱL2ωL2+CϱLωL2+CϱL3vL6+CvL3hL6+ChL3vL6+CϱL2hLhL+Ch2L4+ChL2hL2C((ϱ,v,h)L3(v,h,ω)L6+(ϱ,h)L2(v,ω,h)L2)+C(ϱLϱL2+ϱL2hLhL+h2L4)C((ϱ,v,h)H1+(ϱ,h)1/2L22(ϱ,h)1/2L2)2(v,ω,h)L2+C(ϱ1/2L22ϱ1/2L2+2hL23h1/2L2h1/2L2)ϱL2Cα1/2L3/2(2(v,ω,h)L2+ϱL2), (3.21)

    thus, using (3.21), one has

    |R2,Δv|+|R3,Δω|+|R4,Δh|Cα1/2L3/2(2(v,ω,h)2L2+ϱ2L2). (3.22)

    Putting (3.20) and (3.22) into (3.19), we obtain (3.18).

    Remark 3.1. Obviously, we can infer from (3.20) that

    R1,aγϱCϱ2L3vL3+CϱL32vL2ϱL6CϱL22ϱL2v1/2L22v1/2L2+CϱH12ϱL2vL2Cα(2ϱ2L2+2v2L2). (3.23)

    Similarly,

    (R2,R3,R4)L2Cα1/2L3/2(2(v,ω,h)L2+2ϱL2),

    which, combined with (3.19) and (3.23), yields

    ddt(aγϱ,v,ω,h)2L2+2(v,ω,h)2L2Cα1/2L3/22(ϱ,v,ω,h)2L2, (3.24)

    which will be used later to close the estimate of (ϱ,v,ω,h)2L2.

    Lemma 3.3. Let the assumptions (3.1) and (3.2) be in force. Then

    ddtv,ϱ+ϱ2L2Cα1/2L3/2((v,ω,h)2H1+ϱ2L2)+C(v2H1+ω2L2). (3.25)

    Proof. Multiplying (2.1)2 by ϱ in L2, one has

    ddtv,ϱ+aγϱ2L2=v,ϱt+(μ1+ζ)Δv+(μ1+λ1ζ)divv+2ζ×ω,ϱ+R2,ϱ. (3.26)

    Thanks to (2.1)1, we deduce from integration by parts that

    v,ϱt=v,[divv+div(ϱv)]=divv,divv+div(ϱv)Cv2L2+CvL3(ϱL2vL6+vL2ϱL6)Cv2L2+Cv1/2L22v1/2L2(ϱ2L2+v2L2)Cv2L2+Cα1/2L1/2(ϱ2L2+v2L2), (3.27)

    and

    (μ1+ζ)Δv+(μ1+λ1ζ)divv+2ζ×ω,ϱCaγ4ϱ2L2+C2v2L2+Cω2L2. (3.28)

    The Cauchy-Schwarz inequality, together with (3.21), gives

    R2,ϱCR2L2ϱL2Cα1/2L3/2(ϱ2L2+2(v,ω,h)2L2). (3.29)

    Substituting (3.27)–(3.29) into (3.26) yields (3.25).

    Lemma 3.4. Let the assumptions (3.1) and (3.2) be in force. Then

    ddt2(aγϱ,v,ω,h)2L2+3(v,ω,h)2L2Cα1/4L3/2(3(v,ω,h)2L2+2ϱ2L2). (3.30)

    Proof. Similar to the proof of Lemma 3.2, we infer from (2.1) that

    12ddt2(aγϱ,v,ω,h)2L2+(μ13v2L2+(μ1+λ1)2divv2L2+ν3h2L2+μ23ω2L2+(μ2+λ2)2divω2L2+ζ2(rotv2ω)2L2)=2R1,aγ2ϱ2R2,Δv2R3,Δω2R4,Δh. (3.31)

    Keeping in mind that L>1, thus, the inequalities (2.7) and (2.8), together with Gagliardo-Nirenberg inequality (cf. [1]) show that

    2R1,aγ2ϱC(2ϱL2vL+ϱL3vL2+ϱL32vL6)2ϱL2C2ϱL2(v1/4L23v3/4L22ϱL2+ϱ1/2L22ϱ1/2L23vL2)Cα1/4L3/4(2ϱ2L2+3v2L2). (3.32)

    Due to the Sobolev inequalities (2.22) and (2.23), one has

    (vv)L2C2vL6vL3+CvL6vL3C(3vL2v1/2L2v1/2L2+3vL2v1/2L2v1/2L2)Cα3vL2. (3.33)

    Similar to the derivation of (3.33), we can obtain that

    (vω)L2+(vh)L2+(hdivv)L2+(hv)L2C(v,ω,h)1/2L2(v,ω,h)1/2L23(v,ω,h)L2Cα3(v,ω,h)L2. (3.34)

    The combination of (3.8)–(3.11) and the interpolation inequality shows that

    (h(ϱ)ϱ)L2+(f(ϱ)×ω)L2+(f(ϱ)×v)L2CϱL2ϱL2+CϱL32(ω,v)L6+C(ω,v)L3ϱL6C(ϱ1/2L22ϱ1/2L2+ω1/2L22ω1/2L2+v1/2L22v1/2L2)2ϱL2+CϱH13(ω,v)L2Cα1/2L1/22ϱL2+Cα3(v,ω)L2Cα1/2L1/2(2ϱL2+3(v,ω)L2), (3.35)

    and

    |2(f(ϱ)ω),Δω|C(|2ϱ||ω||2ω|+|ϱ||ω||2ω|+|ϱ||2ω|2)dxC2ϱL2ωL32ωL6+CϱL6ωL3/22ωL6+CϱL22ωL62ωL2Cα(2ϱ2L2+3ω2L2)+δ22ω2L2, (3.36)

    where δ2 is an undetermined positive constant. According to the observation of (3.31), we know that

    2ω2L2C(2(×v2ω)2L2+2(×v)2L2)C(2(×v2ω)2L2+3v2L2), (3.37)

    thus, putting (3.37) into (3.36) and choosing δ2={ζC,μ14C}, one has

    |2(f(ϱ)ω),Δω|Cα(2ϱ2L2+3ω2L2)+ζ2(×v2ω)2L2+μ143v2L2. (3.38)

    Similar to the derivation of (3.35) and (3.38), one has

    [h(ϱ)(Δv,divv,Δω,divω)]L2CϱL32(v,ω)L6+CϱL3(v,ω)L2Cϱ1/2L22ϱ1/2L23(v,ω)L2Cα1/2L1/23(v,ω)L2, (3.39)
    |2[g(ϱ)(×h)×h],2v|C2ϱL2hL3hL2vL6+CϱL22hL6hL62vL6+CϱL6hL6hL22vL6+C3hL2hL32vL6+C2hL6hL3/22vL6C2ϱL2hL22hL23vL2+CϱL23hL3hL23vL2+C2ϱL22hL2hL23vL2+C3hL2hH13vL2+C3hL2hH13vL2CαL(2ϱ2L2+3(v,h)2L2), (3.40)

    and

    2[g(ϱ)(×h)×h]L2C2ϱL2hLhL+C2hL3hLϱL6+CϱL6h2L6+ChL3hL2+C2hL6hL3Cα1/2L3/2(2ϱL2+3hL2). (3.41)

    The combination of (3.33)–(3.35) and (3.38)–(3.41), gives

    |2R2,Δv+2R3,Δω+2R4,Δh|Cα1/2L3/2(2ϱ2L2+3(v,ω,h)2L2). (3.42)

    Therefore, substituting (3.32) and (3.42) into (3.31), we can obtain (3.30) by using Cauchy-Schwarz inequality.

    Lemma 3.5. Let the assumptions (3.1) and (3.2) be in force. Then

    ddtdivv,Δϱ+2ϱ2L2C2v2H1+Cα1/2L3/2(2(v,ω,h)2H1+2ϱ2L2). (3.43)

    Proof. Operating div to (2.1)2 and multiplying the resulting equation by Δϱ in L2, after integrating by parts, one has from (×ω)=0 that

    ddtdivv,Δϱ+aγ2ϱ2L2=divv,ϱt+divR2,Δϱ+(μ1+ζ)divΔv+(μ1+λ1ζ)div(divv),Δϱ. (3.44)

    Due to (2.1)1, one has

    |divv,ϱt|C(2vL2+ϱL3vL6+ϱL2vL2+vL2ϱL2)2vL2C2v2L2+Cϱ1/2L22ϱ1/2L22v2L2+v1/2L22v1/2L22ϱL22vL2C2v2L2+Cα1/2L1/22(ϱ,v)2L2. (3.45)

    On the other hand, it follows from (3.42) that

    |divR2,Δϱ+(μ1+ζ)divΔv+(μ1+λ1ζ)div(divv),Δϱ|aγ42ϱ2L2+C3v2L2+Cα1/2L3/2(2ϱ2L2+3(v,ω,h)2L2),

    which, together with (3.44) and (3.45), gives (3.43).

    Lemma 3.6. Let the assumptions (3.1) and (3.2) be in force. Then

    ddt3(aγϱ,v,ω,h)2L2+4(v,ω,h)2L2Cα1/4L5/2(4(v,ω,h)2L2+3ϱ2L2). (3.46)

    Proof. Similar to the proof of Lemma 3.4, we infer from (2.1) that

    12ddt3(aγϱ,v,ω,h)2L2+(μ14v2L2+(μ1+λ1)3divv2L2+ν4h2L2+μ24ω2L2+(μ2+λ2)3divω2L2+ζ3(rotv2ω)2L2)=3R1,aγ3ϱ3R2,3v3R3,3ω3R4,3h. (3.47)

    Keeping in mind that L>1, thus, Lemma 2.3, together with Gagliardo-Nirenberg inequality (cf. [1]) shows that

    3R1,aγ3ϱC(3ϱL2vL+ϱL4vL2+ϱL33vL6)3ϱL2C3ϱL2(v1/4L23v3/4L23ϱL2+ϱ1/2L22ϱ1/2L24vL2)Cα1/4L3/4(3ϱ2L2+4v2L2). (3.48)

    Due to the Sobolev interpolation inequalities (2.22) and (2.23) (cf. [9,14]), one has from (2.7) that

    2(vv)L2C3vL6vL3+C2vL6vL3C(4vL2v1/2L2v1/2L2+3vL2v1/2L22v1/2L2)Cα4vL2. (3.49)

    Similar to the derivation of (3.49), we can get

    2(vω)L2+2(vh)L2+2(hdivv)L2+2(hv)L2C(v,ω,h)1/2L2(v,ω,h)1/2L24(v,ω,h)L2Cα4(v,ω,h)L2. (3.50)

    The combination of (3.8)–(3.11) and the interpolation inequality shows that

    2(h(ϱ)ϱ)L2+2(f(ϱ)×ω)L2+2(f(ϱ)×v)L2CϱL3ϱL2+C(ϱ,v,ω)L32ϱL6+CϱL33(ω,v)L6C(ϱ1/2L22ϱ1/2L2+ω1/2L22ω1/2L2+v1/2L22v1/2L2)3ϱL2+CϱH14(ω,v)L2Cα1/2L1/23ϱL2+Cα4(v,ω)L2Cα1/2L1/2(3ϱL2+4(v,ω)L2), (3.51)

    and

    |3(f(ϱ)ω),3ω|C(|3ϱ||ω||3ω|+|2ϱ||ω||3ω|+|ϱ||2ω||3ω|+|ϱ||3ω|2)dxC3ϱL2ωL33ωL6+C2ϱL6ωL3/23ωL6+Cϱ3/2L22ωL63ωL6+CϱL23ωL63ωL2Cα(3ϱ2L2+4ω2L2)+δ33ω2L2, (3.52)

    where \delta_3 is an undetermined positive constant. According to the observation of (3.47), we know that

    \begin{equation} \begin{split} \|\nabla^3 \omega\|_{L^2}^2 &\leqslant C\Big(\|\nabla^3 (\nabla \times {\mathit{\boldsymbol{v}}}-2\omega)\|_{L^2}^2+\|\nabla^3 (\nabla \times {\mathit{\boldsymbol{v}}})\|_{L^2}^2\Big)\\ & \leqslant C\Big(\|\nabla^3 (\nabla \times {\mathit{\boldsymbol{v}}}-2\omega)\|_{L^2}^2+\|\nabla^4 {\mathit{\boldsymbol{v}}}\|_{L^2}^2\Big), \end{split} \end{equation} (3.53)

    thus, putting (3.53) into (3.52) and choosing \delta_3 = \{\tfrac{\zeta}{C}, \tfrac{\mu_1}{4C}\} , one has

    \begin{equation} \begin{split} \Big|\big < \nabla^3 (f(\varrho)\omega), \nabla^3 \omega \big > \Big| &\leqslant C\alpha \Big(\|\nabla^3 \varrho\|_{L^2}^2+\|\nabla^4 \omega\|_{L^2}^2\Big)+\zeta \|\nabla^3 (\nabla \times {\mathit{\boldsymbol{v}}}-2\omega)\|_{L^2}^2\\ &\quad+\frac{\mu_1}{4}\|\nabla^4 {\mathit{\boldsymbol{v}}}\|_{L^2}^2. \end{split} \end{equation} (3.54)

