This study presents a novel approach to defining topological rough semigroups on an approximation space. The concepts of topological space and rough semigroup are naturally combined to achieve this goal. Also, some basic results and examples are presented. Furthermore, some compactness properties are also studied. In addition, their rough subsemigroups and rough ideals are analysed.
Citation: Nurettin Bağırmaz. A topological approach for rough semigroups[J]. AIMS Mathematics, 2024, 9(10): 29633-29644. doi: 10.3934/math.20241435
[1] | Yanping Yang, Muhammad Shoaib Saleem, Waqas Nazeer, Ahsan Fareed Shah . New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus via exponentially convex fuzzy interval-valued function. AIMS Mathematics, 2021, 6(11): 12260-12278. doi: 10.3934/math.2021710 |
[2] | Muhammad Bilal Khan, Muhammad Aslam Noor, Thabet Abdeljawad, Bahaaeldin Abdalla, Ali Althobaiti . Some fuzzy-interval integral inequalities for harmonically convex fuzzy-interval-valued functions. AIMS Mathematics, 2022, 7(1): 349-370. doi: 10.3934/math.2022024 |
[3] | Muhammad Bilal Khan, Pshtiwan Othman Mohammed, Muhammad Aslam Noor, Abdullah M. Alsharif, Khalida Inayat Noor . New fuzzy-interval inequalities in fuzzy-interval fractional calculus by means of fuzzy order relation. AIMS Mathematics, 2021, 6(10): 10964-10988. doi: 10.3934/math.2021637 |
[4] | Iqra Nayab, Shahid Mubeen, Rana Safdar Ali, Faisal Zahoor, Muath Awadalla, Abd Elmotaleb A. M. A. Elamin . Novel fractional inequalities measured by Prabhakar fuzzy fractional operators pertaining to fuzzy convexities and preinvexities. AIMS Mathematics, 2024, 9(7): 17696-17715. doi: 10.3934/math.2024860 |
[5] | Muhammad Bilal Khan, Gustavo Santos-García, Hüseyin Budak, Savin Treanțǎ, Mohamed S. Soliman . Some new versions of Jensen, Schur and Hermite-Hadamard type inequalities for (p,J)-convex fuzzy-interval-valued functions. AIMS Mathematics, 2023, 8(3): 7437-7470. doi: 10.3934/math.2023374 |
[6] | Muhammad Bilal Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Kamsing Nonlaopon, Y. S. Hamed . Some new Jensen, Schur and Hermite-Hadamard inequalities for log convex fuzzy interval-valued functions. AIMS Mathematics, 2022, 7(3): 4338-4358. doi: 10.3934/math.2022241 |
[7] | Dawood Khan, Saad Ihsan Butt, Asfand Fahad, Yuanheng Wang, Bandar Bin Mohsin . Analysis of superquadratic fuzzy interval valued function and its integral inequalities. AIMS Mathematics, 2025, 10(1): 551-583. doi: 10.3934/math.2025025 |
[8] | Jamshed Nasir, Saber Mansour, Shahid Qaisar, Hassen Aydi . Some variants on Mercer's Hermite-Hadamard like inclusions of interval-valued functions for strong Kernel. AIMS Mathematics, 2023, 8(5): 10001-10020. doi: 10.3934/math.2023506 |
[9] | Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions. AIMS Mathematics, 2020, 5(5): 5106-5120. doi: 10.3934/math.2020328 |
[10] | Jorge E. Macías-Díaz, Muhammad Bilal Khan, Muhammad Aslam Noor, Abd Allah A. Mousa, Safar M Alghamdi . Hermite-Hadamard inequalities for generalized convex functions in interval-valued calculus. AIMS Mathematics, 2022, 7(3): 4266-4292. doi: 10.3934/math.2022236 |
This study presents a novel approach to defining topological rough semigroups on an approximation space. The concepts of topological space and rough semigroup are naturally combined to achieve this goal. Also, some basic results and examples are presented. Furthermore, some compactness properties are also studied. In addition, their rough subsemigroups and rough ideals are analysed.
It is well known fact that the concept of interval analysis fell into oblivion for long time until the 1950's: Moore [1], Warmus [2] and Sunaga [3]. The literature of interval analysis can be tracked back to the computation of lower and upper bounds for π by Archimedes in the following way 31071<π<317. The first monograph was published by Moore in 1960 [4], this field has attracted much attention in the theoretical and applied research. This research field has yielded important results over the past 50 years.