    Similar to the derivation of (3.51) and (3.54), one has from (2.7) that

    \begin{equation} \begin{split} &\|\nabla^2 [h(\varrho)(\Delta {\mathit{\boldsymbol{v}}}, \nabla {\rm{div}} {\mathit{\boldsymbol{v}}}, \Delta \omega, \nabla {\rm{div}}\omega) ]\|_{L^2}\\ &\leqslant C\|\nabla^2 \varrho\|_{L^{3}}\|\nabla^2 ( {\mathit{\boldsymbol{v}}}, \omega)\|_{L^6}+C\|\varrho\|_{L^\infty}\|\nabla^4 ( {\mathit{\boldsymbol{v}}}, \omega)\|_{L^2}\\ &\leqslant C\|\nabla^2 \varrho\|_{L^2}^{1/2}\|\nabla^3 \varrho\|_{L^2}^{1/2}\|\nabla^3 ( {\mathit{\boldsymbol{v}}}, \omega)\|_{L^2}+C\|\nabla \varrho\|_{L^2}^{1/2}\|\nabla^2 \varrho\|_{L^2}^{1/2}\|\nabla^4 ( {\mathit{\boldsymbol{v}}}, \omega)\|_{L^2}\\ &\leqslant C\alpha^{1/2}L^{1/2}\|\nabla^4 ( {\mathit{\boldsymbol{v}}}, \omega)\|_{L^2}+C\|\nabla \varrho\|_{L^2}^{1/4}\|\nabla^3 \varrho\|_{L^2}^{3/4}\|\nabla^2 ( {\mathit{\boldsymbol{v}}}, \omega)\|_{L^2}^{1/2}\|\nabla^4 ( {\mathit{\boldsymbol{v}}}, \omega)\|_{L^2}^{1/2}\\ &\leqslant C\alpha^{1/4}L\Big(\|\nabla^4 ( {\mathit{\boldsymbol{v}}}, \omega)\|_{L^2}+\|\nabla^3 \varrho\|_{L^2}\Big), \end{split} \end{equation} (3.55)

    and

    \begin{equation} \begin{split} \|\nabla^2 [g(\varrho)(\nabla \times {\mathit{\boldsymbol{h}}})\times {\mathit{\boldsymbol{h}}}]\|_{L^2} &\leqslant C\|\nabla^2 \varrho\|_{L^{3}}\|\nabla {\mathit{\boldsymbol{h}}}\|_{L^6}\| {\mathit{\boldsymbol{h}}}\|_{L^\infty}+C\|\nabla {\mathit{\boldsymbol{h}}}\|_{L^6}\| {\mathit{\boldsymbol{h}}}\|_{L^\infty}\|\nabla \varrho\|_{L^6}^2\\ &\quad+C\| {\mathit{\boldsymbol{h}}}\|_{L^3}\|\nabla^3 {\mathit{\boldsymbol{h}}}\|_{L^6}+C\|\nabla {\mathit{\boldsymbol{h}}}\|_{L^3}\|\nabla^2 {\mathit{\boldsymbol{h}}}\|_{L^6}\\ &\leqslant C\alpha L^{3/4}\Big(\|\nabla^3 \varrho \|_{L^2}+\|\nabla^4 {\mathit{\boldsymbol{h}}} \|_{L^2}\Big), \end{split} \end{equation} (3.56)

    and

    \begin{equation} \begin{split} \|\nabla^3 [g(\varrho)(\nabla \times {\mathit{\boldsymbol{h}}})\times {\mathit{\boldsymbol{h}}}]\|_{L^2} &\leqslant C\Big(\|\nabla^3 \varrho\|_{L^{2}}+\|\nabla \varrho\|_{L^3}\|\nabla^2 \varrho\|_{L^6}+\|\nabla \varrho\|_{L^6}^3\Big)\|\nabla {\mathit{\boldsymbol{h}}}\|_{L^\infty}\| {\mathit{\boldsymbol{h}}}\|_{L^\infty}\\ &\quad+C\|\nabla {\mathit{\boldsymbol{h}}}\|_{L^2}^{1/2}\|\nabla^2 {\mathit{\boldsymbol{h}}}\|_{L^2}^{1/2}\|\nabla^4 {\mathit{\boldsymbol{h}}}\|_{L^2}\\ &\leqslant C\alpha^{1/2} L^{5/2}\Big(\|\nabla^3 \varrho \|_{L^2}+\|\nabla^4 {\mathit{\boldsymbol{h}}} \|_{L^2}\Big). \end{split} \end{equation} (3.57)

    The combination of (3.49)–(3.51) and (3.54)–(3.57) yields

    \begin{equation} \begin{split} \Big|\big < \nabla^3 R_2, \nabla^3 {\mathit{\boldsymbol{v}}} \big > +\big < \nabla^3 R_3, \nabla^3 \omega \big > +\big < \nabla^3 R_4, \nabla^3 {\mathit{\boldsymbol{h}}} \big > \Big| &\leqslant C\alpha^{1/4} L^{5/2}\Big(\|\nabla^3 \varrho \|_{L^2}+\|\nabla^4 ( {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}}) \|_{L^2}\Big), \end{split} \end{equation} (3.58)

    which, together with (3.47) and (3.48), gives (3.46).

    Lemma 3.7. Let the assumptions (3.1) and (3.2) be in force. Then

    \begin{equation} \begin{split} \frac{d}{dt}\big < \nabla {\rm{div}} {\mathit{\boldsymbol{v}}}, \nabla\Delta \varrho\big > + \|\nabla^3 \varrho\|_{L^2}^2 &\leqslant C\|\nabla^3 {\mathit{\boldsymbol{v}}}\|_{H^1}^2+C\alpha^{1/4}L^{5/2}\Big(\|\nabla^3 ( {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{H^1}^2+\|\nabla^3 \varrho\|_{L^2}^2\Big). \end{split} \end{equation} (3.59)

    Proof. Operating \nabla{\rm{div}} to (2.1) _2 and multiplying the resulting equation by \nabla \Delta \varrho in L^2 , after integrating by parts, one has from \nabla \cdot (\nabla \times \omega) = 0 that

    \begin{equation} \begin{split} &\frac{d}{dt}\big < \nabla {\rm{div}} {\mathit{\boldsymbol{v}}}, \nabla\Delta \varrho\big > +a\gamma \|\nabla^3 \varrho\|_{L^2}^2 = \big < \nabla {\rm{div}} {\mathit{\boldsymbol{v}}}, \nabla \Delta\varrho_t\big > +\big < \nabla {\rm{div}}R_2, \nabla \Delta \varrho\big > \\ &\quad+\Big < (\mu_1+\zeta)\nabla{\rm{div}}\Delta {\mathit{\boldsymbol{v}}}+(\mu_1+\lambda_1-\zeta)\nabla{\rm{div}}(\nabla {\rm{div}} {\mathit{\boldsymbol{v}}}), \nabla\Delta \varrho\Big > . \end{split} \end{equation} (3.60)

    Due to (2.1) _1 , one has

    \begin{equation} \begin{split} \big < \nabla {\rm{div}} {\mathit{\boldsymbol{v}}}, \nabla \Delta\varrho_t\big > & = -\big < \Delta {\rm{div}} {\mathit{\boldsymbol{v}}}, \Delta \varrho_t \big > \\ &\leqslant C\Big(\|\nabla^3 {\mathit{\boldsymbol{v}}}\|_{L^2}+\|\varrho\|_{L^\infty}\|\nabla^3 {\mathit{\boldsymbol{v}}}\|_{L^2}+\| {\mathit{\boldsymbol{v}}}\|_{L^\infty}\|\nabla^3 \varrho\|_{L^2}\Big)\|\nabla^3 {\mathit{\boldsymbol{v}}}\|_{L^2}\\ &\leqslant C\|\nabla^3 {\mathit{\boldsymbol{v}}}\|_{L^2}^2+C\|\nabla \varrho\|_{L^2}^{1/2}\|\nabla^2 \varrho\|_{L^2}^{1/2}\|\nabla^3 {\mathit{\boldsymbol{v}}}\|_{L^2}^2\\ &\quad+\|\nabla {\mathit{\boldsymbol{v}}}\|_{L^2}^{1/2}\|\nabla^2 {\mathit{\boldsymbol{v}}}\|_{L^2}^{1/2}\|\nabla^2 \varrho\|_{L^2}\|\nabla^3 {\mathit{\boldsymbol{v}}}\|_{L^2}\\ &\leqslant C\|\nabla^3 {\mathit{\boldsymbol{v}}}\|_{L^2}^2+C \alpha^{1/2}L^{1/2}\|\nabla^3 (\varrho, {\mathit{\boldsymbol{v}}})\|_{L^2}^2. \end{split} \end{equation} (3.61)

    On the other hand, it follows from (3.58) that

    \begin{equation*} \begin{split} &\Big|\big < \nabla {\rm{div}}R_2, \nabla\Delta \varrho\big > +\big < (\mu_1+\zeta)\nabla{\rm{div}}\Delta {\mathit{\boldsymbol{v}}}+(\mu_1+\lambda_1-\zeta)\nabla{\rm{div}}(\nabla {\rm{div}} {\mathit{\boldsymbol{v}}}), \nabla\Delta \varrho\big > \Big|\\ &\leqslant \frac{a\gamma}{4}\|\nabla^3\varrho\|_{L^2}^2+C\|\nabla^3 {\mathit{\boldsymbol{v}}}\|_{H^1}^2+C\alpha^{1/4}L^{5/2}\Big(\|\nabla^3 \varrho \|_{L^2}^2+\|\nabla^4 ( {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}}) \|_{L^2}^2\Big), \end{split} \end{equation*}

    which, together with (3.60) and (3.61), gives (3.59).

    With all the a priori estimates obtained in Lemmas 3.1–3.7 at hand, we are ready to prove Proposition 3.1 next.

    Proof of Proposition 3.1. Due to the inequalities of (3.12), (3.18), and (3.25), one has

    \begin{equation} \begin{split} &\frac{d}{dt}\|(a\gamma \varrho, {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{H^1}^2+\|\nabla( {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{H^1}^2\\ &\leqslant C_1\alpha^{1/2}L^{3/2}\Big(\|\nabla (\varrho, {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{H^1}^2+\|\nabla \varrho\|_{L^2}^2\Big)\\ &\leqslant \frac{1}{2}\|\nabla (\varrho, {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{H^1}^2+ C_1\alpha^{1/2}L^{3/2}\|\nabla \varrho\|_{L^2}^2, \end{split} \end{equation} (3.62)

    and

    \begin{equation} \begin{split} \frac{d}{dt}\big < {\mathit{\boldsymbol{v}}}, \nabla \varrho \big > +\|\nabla \varrho\|_{L^2}^2 &\leqslant C_2\alpha^{1/2}L^{3/2}\Big(\|\nabla( {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{H^1}^2+\|\nabla \varrho\|_{L^2}^2\Big)\\ &\quad+C_2\Big(\|\nabla {\mathit{\boldsymbol{v}}}\|_{H^1}^2+\|\nabla \omega\|_{L^2}^2\Big)\\ &\leqslant 2C_2 \|\nabla ( {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{H^1}^2+C_2\alpha^{1/2}L^{3/2}\|\nabla \varrho\|_{L^2}^2, \end{split} \end{equation} (3.63)

    provided \alpha > 0 is chosen to be small enough such that

    \begin{equation*} 0 < \alpha \leqslant \alpha_1 \triangleq \min\Big\{\varepsilon, \Big(\frac{1}{2C_1L^{3/2}}\Big)^2, \frac{1}{L^3}\Big\}. \end{equation*}

    Therefore, we infer from (3.62) that

    \begin{equation*} \frac{d}{dt}\|(a\gamma \varrho, {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{H^1}^2+\frac{1}{2}\|\nabla( {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{H^1}^2\leqslant C_1\alpha^{1/2}L^{3/2}\|\nabla \varrho\|_{L^2}^2, \end{equation*}

    which, multiply M_1\triangleq \max\{4, 8C_2\} and added to (3.63), gives

    \begin{equation*} \begin{split} \frac{d}{dt}\Big(M_1\|(a\gamma \varrho, {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{H^1}^2+\big < {\mathit{\boldsymbol{v}}}, \nabla \varrho \big > \Big)+2C_2\|\nabla( {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{H^1}^2+\|\nabla \varrho\|_{L^2}^2 &\leqslant C_3(M_1)\alpha^{1/2}L^{3/2}\|\nabla \varrho\|_{L^2}^2, \end{split} \end{equation*}

    where C_3(M_1) is a positive number depending on M_1 . Then, if \alpha > 0 is chosen to be small such that

    \begin{equation*} 0 < \alpha \leqslant \alpha_2 \triangleq \min\Big\{\alpha_1, \Big(\frac{1}{2C_3(M_1)L^{3/2}}\Big)^2\Big\}, \end{equation*}

    then, we have

    \begin{equation*} \frac{d}{dt}\Big(M_1\|(a\gamma \varrho, {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{H^1}^2+\big < {\mathit{\boldsymbol{v}}}, \nabla \varrho \big > \Big)+2C_2\|\nabla( {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{H^1}^2+\frac{1}{2}\|\nabla \varrho\|_{L^2}^2\leqslant 0. \end{equation*}

    Integrating the above inequality over [0, T] , one has

    \begin{equation} \sup\limits_{t\in [0, T]}\|(\varrho, {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})(t)\|_{H^1}^2+\displaystyle{\int}_0^T \Big(\|\nabla( {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{H^1}^2+\|\nabla \varrho\|_{L^2}^2\Big)dt \leqslant \check{C} \| (\varrho_0, {\mathit{\boldsymbol{v}}}_0, \omega_0, {\mathit{\boldsymbol{h}}}_0)\|_{H^1}^2, \end{equation} (3.64)

    moreover,

    \begin{equation*} \big < {\mathit{\boldsymbol{v}}}, \nabla \varrho \big > \leqslant \frac{M_1}{2}\|(\varrho, {\mathit{\boldsymbol{v}}})\|_{H^1}^2. \end{equation*}

    It follows from (3.24), (3.30), and (3.46) that

    \begin{equation*} \begin{split} & \frac{d}{dt}\|\nabla (a\gamma \varrho, {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{H^2}^2+\|\nabla^2( {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{H^2}^2\\ &\leqslant C_4\alpha^{1/4}L^{5/2}\Big(\|\nabla^2 ( {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{H^2}^2+\|\nabla^2 \varrho\|_{H^1}^2\Big)\\ &\leqslant \frac{1}{2}\|\nabla^2 ( {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{H^2}^2+C_4\alpha^{1/4}L^{5/2}\|\nabla^2 \varrho\|_{H^1}^2, \end{split} \end{equation*}

    thus

    \begin{equation} \frac{d}{dt}\|\nabla (a\gamma \varrho, {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{H^2}^2+\frac{1}{2}\|\nabla^2( {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{H^2}^2\leqslant C_4\alpha^{1/4}L^{5/2}\|\nabla^2 \varrho\|_{H^1}^2, \end{equation} (3.65)

    provided \alpha > 0 is chosen to be small enough such that

    \begin{equation*} 0 < \alpha \leqslant \alpha_3 \triangleq \min\Big\{\alpha_2, \Big(\frac{1}{2C_4L^{5/2}}\Big)^4\Big\}. \end{equation*}

    Next, we infer from (3.43) and (3.59) that

    \begin{equation*} \begin{split} &\frac{d}{dt}\Big(\big < {\rm{div}} {\mathit{\boldsymbol{v}}}, \Delta \varrho\big > +\big < \nabla {\rm{div}} {\mathit{\boldsymbol{v}}}, \nabla\Delta \varrho\big > \Big)+ \|\nabla^2 \varrho\|_{H^1}^2\\ &\leqslant C_5\|\nabla^2 {\mathit{\boldsymbol{v}}}\|_{H^2}^2+C_5\alpha^{1/4}L^{5/2}\Big(\|\nabla^2 ( {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{H^2}^2+\|\nabla^2 \varrho\|_{H^1}^2\Big)\\ &\leqslant 2C_5 \|\nabla^2 ( {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{H^2}^2+\frac{1}{2}\|\nabla^2 \varrho\|_{H^1}^2, \end{split} \end{equation*}

    then

    \begin{equation} \frac{d}{dt}\Big(\big < {\rm{div}} {\mathit{\boldsymbol{v}}}, \Delta \varrho\big > +\big < \nabla {\rm{div}} {\mathit{\boldsymbol{v}}}, \nabla\Delta \varrho\big > \Big)+ \frac{1}{2}\|\nabla^2 \varrho\|_{H^1}^2\leqslant 2C_5 \|\nabla^2 ( {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{H^2}^2, \end{equation} (3.66)

    provided \alpha > 0 is chosen to be small enough such that

    \begin{equation*} 0 < \alpha \leqslant \alpha_4 \triangleq \min\Big\{\alpha_3, \Big(\frac{1}{2C_5L^{5/2}}\Big)^4, \Big(\frac{1}{L^{5/2}}\Big)^{4}\Big\}. \end{equation*}

    Multiplying (3.65) by M_2\triangleq\{8, 8C_5\} , and adding the resulting inequality to (3.66), after integrating the resulting inequality over [0, T] , one has

    \begin{equation} \begin{split} &\sup\limits_{t\in [0, T]}\|\nabla (\varrho, {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})(t)\|_{H^2}^2+{\int}_0^T \Big(\|\nabla^2( {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{H^2}^2+\|\nabla^2 \varrho\|_{H^1}^2\Big)dt\\ & \leqslant \hat{C} \| \nabla (\varrho_0, {\mathit{\boldsymbol{v}}}_0, \omega_0, {\mathit{\boldsymbol{h}}}_0)\|_{H^2}^2. \end{split} \end{equation} (3.67)

    Taking L^2\triangleq 4\hat{C} \| \nabla (\varrho_0, {\mathit{\boldsymbol{v}}}_0, \omega_0, {\mathit{\boldsymbol{h}}}_0)\|_{H^2}^2 in (3.67), and choosing \varepsilon > 0 sufficiently small such that 4\check{C} \| (\varrho_0, {\mathit{\boldsymbol{v}}}_0, \omega_0, {\mathit{\boldsymbol{h}}}_0)\|_{H^1}^2\leqslant \alpha^2 in (3.64), then, we can close the a priori assumptions (3.1) and (3.2) by bootstrap arguments. This, together with the local existence result (cf. Lemma 2.5), finishes the proof of Proposition 3.1, and thus, the proof of the first part of Theorem 1.1 is complete.

    In this subsection, our main aim is to derive the decay rates of the solutions (\varrho, {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}}) obtained in the first part of Theorem 1.1.

    Lemma 3.8. Let the conditions of Proposition 3.1 be in force. Assume that \varepsilon > 0 is small enough and \|(\varrho_0, {\mathit{\boldsymbol{v}}}_0, \omega_0, {\mathit{\boldsymbol{h}}}_0)\|_{L^1} is bounded. Then for any t\geqslant 0 ,

    \begin{equation} \|\nabla(\varrho, {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})(t)\|_{H^2}^2\leqslant C(1+t)^{-5/2}, \end{equation} (3.68)

    and

    \begin{equation} \|(\varrho, {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})(t)\|_{L^2}^2\leqslant C(1+t)^{-3/2}. \end{equation} (3.69)

    Proof. Similar to the derivation of (3.64), we can infer from (3.24), (3.30), (3.43), (3.46), and (3.59) that there exist some positive constants \tilde{M} and \tilde{c} such that if \varepsilon > 0 is small enough, then

    \begin{equation*} \mathcal{A}^{\prime}(t)+\tilde{c}\Big(\|\nabla^2( {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{H^2}^2+\|\nabla^2 \varrho\|_{H^1}^2\Big)\leqslant 0, \end{equation*}

    where

    \begin{equation*} \mathcal{A}^{\prime}(t)\triangleq\tilde{M}\|\nabla(\varrho, {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{H^2}^2+\big < {\rm{div}} {\mathit{\boldsymbol{v}}}, \Delta \varrho\big > +\big < \nabla{\rm{div}} {\mathit{\boldsymbol{v}}}, \nabla\Delta \varrho\big > . \end{equation*}

    Therefore

    \begin{equation} \mathcal{A}^{\prime}(t)+\tilde{c}\|\nabla(\varrho, {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{H^2}^2\leqslant C\|\nabla(\varrho, {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{L^2}^2. \end{equation} (3.70)

    Due to Cauchy-Schwarz inequality, it holds that

    \begin{equation*} \Big|\big < {\rm{div}} {\mathit{\boldsymbol{v}}}, \Delta \varrho\big > +\big < \nabla{\rm{div}} {\mathit{\boldsymbol{v}}}, \nabla\Delta \varrho\big > \Big|\leqslant C \Big(\|\nabla {\mathit{\boldsymbol{v}}}\|_{H^1}^2+\|\nabla^2 \varrho\|_{H^1}^2\Big), \end{equation*}

    thus

    \begin{equation*} -C_6 \Big(\|\nabla {\mathit{\boldsymbol{v}}}\|_{H^1}^2+\|\nabla^2 \varrho\|_{H^1}^2\Big)\leqslant \big < {\rm{div}} {\mathit{\boldsymbol{v}}}, \Delta \varrho\big > +\big < \nabla{\rm{div}} {\mathit{\boldsymbol{v}}}, \nabla\Delta \varrho\big > \leqslant C_6 \Big(\|\nabla {\mathit{\boldsymbol{v}}}\|_{H^1}^2+\|\nabla^2 \varrho\|_{H^1}^2\Big). \end{equation*}

    For suitable large number \tilde{M}\geqslant C_6+1 > 0 , then

    \begin{equation*} \mathcal{A}(t)\sim \|\nabla(\varrho, {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{H^2}^2, \end{equation*}

    then, we can infer from (3.70) that there exists a positive constant c such that

    \begin{equation*} \mathcal{A}^{\prime}(t)+c\mathcal{A}(t)\leqslant C\|\nabla(\varrho, {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{L^2}^2, \end{equation*}

    thus

    \begin{equation} \mathcal{A}(t)\leqslant \mathcal{A}(0)e^{-ct}+C\displaystyle{\int}_0^t e^{-c(t-s)}\|\nabla(\varrho, {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})(s)\|_{L^2}^2 ds. \end{equation} (3.71)

    Thanks to (2.6), we have

    \begin{equation} \begin{split} \|\nabla(\varrho, {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})(t)\|_{L^2} &\leqslant C(1+t)^{-5/4}\|\nabla(\varrho_0, {\mathit{\boldsymbol{v}}}_0, \omega_0, {\mathit{\boldsymbol{h}}}_0)\|_{L^1 \mathop{{ \cap}} H^1}\\ &\quad+C{\int}_0^t (1+t-s)^{-5/4}\|(R_1, R_2, R_3, R_4)\|_{L^1 \mathop{{ \cap}} H^1} ds. \end{split} \end{equation} (3.72)