Recently, several classical integral inequalities have been generalized to the context of set-valued and fuzzy-set-valued functions by means of inclusion and pseudo order relation. In light of this, Sadowska [5] arrived at the following conclusion for an IVF:
Let F:[u,ν]⊂R→K+I be a convex interval-valued function (convex-IVF) given by F(ω)=[F∗(ω),F∗(ω)] for all ω∈[u,ν], where F∗(ω) and F∗(ω) are convex and concave functions, respectively. If F is interval Riemann integrable (in sort, IR-integrable), then
F(u+ν2)⊇1ν−u(IR)∫νuF(ω)dω⊇F(u)+F(ν)2. | (1) |
Note that, the inclusion relation (Eq 1) is reversed when Fconcave-IVF is. Following that, many scholars used inclusion relations and various integral operators to establish a close relationship between inequality and IVFs. Recently, Costa [6] obtained Jensen's type inequality for FIVF. Costa and Roman-Flores [7,8] introduced different types of inequalities for FIVF and IVF, and discussed their properties. Roman-Flores et al. [9] derived Gronwall for IVFs. Moreover, Chalco-Cano et al. [10,11] presented Ostrowski-type inequalities for IVFs by using the generalized Hukuhara derivative and provided applications in numerical integration in IVF. Nikodem et al. [12], and Matkowski and Nikodem [13] presented the new versions of Jense's inequality for strongly convex and convex functions. Zhao et al. [14,15] derived Chebyshev, Jensen's and H-H type inequalities for IVFs. Recently, Zhang et al. [16] generalized the Jense's inequalities and defined new version of Jensen's inequalities for set-valued and fuzzy-set-valued functions through pseudo order relation. After that, for convex-IVF, Budek [17] established interval-valued fractional Riemann-Liouville H−Hinequality by means of inclusion relation. For more useful details, see [18,19,20,21,22,23,24] and the references therein.
Recently, Khan et al. [25] introduced the new class of convex fuzzy mappings is known as (h1,h2)-convex FIVFs by means of FOR and presented the following new version of H-H type inequality for (h1,h2)-convex FIVF involving fuzzy-interval Riemann integrals:
LetF:[u,ν]→F0 be a (h1,h2)-convex FIVF with h1,h2:[0,1]→R+ and h1(12)h2(12)≠0. Then, from θ-levels, we get the collection of IVFs Fθ:[u,ν]⊂R→K+C are given by Fθ(ω)=[F∗(ω,θ),F∗(ω,θ)] for all ω∈[u,ν] and for all θ∈[0,1]. If F is fuzzy-interval Riemann integrable (in sort, FR-integrable), then
12h1(12)h2(12)F(u+ν2)≼1ν−u(FR)∫νuF(ω)dω≼[F(u) +F(ν)]∫10h1(τ)h2(1−τ)dτ. | (2) |
If h1(τ)=τ and h2(τ)≡1, then from (2), we get following the result for convex FIVF:
F(u+ν2)≼1ν−u(FR)∫νuF(ω)dω≼F(u) +F(ν)2. | (3) |
A one step forward, Khan et al. introduced new classes of convex and generalized convex FIVF, and derived new fractional H-H type and H-H type inequalities for convex FIVF [26], h-convex FIVF [27], (h1,h2)-preinvex FIVF [28], log-s-convex FIVFs in the second sense [29], LR-log-h-convex IVFs [30], harmonically convex FIVFs [31], coordinated convex FIVFs [32] and the references therein. We refer to the readers for further analysis of literature on the applications and properties of fuzzy-interval, and inequalities and generalized convex fuzzy mappings, see [33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49] and the references therein.
This study is organized as follows: Section 2 presents preliminary notions and results in interval space, the space of fuzzy intervals and convex analysis. Moreover, the new concept of p-convex fuzzy-IVF is also introduced. Section 3 obtains fuzzy-interval HH-inequalities for p-convex fuzzy-IVFs via fuzzy Riemann integrals. In addition, some interesting examples are also given to verify our results. Section 4 derives discrete Jensen's and Schur's type inequalities for p-convex fuzzy-IVFS. Section 5 gives conclusions and future plans.
In this section, some preliminary notions, elementary concepts and results are introduced as a pre-work, including operations, orders, and distance between interval and fuzzy numbers, Riemannian integrals, and fuzzy Riemann integrals. Some new definitions and results are also given which will be helpful to prove our main results.