    The Cauchy-Schwarz inequality, together with (3.4)–(3.7), and (3.8)–(3.11), shows that

    \begin{equation} \begin{split} \|(R_1, R_2, R_3, R_4)\|_{L^1} &\leqslant C\|\varrho\|_{L^2}\|\nabla {\mathit{\boldsymbol{v}}}\|_{L^2}+C \|\nabla \varrho\|_{L^2}\| {\mathit{\boldsymbol{v}}}\|_{L^2}+C \| {\mathit{\boldsymbol{v}}}\|_{L^2}\|\nabla {\mathit{\boldsymbol{v}}}\|_{L^2}+C\|\varrho\|_{L^2}\|\nabla^2 {\mathit{\boldsymbol{v}}}\|_{L^2}\\ &\quad+C \| {\mathit{\boldsymbol{h}}}\|_{L^2}\|\nabla {\mathit{\boldsymbol{h}}}\|_{L^2}+C \|\varrho\|_{L^2}\|\nabla \varrho\|_{L^2}+C \|\varrho\|_{L^2}\|\nabla \omega\|_{L^2}+C \| {\mathit{\boldsymbol{v}}}\|_{L^2}\|\nabla \omega\|_{L^2}\\ &\quad+C \|\varrho\|_{L^2}\|\nabla^2 \omega\|_{L^2}+C \|\varrho\|_{L^2}\|\omega\|_{L^2}+C \| {\mathit{\boldsymbol{v}}}\|_{L^2}\|\nabla {\mathit{\boldsymbol{h}}}\|_{L^2}+\| {\mathit{\boldsymbol{h}}}\|_{L^2}\|\nabla {\mathit{\boldsymbol{v}}}\|_{L^2}\\ &\quad+C \|\nabla \varrho\|_{L^3}\|\nabla {\mathit{\boldsymbol{h}}}\|_{L^6}\| {\mathit{\boldsymbol{h}}}\|_{L^2}+C \|\varrho\|_{L^\infty}\|\nabla^2 {\mathit{\boldsymbol{h}}}\|_{L^2}\| {\mathit{\boldsymbol{h}}}\|_{L^2}+C \|\varrho\|_{L^\infty}\|\nabla {\mathit{\boldsymbol{h}}}\|_{L^2}^2\\ &\leqslant C\Big(\|(\varrho, {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{L^2}\|\nabla(\varrho, {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{H^1}+\|\nabla {\mathit{\boldsymbol{h}}}\|_{L^2}^2+\|\nabla \varrho\|_{H^1}\|\nabla {\mathit{\boldsymbol{h}}}\|_{L^6}\| {\mathit{\boldsymbol{h}}}\|_{L^2}\Big)\\ &\leqslant \varepsilon C(M)\|\nabla(\varrho, {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{H^1}\\ &\leqslant \varepsilon C(M)\mathcal{A}^{1/2}(t), \end{split} \end{equation} (3.73)

    and similarly,

    \begin{equation} \begin{split} \|(R_1, R_2, R_3, R_4)\|_{H^1} &\leqslant C\big(\|R_1\|_{H^1}+\|(R_1, R_2, R_3, R_4)\|_{H^1}\big)\\ &\leqslant C\|(\varrho, {\mathit{\boldsymbol{v}}})\|_{H^1}\|\nabla(\varrho, {\mathit{\boldsymbol{v}}})\|_{H^2}+\varepsilon^{1/2}C(M)\|\nabla (\varrho, {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{H^2}^2\\ &\leqslant \varepsilon^{1/2} C(M)\|\nabla(\varrho, {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{H^2}\\ &\leqslant \varepsilon^{1/2} C(M)\mathcal{A}^{1/2}(t). \end{split} \end{equation} (3.74)

    Substituting (3.73) and (3.74) into (3.72), one has from (3.4) that

    \begin{equation} \|\nabla(\varrho, {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})(t)\|_{L^2}\leqslant C(1+t)^{-5/4}+\varepsilon^{1/2}C\displaystyle{\int}_0^t (1+t-s)^{-5/4}\mathcal{A}^{1/2}(s) ds. \end{equation} (3.75)

    Set

    \begin{equation*} \mathcal{F}(t)\triangleq\sup\limits_{s\in [0, t]}\Big((1+s)^{5/2}\mathcal{A}(s)\Big). \end{equation*}

    So that, the inequality (2.10), together with (3.75), gives

    \begin{equation*} \begin{split} \|\nabla(\varrho, {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})(t)\|_{L^2} &\leqslant C(1+t)^{-5/4}+\varepsilon^{1/2}C{\int}_0^t (1+t-s)^{-5/4}\mathcal{A}^{1/2}(s) ds\\ &\leqslant C(1+t)^{-5/4}+C\varepsilon^{1/2}\mathcal{F}^{1/2}(t){\int}_0^t (1+t-s)^{-5/4}(1+s)^{-5/4}ds\\ &\leqslant C(1+t)^{-5/4}\Big(1+\varepsilon^{1/2}\mathcal{F}^{1/2}(t)\Big), \end{split} \end{equation*}

    which, combined with (3.71), shows that

    \begin{equation*} \begin{split} (1+t)^{5/2}\mathcal{A}(t) &\leqslant C(1+t)^{5/2}e^{-c t}+C \Big(1+\varepsilon \mathcal{F}(t)\Big)(1+t)^{5/2}\\ &\quad \times {\int}_0^t e^{-c(t-s)}(1+s)^{-5/2}(s) ds\\ &\leqslant C+C\varepsilon \mathcal{F}(t). \end{split} \end{equation*}

    Thus, if \varepsilon > 0 is small enough, then we obtain that \mathcal{F}(t)\leqslant C . This, together with \mathcal{A}(t)\sim \|\nabla(\varrho, {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{H^2}^2 , yields (3.68).

    In order to prove (3.69), we use (2.6), (2.10), (3.68), (3.73), and (3.74) to obtain that

    \begin{equation} \begin{split} \|(\varrho, {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})(t)\|_{L^2} &\leqslant C(1+t)^{-3/4}\|(\varrho_0, {\mathit{\boldsymbol{v}}}_0, \omega_0, {\mathit{\boldsymbol{h}}}_0)\|_{L^1 \mathop{{ \cap}} H^1}\\ &\quad+C{\int}_0^t (1+t-s)^{-3/4}\|(R_1, R_2, R_3, R_4)\|_{L^1 \mathop{{ \cap}} L^1} ds\\ &\leqslant C(1+t)^{-3/4}+C{\int}_0^t (1+t-s)^{-3/4}\mathcal{A}^{1/2}(s) ds\\ &\leqslant C(1+t)^{-3/4}+C\mathcal{F}^{1/2}(t){\int}_0^t (1+t-s)^{-3/4}(1+s)^{-5/4}(s) ds\\ &\leqslant C(1+t)^{-3/4}, \end{split} \end{equation} (3.76)

    which implies the desired estimate (3.69). Therefore, we complete the proof of Lemma 3.8.

    Compared with (2.5) in Lemma 2.1, the decay rates of the H^1 -norm of solutions stated in Lemma 3.8 are optimal. Next, our main aim is to show the decay estimates of higher derivatives.

    Lemma 3.9. Let the conditions of Proposition 3.1 be in force. Then there exists a positive time T_1 such that if \varepsilon > 0 is small enough, the following estimate holds.

    \begin{equation} \|\nabla^2(\varrho, {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})(t)\|_{H^1}^2\leqslant C(1+t)^{-7/2}, \end{equation} (3.77)

    for any t\geqslant T_1 .

    Proof. In terms of (2.7)–(2.9) in Lemma 2.3, one has from (2.2) and (3.6) that

    \begin{equation} \begin{split} \|\nabla R_1\|_{L^2}\leqslant \|\nabla^2(\varrho {\mathit{\boldsymbol{v}}})\|_{L^2} &\leqslant C \Big(\|\varrho\|_{L^3}\|\nabla^2 {\mathit{\boldsymbol{v}}}\|_{L^6}+\| {\mathit{\boldsymbol{v}}}\|_{L^3}\|\nabla^2 \varrho\|_{L^6}\Big)\\ &\leqslant C\|(\varrho, {\mathit{\boldsymbol{v}}})\|_{H^1}\|\nabla^3(\varrho, {\mathit{\boldsymbol{v}}})\|_{L^2}\\ &\leqslant C\varepsilon \|\nabla^3(\varrho, {\mathit{\boldsymbol{v}}})\|_{L^2}. \end{split} \end{equation} (3.78)

    Due to Proposition 3.1 and Lemma 3.8, one has

    \begin{equation} \begin{split} \|\nabla (R_2, R_3, R_4)\|_{L^2} &\leqslant C\varepsilon \|\nabla^3( {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{L^2}+C(M)\|\nabla(\varrho, {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{H^2}^2\\ &\leqslant C\varepsilon \|\nabla^3( {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{L^2}+C(M)(1+t)^{-5/2}. \end{split} \end{equation} (3.79)

    Taking (3.78) and (3.79) into (3.31), one has from integration by parts that

    \begin{equation*} \frac{d}{dt}\|\nabla^2(a\gamma \varrho, {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{L^2}^2+\|\nabla^3 ( {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{L^2}^2\leqslant C\varepsilon \|\nabla^3 \varrho\|_{L^2}^2+C(1+t)^{-5}, \end{equation*}

    which, together with (3.46) and (3.59), gives that there exist some positive constants \bar{M} (suitably large) and \bar{c} (suitably small) such that if \varepsilon > 0 is small enough, then

    \begin{equation} \mathcal{A}_1^{\prime}(t)+\bar{c}\Big(\|\nabla^3( {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{H^1}^2+\|\nabla^3 \varrho\|_{L^2}^2\Big)\leqslant C(1+t)^{-5}, \end{equation} (3.80)

    where

    \begin{equation*} \mathcal{A}_1^{\prime}(t)\triangleq \bar{M}\|\nabla^2(\varrho, {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{H^1}^2+\big < \nabla{\rm{div}} {\mathit{\boldsymbol{v}}}, \nabla\Delta \varrho\big > \sim \|\nabla^2(\varrho, {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{H^1}^2. \end{equation*}

    The combination of the Sobolev interpolation inequalities (2.22) and (2.23) and Cauchy-Schwarz inequality shows

    \begin{equation*} \|\nabla^2 \varrho \|_{L^2}^2 \leqslant C \|\nabla \varrho \|_{L^2} \|\nabla^3 \varrho\|_{L^2}\leqslant \frac{1}{\delta}(1+t)\|\nabla^3 \varrho\|_{L^2}^2+C(\delta)(1+t)^{-1}\|\nabla \varrho\|_{L^2}^2, \end{equation*}

    where \delta > 0 is a positive number to be chosen later. Then

    \begin{equation} \|\nabla^3 \varrho\|_{L^2}^2\geqslant \delta(1+t)^{-1}\|\nabla^2 \varrho \|_{L^2}^2-C(\delta)(1+t)^{-2}\|\nabla \varrho\|_{L^2}^2. \end{equation} (3.81)

    Similarly,

    \begin{equation} \|\nabla^3 ( {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{H^1}^2\geqslant \delta(1+t)^{-1}\|\nabla^2 ( {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}}) \|_{H^1}^2-C(\delta)(1+t)^{-2}\|\nabla ( {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{H^1}^2. \end{equation} (3.82)

    Putting (3.81) and (3.82) into (3.80), one has

    \begin{equation} \begin{split} &\mathcal{A}_1^{\prime}(t)+\frac{\delta \bar{c}}{2}(1+t)^{-1}\|\nabla^2 ( {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}}) \|_{H^1}^2+\frac{\bar{c}}{2}\Big(\delta(1+t)^{-1}\|\nabla^2 \varrho \|_{L^2}^2+\|\nabla^3 \varrho\|_{L^2}^2\Big)\\ &\leqslant C(1+t)^{-5}+C(\delta)(1+t)^{-2}\Big(\|\nabla \varrho\|_{L^2}^2+\|\nabla( {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{H^1}^2\Big)\\ &\leqslant C(\delta)(1+t)^{-9/2}. \end{split} \end{equation} (3.83)

    If t\geqslant \delta > 0 , then \|\nabla^3 \varrho\|_{L^2}^2\geqslant \delta (1+t)^{-1}\|\nabla^3 \varrho\|_{L^2}^2 , so that, we infer from (3.83) that

    \begin{equation} \mathcal{A}_1^{\prime}(t)+\frac{\delta \bar{c}}{2}(1+t)^{-1}\|\nabla^2 (\varrho, {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}}) \|_{H^1}^2 \leqslant C(\delta)(1+t)^{-9/2}. \end{equation} (3.84)

    Furthermore, due to \mathcal{A}_1^{\prime}(t)\sim \|\nabla^2(\varrho, {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{H^1}^2 for suitable large \bar{M} , then there exists a positive constant c_1 depending only on \bar{M} and \bar{c} , such that

    \begin{equation} \mathcal{A}_1^{\prime}(t)+\delta c_1(1+t)^{-1}\mathcal{A}_1(t) \leqslant C(\delta)(1+t)^{-9/2}. \end{equation} (3.85)

    If \delta = 4c_1^{-1} , then it follows from (3.85) that

    \begin{equation*} \mathcal{A}_1^{\prime}(t)+4(1+t)^{-1}\mathcal{A}_1(t) \leqslant C(\delta)(1+t)^{-9/2}, \end{equation*}

    thus

    \begin{equation*} \frac{d}{dt}\Big((1+t)^4\mathcal{A}_1(t)\Big) = (1+t)^4\Big(\mathcal{A}_1^{\prime}(t)+4(1+t)^{-1}\mathcal{A}_1(t)\Big) \leqslant C(1+t)^{-1/2}, \end{equation*}

    which, integrated over (0, t) , gives

    \begin{equation} (1+t)^4\mathcal{A}_1(t)\leqslant \mathcal{A}_1(0)+C_7(1+t)^{1/2} \leqslant 2C_7(1+t)^{1/2}, \end{equation} (3.86)

    provided t > 0 is large enough such that

    \begin{equation*} t\geqslant T_1 \triangleq \max\Big\{\delta, \Big(\frac{\mathcal{A}_1(0)}{C_7}\Big)^2-1\Big\}. \end{equation*}

    Dur to \mathcal{A}_1^{\prime}(t)\sim \|\nabla^2(\varrho, {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})\|_{H^1}^2 , thus, we can obtain (3.77) from (3.86). Therefore, we complete the proof of Lemma 3.9.

    Lemma 3.10. Let the conditions of Proposition 3.1 be in force. Then there exists a positive time T_2 such that if \varepsilon > 0 is small enough, the following estimate holds

    \begin{equation} \|\nabla^3(\varrho, {\mathit{\boldsymbol{v}}}, \omega, {\mathit{\boldsymbol{h}}})(t)\|_{H^1}^2\leqslant C(1+t)^{-9/2}, \end{equation} (3.87)

    for any t\geqslant T_2 .

    Proof. Operating \nabla^2 to (2.1) _4 , multiplying it by \nabla \Delta {\mathit{\boldsymbol{h}}} in L^2 , and integrating by parts, we infer from Cauchy-Schwarz inequality that

    \begin{equation} \frac{d}{dt}\|\nabla^3 {\mathit{\boldsymbol{h}}}\|_{L^2}^2+\frac{3\nu}{2} \|\nabla^4 {\mathit{\boldsymbol{h}}}\|_{L^2}^2\leqslant C \|\nabla^2 R_4\|_{L^2}^2. \end{equation} (3.88)

    The right-hand side terms of (3.88) can be estimated as follows. Due to (2.7)–(2.9), (3.48), we infer from (3.68), (3.69), and (3.77) that

    \begin{equation} \begin{split} &\|\nabla^2( {\mathit{\boldsymbol{v}}} \cdot \nabla {\mathit{\boldsymbol{h}}})\|_{L^2}+\|\nabla^2( {\mathit{\boldsymbol{h}}} {\rm{div}} {\mathit{\boldsymbol{v}}})\|_{L^2}+\|\nabla^2( {\mathit{\boldsymbol{h}}} \cdot \nabla {\mathit{\boldsymbol{v}}})\|_{L^2}\\ &\leqslant C\Big(\|( {\mathit{\boldsymbol{v}}}, {\mathit{\boldsymbol{h}}})\|_{L^\infty}\|\nabla^3 ( {\mathit{\boldsymbol{v}}}, {\mathit{\boldsymbol{h}}})\|_{L^2}+\|\nabla^2 ( {\mathit{\boldsymbol{v}}}, {\mathit{\boldsymbol{h}}})\|_{L^6}\|\nabla ( {\mathit{\boldsymbol{v}}}, {\mathit{\boldsymbol{h}}})\|_{L^3}\Big) \\ &\leqslant C\|\nabla ( {\mathit{\boldsymbol{v}}}, {\mathit{\boldsymbol{h}}})\|_{L^2}^{1/2}\|\nabla^2 ( {\mathit{\boldsymbol{v}}}, {\mathit{\boldsymbol{h}}})\|_{L^2}^{1/2}\|\nabla^3( {\mathit{\boldsymbol{v}}}, {\mathit{\boldsymbol{h}}})\|_{L^2}\\ &\leqslant C (1+t)^{-13/4}, \end{split} \end{equation} (3.89)

    and

    \begin{equation} \begin{split} \|\nabla^3[g(\varrho)(\nabla \times {\mathit{\boldsymbol{h}}}) \times {\mathit{\boldsymbol{h}}})]\|_{L^2} &\leqslant C\Big(\|g(\varrho)\|_{L^\infty}\|\nabla^3 ((\nabla \times {\mathit{\boldsymbol{h}}})\times {\mathit{\boldsymbol{h}}})\|_{L^2}+\|\nabla^3 \varrho\|_{L^2}\|(\nabla \times {\mathit{\boldsymbol{h}}})\times {\mathit{\boldsymbol{h}}}\|_{L^\infty}\Big) \\ &\leqslant C \| {\mathit{\boldsymbol{h}}}\|_{\infty}\|\nabla^4 {\mathit{\boldsymbol{h}}}\|_{L^2}+C\|\nabla^3 {\mathit{\boldsymbol{h}}}\|_{L^6}\|\nabla {\mathit{\boldsymbol{h}}}\|_{L^3}+C\|\nabla^3 \varrho\|_{L^2}\|\nabla {\mathit{\boldsymbol{h}}}\|_{L^\infty}\| {\mathit{\boldsymbol{h}}}\|_{L^\infty}\\ &\leqslant C\|\nabla {\mathit{\boldsymbol{h}}}\|_{L^2}^{1/2}\|\nabla^2 {\mathit{\boldsymbol{h}}}\|_{L^2}^{1/2}\|\nabla^4 {\mathit{\boldsymbol{h}}}\|_{L^2}+C\|\nabla^3 \varrho\|_{L^2}\|\nabla {\mathit{\boldsymbol{h}}}\|_{L^2}^{1/2}\|\nabla^2 {\mathit{\boldsymbol{h}}}\|_{L^2}\|\nabla^3 {\mathit{\boldsymbol{h}}}\|_{L^2}^{1/2}\\ &\leqslant \frac{\nu}{2}\|\nabla^4 {\mathit{\boldsymbol{h}}}\|_{L^2}^2+ C (1+t)^{-13/4}. \end{split} \end{equation} (3.90)

    Substituting (3.89) and (3.90) into (3.88), we obtain that

    \begin{equation} \frac{d}{dt}\|\nabla^3 {\mathit{\boldsymbol{h}}}\|_{L^2}^2+ \|\nabla^4 {\mathit{\boldsymbol{h}}}\|_{L^2}^2\leqslant C (1+t)^{-13/4}. \end{equation} (3.91)

    Similar to the derivation of (3.81), one has from (3.77) that

    \begin{equation*} \begin{split} \|\nabla^4 {\mathit{\boldsymbol{h}}}\|_{L^2}^2 &\geqslant 5(1+t)^{-1}\|\nabla^3 {\mathit{\boldsymbol{h}}} \|_{L^2}^2-C(1+t)^{-2}\|\nabla^2 {\mathit{\boldsymbol{h}}}\|_{L^2}^2\\ &\geqslant 5(1+t)^{-1}\|\nabla^3 {\mathit{\boldsymbol{h}}} \|_{L^2}^2-C(1+t)^{-11/2}, \end{split} \end{equation*}

    which, together with (3.91), yields

    \begin{equation} \frac{d}{dt}\|\nabla^3 {\mathit{\boldsymbol{h}}}\|_{L^2}^2+5(1+t)^{-1}\|\nabla^3 {\mathit{\boldsymbol{h}}} \|_{L^2}^2\leqslant C (1+t)^{-11/2}. \end{equation} (3.92)

    Therefore, we deduce from (3.92) that

    \begin{equation} \begin{split} \frac{d}{dt}\Big((1+t)^5\|\nabla^3 {\mathit{\boldsymbol{h}}}\|_{L^2}^2\Big) & = (1+t)^5 \frac{d}{dt}\Big(\|\nabla^3 {\mathit{\boldsymbol{h}}}\|_{L^2}^2+5(1+t)^{-1}\|\nabla^3 {\mathit{\boldsymbol{h}}} \|_{L^2}^2\Big)\\ &\leqslant C (1+t)^{-1/2}, \end{split} \end{equation} (3.93)

    which, implies

    \begin{equation*} (1+t)^5\|\nabla^3 {\mathit{\boldsymbol{h}}}\|_{L^2}^2\leqslant \|\nabla^3 {\mathit{\boldsymbol{h}}}_0\|_{L^2}^2+C_8(1+t)^{1/2}\leqslant 2C_8 (1+t)^{1/2}, \end{equation*}

    provided

    \begin{equation*} t\geqslant T_2 \triangleq \max\Big\{T_1, \Big(\frac{\|\nabla^3 {\mathit{\boldsymbol{h}}}_0\|_{L^2}^2}{C_8}\Big)^2-1\Big\}. \end{equation*}

    Thus, we can obtain (3.87) from (3.93). Therefore, we complete the proof of Lemma 3.10.

    Proof of decay rates. Collecting Lemmas 3.8–3.10 together, one immediately obtains the desired decay rates stated in the section part of Theorem 1.1.

    In order to prove Theorem 1.2, we first consider the standard MHD equations without Hall effects (i.e., \beta = 0 ) as follows:

    \begin{equation} \begin{cases} \rho_t^0 +\mbox{div}(\rho^0 {\bf{u}}^0) = 0,\\ (\rho^0 {\bf{u}}^0)_t+\mbox{div}(\rho^0 {\bf{u}}^0 \otimes {\bf{u}}^0)+\nabla p^0\\ \qquad = (\mu_1+\zeta)\Delta {\bf{u}}^0+(\mu_1+\lambda_1-\zeta)\nabla \mbox{div} {\bf{u}}^0+2\zeta \nabla \times \mathbf{w}^0+(\nabla \times {\mathit{\boldsymbol{b}}}^0)\times {\mathit{\boldsymbol{b}}}^0,\\ (\rho^0 {\bf{w}}^0)_t +{\rm{div}}(\rho^0 {\bf{u}}^0 \otimes {\bf{w}}^0)+4\zeta {\bf{w}}^0 = \mu_2 \Delta {\bf{w}}^0 +(\mu_2+\lambda_2)\nabla \mbox{div} {\bf{w}}^0+2\zeta \nabla \times {\bf{u}}^0,\\ {\mathit{\boldsymbol{b}}}_t^0-\nabla \times ( {\bf{u}}^0 \times {\mathit{\boldsymbol{b}}}^0) = \nu \Delta {\mathit{\boldsymbol{b}}}^0,\\ \mbox{div} {\mathit{\boldsymbol{b}}}^0 = 0, \end{cases} \end{equation} (4.1)

    with far-field boundary conditions and initial conditions:

    \begin{equation} \begin{cases} (\rho^0, {\bf{u}}^0, {\bf{w}}^0, {\mathit{\boldsymbol{b}}}^0)\Big|_{|x|\to \infty}\to (1, 0, 0, 0),\\ (\rho^0, {\bf{u}}^0, {\bf{w}}^0, {\mathit{\boldsymbol{b}}}^0)\Big|_{t = 0} = (\rho_0, {\bf{u}}_0, {\bf{w}}_0, {\mathit{\boldsymbol{b}}}_0)(x),\quad x\in\mathbb{R}^3, \end{cases} \end{equation} (4.2)

    where p^0 = p(\rho^0) = a (\rho^0)^\gamma .