Let R be the set of real numbers and KC be the space of all closed and bounded intervals of R, and ϖ∈KC be defined by
ϖ=[ϖ∗,ϖ∗]={ω∈R|ϖ∗≤ω≤ϖ∗},(ϖ∗,ϖ∗∈R). |
If ϖ∗=ϖ∗, then ϖ is said to be degenerate. If ϖ∗≥0, then [ϖ∗,ϖ∗] is called positive interval. The set of all positive interval is denoted by K+C and defined as K+C={[ϖ∗,ϖ∗]:[ϖ∗,ϖ∗]∈KC and ϖ∗≥0}.
Let ϱ∈R and ϱϖ be defined by
ϱ.ϖ={[ϱϖ∗,ϱϖ∗],if ϱ>0,{0},if ϱ=0,[ϱϖ∗,ϱϖ∗],if ϱ<0. | (4) |
Then the Minkowski difference ξ−ϖ, addition ϖ+ξ and ϖ×ξ for ϖ,ξ∈KC are defined by
[ξ∗,ξ∗]−[ϖ∗,ϖ∗]=[ξ∗−ϖ∗,ξ∗−ϖ∗],[ξ∗,ξ∗]+[ϖ∗,ϖ∗]=[ξ∗+ϖ∗,ξ∗+ϖ∗], | (5) |
and
[ξ∗,ξ∗]×[ϖ∗,ϖ∗]=[min{ξ∗ϖ∗,ξ∗ϖ∗,ξ∗ϖ∗,ξ∗ϖ∗},max{ξ∗ϖ∗,ξ∗ϖ∗,ξ∗ϖ∗,ξ∗ϖ∗}]. |
The inclusion "⊆" means that
ξ⊆ϖif and only if,[ξ∗,ξ∗]⊆[ϖ∗,ϖ∗],if and only if ϖ∗≤ξ∗,ξ∗≤ϖ∗. | (6) |
Remark 2.1. [33] The relation "≤I" defined on KC by
[ξ∗,ξ∗]≤I[ϖ∗,ϖ∗] if and only if ξ∗≤ϖ∗,ξ∗≤ϖ∗, | (7) |
for all [ξ∗,ξ∗],[ϖ∗,ϖ∗]∈KC, it is an order relation. For given [ξ∗,ξ∗],[ϖ∗,ϖ∗]∈KC, we say that [ξ∗,ξ∗]≤I[ϖ∗,ϖ∗] if and only if ξ∗≤ϖ∗,ξ∗≤ϖ∗.
For [ξ∗,ξ∗],[ϖ∗,ϖ∗]∈KC, the Hausdorff–Pompeiu distance between intervals [ξ∗,ξ∗] and [ϖ∗,ϖ∗] is defined by
d([ξ∗,ξ∗],[ϖ∗,ϖ∗])=max{|ξ∗−ϖ∗|,|ξ∗−ϖ∗|}. | (8) |
It is familiar fact that (KC,d) is a complete metric space.
A fuzzy subset T of R is characterize by a mapping ξ:R→[0,1] called the membership function, for each fuzzy set and θ∈(0,1], then θ-level sets of ξ is denoted and defined as follows ξθ={u∈R|ξ(u)≥θ}. If θ=0, then supp(ξ)={ω∈R|ξ(ω)>0} is called support of ξ. By [ξ]0 we define the closure of supp(ξ).
Let F(R) be the collection of all fuzzy sets and ξ∈F(R) be a fuzzy set. Then, we define the following:
(1) ξ is said to be normal if there exists ω∈R and ξ(ω)=1;
(2) ξ is said to be upper semi continuous on R if for given ω∈R, there exist ϵ>0 there exist δ>0 such that ξ(ω)−ξ(y)<ϵ for all y∈R with |ω−y|<δ;
(3) ξ is said to be fuzzy convex if ξθ is convex for every θ∈[0,1];
(4) ξ is compactly supported if supp(ξ) is compact.
A fuzzy set is called a fuzzy number or fuzzy interval if it has properties (1)–(4). We denote by F0 the family of all fuzzy intervals.