    According to the observation, we know that all of the global estimates and decay rates established in Section 3 hold for the system (4.1)-(4.2). Therefore, we give the following global existence result for the problem (4.1)-(4.2).

    Proposition 4.1. Assume that the initial data (\rho_0, \mathbf{u}_0, \mathbf{w}_0, \mathbf{b}_0) satisfy

    \begin{equation} (\rho_0-1, \mathbf{u}_0, \mathbf{w}_0, \mathbf{b}_0)\in H^3, \qquad \|\nabla^2 (\rho_0-1, \mathbf{u}_0, \mathbf{w}_0, \mathbf{b}_0)\|_{H^1}\leqslant L_0, \end{equation} (4.3)

    for any given constants L_0 (not necessary small). Then, there exists a positive constant \bar{\varepsilon}_0 depending on L_0 , \mu_1, \lambda_1, \zeta, \mu_2, \lambda_2, \nu, a , and \gamma such that if

    \begin{equation} \|(\rho_0-1, \mathbf{u}_0, \mathbf{w}_0, \mathbf{b}_0)\|_{H^1}\leqslant \bar{\varepsilon}_0, \end{equation} (4.4)

    then the Cauchy problem (4.1)-(4.2) has a unique global classical solution (\rho^0, \mathit{{\bf{u}}}^0, {\bf{w}}^0, {\mathit{\boldsymbol{b}}}^0) on \mathbb{R}^3 \times (0, \infty) satisfying

    \begin{equation} \begin{split} &\|(\rho^0-1, \mathbf{u}^0, \mathbf{w}^0, \mathbf{b}^0)(t)\|_{H^3}^2+\displaystyle{\int}_0^{t} \Big(\|\nabla \rho^0(s)\|_{H^{2}}^2+\|(\nabla \mathbf{u}^0, \nabla \mathbf{w}^0, \nabla \mathbf{b}^0)(s)\|_{H^3}^2 \Big)ds\\ &\quad \leqslant C \|(\rho_0-1, \mathbf{u}_0, \mathbf{w}_0, \mathbf{b}_0)\|_{H^3}^2, \end{split} \end{equation} (4.5)

    for all t \geqslant 0 , where C is positive constant independent of t .

    In order to prove the convergence rates stated in Theorem 1.2, we define

    \begin{equation*} \pi\triangleq \rho-\rho^0, \quad {\mathit{\boldsymbol{v}}} \triangleq {\bf{u}}- {\bf{u}}^0, \quad \varpi \triangleq {\bf{w}}- {\bf{w}}^0, \quad {\mathit{\boldsymbol{h}}} \triangleq {\mathit{\boldsymbol{b}}}- {\mathit{\boldsymbol{b}}}^0, \end{equation*}

    where (\rho, {\bf{u}}, {\bf{w}}, {\mathit{\boldsymbol{b}}}) is the solution of the problem (1.1)–(1.3), and (\rho^0, {\bf{u}}^0, {\bf{w}}^0, {\mathit{\boldsymbol{b}}}^0) is the solution of problem (4.1)-(4.2). Then, the quadruple (\pi, {\mathit{\boldsymbol{v}}}, \varpi, {\mathit{\boldsymbol{h}}}) satisfies

    \begin{equation} \begin{cases} \pi_t+ {\mathit{\boldsymbol{v}}} \cdot \nabla \rho + {\bf{u}}^0 \cdot \nabla \pi+\rho\mbox{div} {\mathit{\boldsymbol{v}}}+\pi \mbox{div} {\bf{u}}^0 = 0,\\ \rho {\mathit{\boldsymbol{v}}}_t+\rho {\bf{u}} \cdot \nabla {\mathit{\boldsymbol{v}}}-(\mu_1+\zeta)\Delta {\mathit{\boldsymbol{v}}}-(\mu_1+\lambda_1-\zeta)\nabla {\rm{div}} {\mathit{\boldsymbol{v}}} = -\pi {\bf{u}}^0_t-\rho {\mathit{\boldsymbol{v}}} \cdot \nabla {\bf{u}}^0\\ \qquad-\pi {\bf{u}}^0 \cdot \nabla {\bf{u}}^0-\nabla (p-p^0) +2\zeta \nabla \times \varpi+ {\mathit{\boldsymbol{b}}} \cdot \nabla {\mathit{\boldsymbol{h}}}+ {\mathit{\boldsymbol{h}}} \cdot \nabla {\mathit{\boldsymbol{b}}}^0-\frac{1}{2}\nabla (| {\mathit{\boldsymbol{b}}}|^2-| {\mathit{\boldsymbol{b}}}^0|^2),\\ \rho \varpi_t+\rho {\bf{u}} \cdot \nabla \varpi-\mu_2 \Delta \varpi-(\mu_2+\lambda_2)\nabla {\rm{div}}\varpi = -\pi {\bf{w}}^0_t-\rho {\mathit{\boldsymbol{v}}} \cdot \nabla {\bf{w}}^0-\pi {\bf{u}}^0 \cdot \nabla {\bf{w}}^0\\ \qquad-4\zeta \varpi +2\zeta \nabla \times {\mathit{\boldsymbol{v}}},\\ {\mathit{\boldsymbol{h}}}_t-\nu \Delta {\mathit{\boldsymbol{h}}} = - {\bf{u}} \cdot \nabla {\mathit{\boldsymbol{h}}}- {\mathit{\boldsymbol{v}}} \cdot \nabla {\mathit{\boldsymbol{b}}}^0+ {\mathit{\boldsymbol{b}}} \cdot \nabla {\mathit{\boldsymbol{v}}}+ {\mathit{\boldsymbol{h}}} \cdot \nabla {\bf{u}}^0- {\mathit{\boldsymbol{b}}} \mbox{div} {\mathit{\boldsymbol{v}}}- {\mathit{\boldsymbol{h}}}\mbox{div} {\bf{u}}^0\\ \qquad-\beta \nabla \times \Big(\frac{(\nabla \times {\mathit{\boldsymbol{b}}})\times {\mathit{\boldsymbol{b}}}}{\rho}\Big),\quad \mbox{div} {\mathit{\boldsymbol{h}}} = 0,\\ (\pi, {\mathit{\boldsymbol{v}}}, \varpi, {\mathit{\boldsymbol{h}}})\big|_{t = 0} = (0, 0, 0, 0),\\ (\pi_0, {\mathit{\boldsymbol{v}}}_0, \varpi_0, {\mathit{\boldsymbol{h}}}_0)\to (0, 0, 0, 0), \quad {\rm{as}}\; |x|\to \infty. \end{cases} \end{equation} (4.6)

    Lemma 4.1. Let (\pi, {\mathit{\boldsymbol{v}}}, \varpi, {\mathit{\boldsymbol{h}}}) be the solution of system (4.6). There exists a positive constant C = C(T) , independent of \beta , such that for any T\in (0, \infty) , then

    \begin{equation} \sup\limits_{t\in [0, T]}\|(\pi, {\mathit{\boldsymbol{v}}}, \varpi, {\mathit{\boldsymbol{h}}})(t)\|_{L^2}^2+\displaystyle{\int}_0^T \|\nabla( {\mathit{\boldsymbol{v}}}, \varpi, {\mathit{\boldsymbol{h}}})\|_{L^2}^2 dt\leqslant C\beta^2. \end{equation} (4.7)

    Proof. Multiplying (4.6) _1 by \pi in L^2 and integrating by parts, we infer from (1.4), (4.5), and Cauchy-Schwarz inequality that

    \begin{equation} \Big(\|\pi\|_{L^2}^2\Big)_t \leqslant C\|\nabla(\rho, {\bf{u}}^0)\|_{H^2}\Big(\|(\pi, {\mathit{\boldsymbol{v}}})\|_{L^2}^2+\|\nabla {\mathit{\boldsymbol{v}}}\|_{L^2}^2\Big)\leqslant C \Big(\|(\pi, {\mathit{\boldsymbol{v}}})\|_{L^2}^2+\|\nabla {\mathit{\boldsymbol{v}}}\|_{L^2}^2\Big). \end{equation} (4.8)

    With the aid of (1.4) and (4.5), we can easily deduce from (4.6) that

    \begin{equation} \|( {\bf{u}}_t, {\bf{u}}^0_t, {\bf{w}}_t, {\bf{w}}^0_t, {\mathit{\boldsymbol{b}}}_t, {\mathit{\boldsymbol{b}}}^0_t)\|_{H^1}^2+\displaystyle{\int}_0^T \|( {\bf{u}}_t, {\bf{u}}^0_t, {\bf{w}}_t, {\bf{w}}^0_t, {\mathit{\boldsymbol{b}}}_t, {\mathit{\boldsymbol{b}}}^0_t)\|_{H^2}^2 dt \leqslant C. \end{equation} (4.9)

    Since it holds that

    \begin{equation} |p-p^0|+| {\mathit{\boldsymbol{b}}}|^2-| {\mathit{\boldsymbol{b}}}^0|^2\leqslant C \Big(|\pi|+| {\mathit{\boldsymbol{h}}}|\Big), \end{equation} (4.10)

    thus, multiplying (4.6) _2 by {\mathit{\boldsymbol{v}}} in L^2 and integrating by parts, we infer from (1.4), (4.5), (4.9), and (4.10) that

    \begin{equation} \Big(\|\rho^{1/2} {\mathit{\boldsymbol{v}}}\|_{L^2}^2\Big)_t+\|\nabla {\mathit{\boldsymbol{v}}}\|_{L^2}^2\leqslant C \|(\pi, {\mathit{\boldsymbol{v}}}, \varpi, {\mathit{\boldsymbol{h}}})\|_{L^2}^2. \end{equation} (4.11)

    Similarly, multiplying (4.6) _3 by \varrho in L^2 and integrating by parts, one can deduce from (1.4), (4.5) and (4.9) that

    \begin{equation} \Big(\|\rho^{1/2}\varpi\|_{L^2}^2\Big)_t+\|\nabla \varpi\|_{L^2}^2+\|\varpi\|_{L^2}^2\leqslant C \|(\pi, {\mathit{\boldsymbol{v}}}, \varpi)\|_{L^2}^2. \end{equation} (4.12)

    Multiplying (4.6) _4 by {\mathit{\boldsymbol{h}}} and integrating by parts, we can obtain from (1.4), (4.5) and (4.9) that

    \begin{equation} \begin{split} \Big(\| {\mathit{\boldsymbol{h}}}\|_{L^2}^2\Big)_t+\|\nabla {\mathit{\boldsymbol{h}}}\|_{L^2}^2 &\leqslant C \|( {\mathit{\boldsymbol{v}}}, {\mathit{\boldsymbol{h}}})\|_{L^2}^2+C \beta^2\|\rho^{-1}(\nabla \times {\mathit{\boldsymbol{b}}})\times {\mathit{\boldsymbol{b}}}\|_{L^2}^2\\ &\leqslant C \|( {\mathit{\boldsymbol{v}}}, {\mathit{\boldsymbol{h}}})\|_{L^2}^2+C\beta^2. \end{split} \end{equation} (4.13)

    Multiplying (4.11) by a suitably large constant and adding the result to (4.8), we obtain from (4.12) and (4.13) that

    \begin{equation*} \Big(\|(\pi, {\mathit{\boldsymbol{v}}}, \varpi, {\mathit{\boldsymbol{h}}})\|_{L^2}^2\Big)_t+\|\nabla( {\mathit{\boldsymbol{v}}}, \varpi, {\mathit{\boldsymbol{h}}})\|_{L^2}^2 \leqslant C \|(\pi, {\mathit{\boldsymbol{v}}}, \varpi, {\mathit{\boldsymbol{h}}})\|_{L^2}^2+C\beta^2, \end{equation*}

    which, together with the Gronwall inequality and \rho > 0 , gives rise to (4.7).

    Lemma 4.2. Let (\pi, {\mathit{\boldsymbol{v}}}, \varpi, {\mathit{\boldsymbol{h}}}) be the solution of system (4.6). There exists a positive constant C = C(T) , independent of \beta , such that for any T\in (0, \infty) , then

    \begin{equation} \sup\limits_{t\in [0, T]}\|\nabla(\pi, {\mathit{\boldsymbol{v}}}, \varpi, {\mathit{\boldsymbol{h}}})(t)\|_{L^2}^2+\displaystyle{\int}_0^T \|\nabla^2( {\mathit{\boldsymbol{v}}}, \varpi, {\mathit{\boldsymbol{h}}})\|_{L^2}^2 dt\leqslant C\beta^2. \end{equation} (4.14)

    Proof. Operating \nabla on both sides of (4.6) _1 , and multiplying it by \nabla \pi in L^2 , after integrating by parts, we deduce from (4.7) and the Cauchy-Schwarz inequality that

    \begin{equation} \Big(\|\nabla \pi\|_{L^2}^2\Big)_t \leqslant C(\sigma) \|(\pi, {\mathit{\boldsymbol{v}}})\|_{H^1}^2+\sigma \|\nabla^2 {\mathit{\boldsymbol{v}}}\|_{L^2}^2\leqslant C\beta^2+\sigma \|\nabla^2 {\mathit{\boldsymbol{v}}}\|_{L^2}^2+C(\sigma)\|\nabla(\pi, {\mathit{\boldsymbol{v}}})\|_{L^2}^2, \end{equation} (4.15)

    where \sigma is an undetermined positive constant.

    Multiplying (4.6) _2 by {\mathit{\boldsymbol{v}}}_t in L^2 and integrating by parts, then, by virtue of (1.4), (4.5), (4.7), and (4.9) that

    \begin{equation} \begin{split} \Big(\|\nabla {\mathit{\boldsymbol{v}}}\|_{L^2}^2\Big)_t+\|\rho^{1/2} {\mathit{\boldsymbol{v}}}_t\|_{L^2}^2 &\leqslant C\|(\pi, {\mathit{\boldsymbol{v}}}, \varpi, {\mathit{\boldsymbol{h}}})\|_{L^2}^2+C\|\nabla(\pi, {\mathit{\boldsymbol{v}}}, \varpi, {\mathit{\boldsymbol{h}}} )\|_{L^2}^2\\ &\leqslant C\beta^2+C\|\nabla(\pi, {\mathit{\boldsymbol{v}}}, \varpi, {\mathit{\boldsymbol{h}}})\|_{L^2}^2. \end{split} \end{equation} (4.16)

    Multiplying (4.6) _3 by \varpi_t in L^2 and integrating by parts, then, by virtue of (1.4), (4.5), (4.7), and (4.9) that

    \begin{equation} \begin{split} \Big(\|\nabla \varpi\|_{L^2}^2+\|\varpi\|_{L^2}^2\Big)_t+\|\rho^{1/2}\varpi_t\|_{L^2}^2 &\leqslant C\|(\pi, {\mathit{\boldsymbol{v}}}, \varpi, {\mathit{\boldsymbol{h}}})\|_{L^2}^2+C\|\nabla(\pi, {\mathit{\boldsymbol{v}}}, \varpi, {\mathit{\boldsymbol{h}}} )\|_{L^2}^2\\ &\leqslant C\beta^2+C\|\nabla(\pi, {\mathit{\boldsymbol{v}}}, \varpi, {\mathit{\boldsymbol{h}}})\|_{L^2}^2. \end{split} \end{equation} (4.17)

    Similarly,

    \begin{equation} \begin{split} \Big(\|\nabla {\mathit{\boldsymbol{h}}}\|_{L^2}^2\Big)_t+\| {\mathit{\boldsymbol{h}}}_t\|_{L^2}^2 &\leqslant C\|(\pi, {\mathit{\boldsymbol{v}}}, \varpi, {\mathit{\boldsymbol{h}}})\|_{L^2}^2+C\|\nabla(\pi, {\mathit{\boldsymbol{v}}}, \varpi, {\mathit{\boldsymbol{h}}} )\|_{L^2}^2\\ &\leqslant C\beta^2+C\|\nabla(\pi, {\mathit{\boldsymbol{v}}}, \varpi, {\mathit{\boldsymbol{h}}})\|_{L^2}^2. \end{split} \end{equation} (4.18)

    Due to (3.9), we know that \rho is strictly lower-bounded. Thus, it follows from (4.15)–(4.18) that

    \begin{equation} \begin{split} &\Big(\|\nabla (\pi, {\mathit{\boldsymbol{v}}}, \varpi, {\mathit{\boldsymbol{h}}})\|_{L^2}^2+\|\varpi\|_{L^2}^2\Big)_t+\|( {\mathit{\boldsymbol{v}}}_t, \varpi_t, {\mathit{\boldsymbol{h}}}_t)\|_{L^2}^2\\ &\leqslant C\beta^2+\sigma \|\nabla^2 {\mathit{\boldsymbol{v}}}\|_{L^2}^2+C(\sigma)\|\nabla(\pi, {\mathit{\boldsymbol{v}}}, \varpi, {\mathit{\boldsymbol{h}}})\|_{L^2}^2. \end{split} \end{equation} (4.19)

    The combination of (1.4), (4.5)–(4.7), and (4.9) gives

    \begin{equation} \begin{split} \|\nabla^2 ( {\mathit{\boldsymbol{v}}}, \varpi, {\mathit{\boldsymbol{h}}})\|_{L^2}^2 &\leqslant C\|( {\mathit{\boldsymbol{v}}}_t, \varpi_t, {\mathit{\boldsymbol{h}}}_t)\|_{L^2}^2+C\|(\pi, {\mathit{\boldsymbol{v}}}, \varpi, {\mathit{\boldsymbol{h}}})\|_{H^1}^2+C\beta^2\\ &\leqslant C\beta^2+C_9\|( {\mathit{\boldsymbol{v}}}_t, \varpi_t, {\mathit{\boldsymbol{h}}}_t)\|_{L^2}^2+C\|\nabla(\pi, {\mathit{\boldsymbol{v}}}, \varpi, {\mathit{\boldsymbol{h}}})\|_{L^2}^2. \end{split} \end{equation} (4.20)

    Multiplying (4.19) by (C_9+1) and choosing \sigma = (C_9+1)/2 in (4.19), adding the resulting inequality to (4.20), one has

    \begin{equation*} \begin{split} \Big(\|\nabla (\pi, {\mathit{\boldsymbol{v}}}, \varpi, {\mathit{\boldsymbol{h}}})\|_{L^2}^2+\|\varpi\|_{L^2}^2\Big)_t+\|\nabla^2 ( {\mathit{\boldsymbol{v}}}, \varpi, {\mathit{\boldsymbol{h}}})\|_{L^2}^2\leqslant C\beta^2+C\|\nabla(\pi, {\mathit{\boldsymbol{v}}}, \varpi, {\mathit{\boldsymbol{h}}})\|_{L^2}^2, \end{split} \end{equation*}

    which, together with the Gronwall inequality, yields (4.14).

    Lemma 4.3. Let (\pi, {\mathit{\boldsymbol{v}}}, \varpi, {\mathit{\boldsymbol{h}}}) be the solution of system (4.6). There exists a positive constant C = C(T) , independent of \beta , such that for any T\in (0, \infty) , then

    \begin{equation} \sup\limits_{t\in [0, T]}\|\nabla^2(\pi, {\mathit{\boldsymbol{v}}}, \varpi, {\mathit{\boldsymbol{h}}})(t)\|_{L^2}^2+\displaystyle{\int}_0^T \|\nabla^3( {\mathit{\boldsymbol{v}}}, \varpi, {\mathit{\boldsymbol{h}}})\|_{L^2}^2 dt\leqslant C\beta^2. \end{equation} (4.21)

    Proof. Due to (1.4), (2.7)–(2.9), (4.7), and (4.14), we deduce from (4.6) _1 , Cauchy-Schwarz inequality, and the Sobolev inequality (2.22) that

    \begin{equation} \begin{split} \Big(\|\nabla^2 \pi\|_{L^2}^2\Big)_t \leqslant C\|(\pi, {\mathit{\boldsymbol{v}}})\|_{H^2}^2+\frac{1}{2}\|\nabla^3 {\mathit{\boldsymbol{v}}}\|_{L^2}^2\leqslant C\beta^2+\frac{1}{2} \|\nabla^3 {\mathit{\boldsymbol{v}}}\|_{L^2}^2+C\|\nabla^2(\pi, {\mathit{\boldsymbol{v}}})\|_{L^2}^2. \end{split} \end{equation} (4.22)

    Thanks to (4.6) _2 , we have

    \begin{equation} \begin{split} & {\mathit{\boldsymbol{v}}}_t+ {\bf{u}} \cdot \nabla {\mathit{\boldsymbol{v}}}-\frac{\mu_1+\zeta}{\rho}\Delta {\mathit{\boldsymbol{v}}}-\frac{\mu_1+\lambda_1-\zeta}{\rho}\nabla{\rm{div}} {\mathit{\boldsymbol{v}}} = -\frac{1}{\rho}\Big( \pi {\bf{u}}^0_t+\rho {\mathit{\boldsymbol{v}}} \cdot \nabla {\bf{u}}^0\\ &\quad+\pi {\bf{u}}^0 \cdot \nabla {\bf{u}}^0+\nabla (p-p^0) -2\zeta \nabla \times \varpi- {\mathit{\boldsymbol{b}}} \cdot \nabla {\mathit{\boldsymbol{h}}}- {\mathit{\boldsymbol{h}}} \cdot \nabla {\mathit{\boldsymbol{b}}}^0+\frac{1}{2}\nabla (| {\mathit{\boldsymbol{b}}}|^2-| {\mathit{\boldsymbol{b}}}^0|^2)\Big). \end{split} \end{equation} (4.23)

    Operating \nabla^2 on both sides of (4.23), multiplying the resulting equation by \nabla^2 {\mathit{\boldsymbol{v}}} in L^2 , and integrating by parts, we get from (2.7)–(2.9) and (4.7)–(4.14) that

    \begin{equation} \Big(\|\nabla^2 {\mathit{\boldsymbol{v}}}\|_{L^2}^2\Big)_t+\frac{3}{2}\|\nabla^3 {\mathit{\boldsymbol{v}}}\|_{L^2}^2\leqslant C\|(\pi, {\mathit{\boldsymbol{v}}}, \varpi, {\mathit{\boldsymbol{h}}})\|_{H^2}^2\leqslant C\beta^2+C\|\nabla^2(\pi, {\mathit{\boldsymbol{v}}}, \varpi, {\mathit{\boldsymbol{h}}})\|_{L^2}^2. \end{equation} (4.24)

    Due to (4.6) _3 , one has

    \begin{equation} \begin{split} &\varpi_t+ {\bf{u}} \cdot \nabla \varpi-\frac{\mu_2}{\rho}\Delta \varpi-\frac{\mu_2+\lambda_2}{\rho}\nabla {\rm{div}}\varpi\\ & = -\frac{1}{\rho} \Big(\pi {\bf{w}}^0_t+\rho {\mathit{\boldsymbol{v}}} \cdot \nabla {\bf{w}}^0+\pi {\bf{u}}^0 \cdot \nabla {\bf{w}}^0+4\zeta \varpi -2\zeta \nabla \times {\mathit{\boldsymbol{v}}}\Big). \end{split} \end{equation} (4.25)

    Operating \nabla^2 on both sides of (4.25), multiplying the resulting equation by \nabla^2 \varpi in L^2 , and integrating by parts, we get from (2.7)–(2.9) and (4.7)–(4.14) that

    \begin{equation} \Big(\|\nabla^2 \varpi\|_{L^2}^2\Big)_t+\|\nabla^3 \varpi\|_{L^2}^2\leqslant C\|(\pi, {\mathit{\boldsymbol{v}}}, \varpi, {\mathit{\boldsymbol{h}}})\|_{H^2}^2\leqslant C\beta^2+C\|\nabla^2(\pi, {\mathit{\boldsymbol{v}}}, \varpi, {\mathit{\boldsymbol{h}}})\|_{L^2}^2. \end{equation} (4.26)

    Operating \nabla^2 on both sides of (4.6) _4 , multiplying the resulting equation by \nabla^2 {\mathit{\boldsymbol{h}}} in L^2 , and integrating by parts, we get from (2.7)–(2.9) and (4.7)–(4.14) that

    \begin{equation} \Big(\|\nabla^2 {\mathit{\boldsymbol{h}}}\|_{L^2}^2\Big)_t+\|\nabla^3 {\mathit{\boldsymbol{h}}}\|_{L^2}^2\leqslant C\|(\pi, {\mathit{\boldsymbol{v}}}, \varpi, {\mathit{\boldsymbol{h}}})\|_{H^2}^2\leqslant C\beta^2+C\|\nabla^2(\pi, {\mathit{\boldsymbol{v}}}, \varpi, {\mathit{\boldsymbol{h}}})\|_{L^2}^2. \end{equation} (4.27)

    The combination of (4.22), (4.24), (4.26), and (4.27) gives that

    \begin{equation*} \Big(\|\nabla^2 (\pi, {\mathit{\boldsymbol{v}}}, \varpi, {\mathit{\boldsymbol{h}}})\|_{L^2}^2\Big)_t+\|\nabla^3 ( {\mathit{\boldsymbol{v}}}, \varpi, {\mathit{\boldsymbol{h}}})\|_{L^2}^2\leqslant C\beta^2+C\|\nabla^2(\pi, {\mathit{\boldsymbol{v}}}, \varpi, {\mathit{\boldsymbol{h}}})\|_{L^2}^2, \end{equation*}

    which, together with the Gronwall inequality, yields (4.21).