Let ξ∈F0 be a fuzzy-interval, if and only if, θ-levels [ξ]θ is a nonempty compact convex set ofR. From these definitions, we have
[ξ]θ=[ξ∗(θ),ξ∗(θ)], |
where
ξ∗(θ)=inf{ω∈R|ξ(ω)≥θ},ξ∗(θ)=sup{ω∈R|ξ(ω)≥θ}. |
Proposition 2.2. [7] If ξ,ϖ∈F0, then relation "≼" defined on F0 by
ξ≼ϖ if and only if, [ξ]θ≤I[ϖ]θ, for all θ∈[0,1], | (9) |
this relation is known as partial order relation.
For ξ,ϖ∈F0 and ϱ∈R, the sum ξ +ϖ, product ξ ×ϖ, scalar product ϱ.ξ and sum with scalar are defined by:
Then, for all θ∈[0,1], we have
[ξ +ϖ]θ=[ξ]θ+[ϖ]θ, | (10) |
[ξ ×ϖ]θ=[ξ]θ×[ϖ]θ, | (11) |
[ϱ⋅ξ]θ=ϱ⋅[ξ]θ, | (12) |
[ϱ +ξ]θ=ϱ+[ξ]θ. | (13) |
For ψ∈F0 such that ξ=ϖ +ψ, then by this result we have existence of Hukuhara difference of ξ and ϖ, and we say that ψ is the H-difference of ξ and ϖ, and denoted by ξ −ϖ.
Definition 2.3. [16] A fuzzy-interval-valued mapF:K⊂R→F0 is called FIVF. For each θ∈(0,1], θ-levels define the family of IVFs Fθ:K⊂R→KC are given by Fθ(ω)=[F∗(ω,θ),F∗(ω,θ)] for all ω∈K. Here, for each θ∈(0,1], the end point real functions F∗(.,θ),F∗(.,θ):K→R are called lower and upper functions of F.
Definition 2.5. [34] Let F:[u,ν]⊂R→F0 be a FIVF. Then, fuzzy Riemann integral of F over [u,ν], denoted by (FR)∫νuF(ω)dω, it is given level-wise by
[(FR)∫νuF(ω)dω]θ=(IR)∫νuFθ(ω)dω={∫νuF(ω,θ)dω:F(ω,θ)∈R([u,ν],θ)}, | (14) |
for all θ∈(0,1], where R([u,ν],θ) denotes the collection of Riemannian integrable functions of IVFs. F is FR-integrable over [u,ν] if (FR)∫νuF(ω)dω∈F0. Note that, if both end point functions are Lebesgue-integrable, then F is fuzzy Aumann-integrable function over [u,ν] [16,34].
Theorem 2.6. Let F:[u,ν]⊂R→F0 be a FIVF and for all θ∈(0,1], θ-levels define the family of IVFs Fθ:[u,ν]⊂R→KC are given by Fθ(ω)=[F∗(ω,θ),F∗(ω,θ)] for all ω∈[u,ν]. Then, F is fuzzy Riemann integrable (FR-integrable) over [u,ν] if and only if, F∗(ω,θ) and F∗(ω,θ) both are Riemann integrable (R-integrable) over [u,ν]. Moreover, if F is FR-integrable over [u,ν], then
[(FR)∫νuF(ω)dω]θ=[(R)∫νuF∗(ω,θ)dω,(R)∫νuF∗(ω,θ)dω]=(IR)∫νuFθ(ω)dω, | (15) |
for all θ∈(0,1], where IR represent interval Riemann integration of Fθ(ω). For all θ∈(0,1], FR([u,ν],θ) denotes the collection of all FR-integrable FIVFs over [u,ν].
Definition 2.7. Let [u,ν] be a p-convex interval. Then, FIVF F:[u,ν]→F0 is said to be p-convex on[u,ν] if
F([ηxp+(1−η)yp]1p)≼ηF(x) +(1−η)F(y), | (16) |
for allx,y∈[u,ν],η∈[0,1], where F(ω)≽ 0, for all ω∈[u,ν]. If inequality (16) is reversed, then F is said to be p-concave FIVF on [u,ν]. The set of all p-convex (LR-p-concave) FIVFs is denoted by
SXF([u,ν],F0,p),(SVF([u,ν],F0,p)). |
Remark 2.8. The p-convex FIVFs have some very nice properties similar to convex FIVF:
If F is p-convex FIVF, then YF is also p-convex for Y≥0.
If F and T both are p-convex FIVFs, then max(F(ω),T(ω)) is also p-convex FIVF.
We now discuss some new and known special cases of p-convex FIVFs:
If p≡1, then p-convex FIVF becomes convex FIVF, see [35], that is
F(ηx+(1−η)y)≼ηF(x) +(1−η)F(y),∀x,y∈[u,ν],η∈[0,1]. | (17) |
In Theorem 2.9, we will try to establish relation between the p-convex FIVFs and endpoint functions F∗(ω,θ), F∗(ω,θ) because through endpoint functions, FIVFs can be easily handled.
Theorem 2.9. Let [u,ν] be convex set, and F:[u,ν]→F0 be a FIVF. Then, θ-levels define the family of IVFs Fθ:[u,ν]⊂R→KC+⊂KC are given by
Fθ(ω)=[F∗(ω,θ),F∗(ω,θ)],∀ω∈[u,ν], | (18) |
for all ω∈[u,ν] and for all θ∈[0,1]. Then, F is p-convex on [u,ν], if and only if, for all θ∈[0,1], F∗(ω,θ) and F∗(ω,θ) both are p-convex functions.
Proof. Assume that for each θ∈[0,1], F∗(ω,θ) and F∗(ω,θ) are p-convex functions on [u,ν]. Then, from (16) we have
F∗([ηxp+(1−η)yp]1p,θ)≤ηF∗(x,θ)+(1−η)F∗(y,θ),∀x,y∈[u,ν],η∈[0,1], |
and
F∗([ηxp+(1−η)yp]1p,θ)≤ηF∗(x,θ)+(1−η)F∗(y,θ),∀x,y∈[u,ν],η∈[0,1]. |
Then by (18), (10) and (12), we obtain
Fθ([ηxp+(1−η)yp]1p)=[F∗([ηxp+(1−η)yp]1p,θ),F∗([ηxp+(1−η)yp]1p,θ)], |
≤I[ηF∗(x,θ),ηF∗(x,θ)]+[(1−η)F∗(y,θ),(1−η)F∗(y,θ)], |
that is
F([ηxp+(1−η)yp]1p)≼ηF(x) +(1−η)F(y),∀x,y∈[u,ν],η∈[0,1]. |
Hence, F is p-convex FIVF on [u,ν].
Conversely, let F be p-convex FIVF on [u,ν]. Then, for all x,y∈[u,ν] and η∈[0,1], we have
F([ηxp+(1−η)yp]1p)≼ηF(x) +(1−η)F(y). |
Therefore, from (18), we have
Fθ([ηxp+(1−η)yp]1p)=[F∗([ηxp+(1−η)yp]1p,θ),F∗([ηxp+(1−η)yp]1p,θ)]. |
Again, from (18), (10) and (12), we obtain
ηFθ(x) +(1−η)Fθ(y)=[ηF∗(x,θ),ηF∗(x,θ)]+[(1−η)F∗(y,θ),(1−η)F∗(y,θ)], |
for all x,y∈[u,ν] and η∈[0,1]. Then, by p-convexity of F, we have for all x,y∈[u,ν] and η∈[0,1]such that
F∗([ηxp+(1−η)yp]1p,θ)≤ηF∗(x,θ)+(1−η)F∗(y,θ), |
and
F∗([ηxp+(1−η)yp]1p,θ)≤ηF∗(x,θ)+(1−η)F∗(y,θ), |
for each θ∈[0,1]. Hence, the result follows.
Example 2.10. We consider the FIVF F:[0,1]→F0 defined by,
F(ω)(λ)={λ2ω2,λ∈[0,2ω2]4ω2−λ2ω2,λ∈(2ω2,4ω2]0,otherwise, |
then, for each θ∈[0,1], we have Fθ(ω)=[2θω2,(4−2θ)ω2]. Since end point functions F∗(ω,θ), F∗(ω,θ) are convex functions for each θ∈[0,1]. Hence F(ω) is convex FIVF.
Remark 2.11. If F∗(ω,θ)=F∗(ω,θ), then Definition 2.7 reduces to the definition of classical p-convex function, [43].
If F∗(ω,θ)=F∗(ω,θ) and p≡1, then Definition 2.7 reduces to the definition of classical convex function.
In this section, we will prove two types of inequalities. First one is Hermite-Hadamard and their variant forms, and the second one is Hermite-Hadamard-Fejér inequalities for p-convex FIVFs where the integrands are FIVFs. We will verify these inequalities with the help of nontrivial examples.