    Proof of Theorem 1.2. Now, the convergence rates of the vanishing limit of the Hall coefficient stated in Theorem 1.2 readily follows from Lemmas 4.1–4.3.

    This paper is concerned with the Cauchy problem of the compressible magneto-micropolar fluids subjected to Hall current in three-dimensional whole space. Both the global existence and optimal decay rates of strong solutions are obtained when the smooth initial data are sufficiently close to the non-vacuum equilibrium in H^1 . As a by-product of the uniform estimates, the vanishing limit of the Hall coefficient is also justified. We refer to Theorems 1.1 and 1.2 for details.

    This project is partially supported by Shandong Provincial Natural Science Foundation (Grant No. ZR2024MA033) and the Science and Technology Project of Weifang (2022GX006).

    The author is very grateful to the experts who gave some guidance and suggestions during the writing process of this paper, and also to the anonymous reviewers for their comments on this paper, which greatly improved the quality of this paper.

    The author declares that she has no conflict of interest.



    [1] R. A. Adams, Sobolev space, Vol. 65, New York: Academic Press, 1975.
    [2] G. Ahmadi, M. Shahinpoor, Universal stability of magneto-micropolar fluid motions, Int. J. Eng. Sci., 12 (1974), 657–663. https://doi.org/10.1016/0020-7225(74)90042-1 doi: 10.1016/0020-7225(74)90042-1
    [3] Y. Amirat, K. Hamdache, Weak solutions to the equations of motion for compressible magnetic fluids, J. Math. Pures Appl., 91 (2009), 433–467. https://doi.org/10.1016/j.matpur.2009.01.015 doi: 10.1016/j.matpur.2009.01.015
    [4] Y. Amirat, K. Hamdache, Global weak solutions to the equations of theremal convection in micropolar fluids subjected to Hall current, Nonlinear Anal., 102 (2014), 186–207. https://doi.org/10.1016/j.na.2014.02.001 doi: 10.1016/j.na.2014.02.001
    [5] M. T. Chen, X. Y. Xu, J. W. Zhang, Global weak solutions of 3D compressible micropolar fluids with discontinuous initial data and vacuum, Commun. Math. Sci., 13 (2015), 225–247. https://doi.org/10.4310/CMS.2015.v13.n1.a11 doi: 10.4310/CMS.2015.v13.n1.a11
    [6] H. Chen, Y. M. Sun, X. Zhong, Global classical solutions to the 3D Cauchy problem of compressible magneto-micropolar fluid equations with far field vacuum, Discrete Cont. Dyn. Syst. Ser. B, 29 (2024), 282–318. https://doi.org/10.3934/dcdsb.2023096 doi: 10.3934/dcdsb.2023096
    [7] T. G. Cowling, Magnetohydrodynamics, 2 Eds., London: Adam Hilger, 1976.
    [8] X. Y. Cui, S. B. Fu, R. Sun, F. F. Tian, Optimal decay-in-time rates of solutions to the Cauchy problem of 3D compressible magneto-micropolar fluids, Bound. Value Probl., 2024 (2024), 33. https://doi.org/10.1186/s13661-024-01839-1 doi: 10.1186/s13661-024-01839-1
    [9] F. Crispo, P. Marenmonti, An interpolation inequality in exterior domains, Send. Sem. Mat. Univ. Padova., 112 (2004), 11–39.
    [10] A. C. Eringen, Theory of micropolar fluids, Indiana Univ. Math. J., 16 (1966), 1–18.
    [11] A. C. Eringen, Theory of thermomicrofluids, J. Math. Anal. Appl., 38 (1972), 480–496. https://doi.org/10.1016/0022-247X(72)90106-0 doi: 10.1016/0022-247X(72)90106-0
    [12] A. C. Eringen, Microcontinuum field theories Ⅱ: fluent media, Springer-Verlag, New York, 2001.
    [13] J. S. Fan, A. Alsaedi, T. Hayat, G. Nakamura, Y. Zhou, On strong solutions to the compressible Hall-magnetohydrodynamic system, Nonlinear Anal., 22 (2015), 423–434. https://doi.org/10.1016/j.nonrwa.2014.10.003 doi: 10.1016/j.nonrwa.2014.10.003
    [14] E. Gagliardo, Ulterior proprietà di alcune classi di funzioni in più variabili, Ricerche Mat., 8 (1959), 24–51.
    [15] J. C. Gao, Z. A. Yao, Global existence and optimal decay rates of solutions for compressible Hall-MHD equations, Discrete Contin. Dyn. Syst., 36 (2016), 3077–3106. https://doi.org/10.3934/dcds.2016.36.3077 doi: 10.3934/dcds.2016.36.3077
    [16] H. Homann, R. Grauer, Bifurcation analysis of magnetic reconnection in Hall-MHD systems, Phys. D., 208 (2005), 59–72. https://doi.org/10.1016/j.physd.2005.06.003 doi: 10.1016/j.physd.2005.06.003
    [17] S. Kawashima, Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics, Ph.D. Thesis, Kyoto University, 1983. https://doi.org/10.14989/doctor.k3193
    [18] S. H. Lai, X. Y. Xu, J. W. Zhang, On the Cauchy problem of compressible full Hall-MHD equations, Z. Angew. Math. Phys., 70 (2019), 139. https://doi.org/10.1007/s00033-019-1178-z doi: 10.1007/s00033-019-1178-z
    [19] S. H. Lai, X. Y. Xu, Global strong solutions for planar full compressible Hall-MHD equations with large initial data, Commun. Math. Sci., 19 (2021), 1913–1943. https://doi.org/10.4310/cms.2021.v19.n7.a7 doi: 10.4310/cms.2021.v19.n7.a7
    [20] A. Majda, Compressible fluid flow and systems of conservation laws in several space variables, Vol. 53, New York: Springer, 1984. https://doi.org/10.1007/978-1-4612-1116-7
    [21] K. S. Mekheimer, M. A. El Kot, Influence of magnetic field and Hall currents on blood floe through a stenotic artery, Appl. Math. Mech.-Engl. Ed., 29 (2008), 1093–1104. https://doi.org/10.1007/s10483-008-0813-x doi: 10.1007/s10483-008-0813-x
    [22] A. Matsumura, T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67–104. https://doi.org/10.1215/kjm/1250522322 doi: 10.1215/kjm/1250522322
    [23] P. D. Mininni, D. O. Gómez, S. M. Mahajan, Dynamo action in magnetohydrodynamics and Hall magnetohydrodynamics, Astrophys. J., 587 (2003), 472. https://doi.org/10.1086/368181 doi: 10.1086/368181
    [24] N. Mujakovi\'c, Global in time estimates for one-dimensional compressible viscous micropolar fluid model, Glas. Mat., 40 (2005), 103–120. https://doi.org/10.3336/gm.40.1.10 doi: 10.3336/gm.40.1.10
    [25] N. Mujakovi\'c, Non-homogeneous boundary value problem for one-dimensional compressible viscous micropolar fluid model: a global existence theorem, Math. Inequal. Appl., 12 (2009), 651–662. https://doi.org/10.7153/mia-12-49 doi: 10.7153/mia-12-49
    [26] N. Rani, S. K. Tomar, Thermal convection problem of micropolar fluid subjected to hall current, Appl. Math. Model., 34 (2010), 508–519. https://doi.org/10.1016/j.apm.2009.06.007 doi: 10.1016/j.apm.2009.06.007
    [27] D. A. Shalybkov, A. V. Urpin, The Hall effect and the decay of magnetic fields, Astron. Astrophys., 321 (1997), 685–690.
    [28] L. L. Tong, Z. Tan, Optimal decay rates of the compressible magneto-micropolar fluids system in \mathbb{R}^3, Commun. Math. Sci., 17 (2019), 1109–1134. https://doi.org/10.4310/CMS.2019.v17.n4.a13 doi: 10.4310/CMS.2019.v17.n4.a13
    [29] M. Wardle, Star formation and the Hall effect, Astrophys. Space Sci., 292 (2004), 317–323. https://doi.org/10.1023/B:ASTR.0000045033.80068.1f doi: 10.1023/B:ASTR.0000045033.80068.1f
    [30] R. Y. Wei, B. L. Guo, Y. Li, Global existence and optimal convergence rates of solutions for 3D compressible magneto-micropolar fluid equations, J. Differ. Equations, 263 (2017), 2457–2480. https://doi.org/10.1016/j.jde.2017.04.002 doi: 10.1016/j.jde.2017.04.002
    [31] Z. Y. Xiang, On the Cauchy problem for the compressible Hall-magneto-hydrodynamics equations, J. Evol. Equ., 17 (2017), 685–715. https://doi.org/10.1007/s00028-016-0333-7 doi: 10.1007/s00028-016-0333-7
    [32] Q. J. Xu, Z. Tan, H. Q. Wang, Global existence and asymptotic behavior for the 3D compressible magneto-micropolar fluids in a bounded domain, J. Math. Phys., 61 (2020), 011506. https://doi.org/10.1063/1.5121247 doi: 10.1063/1.5121247
    [33] Q. Xu, X. Zhong, Strong solutions to the three-dimensional barotropic compressible magneto-micropolar fluid equations with vacuum, Z. Angew. Math. Phys., 73 (2022), 14. https://doi.org/10.1007/s00033-021-01642-3 doi: 10.1007/s00033-021-01642-3
    [34] X. Ye, Z. J. Wang, On vanishing limits of the shear viscosity and Hall coefficients for the planar compressible Hall-MHD system, Math. Meth. Appl. Sci., 45 (2022), 3698–3717. https://doi.org/10.1002/mma.8012 doi: 10.1002/mma.8012
    [35] P. X. Zhang, Decay of the compressible magneto-micropolar fluids, J. Math. Phys., 59 (2018), 023102. https://doi.org/10.1063/1.5024795 doi: 10.1063/1.5024795
    [36] X. Zhang, H. Cai, Existence and uniqueness of time periodic solutions to the compressible magneto-micropolar fluids in a periodic domain, Z. Angew. Math. Phys., 71 (2020), 184. https://doi.org/10.1007/s00033-020-01409-2 doi: 10.1007/s00033-020-01409-2
    [37] J. W. Zhang, J. N. Zhao, Some decay estimates of solutions for the 3-D compressible isentropic magnetohydrodynamics, Commun. Math. Sci., 8 (2010), 835–850. https://doi.org/10.4310/CMS.2010.v8.n4.a2 doi: 10.4310/CMS.2010.v8.n4.a2
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(602) PDF downloads(47) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog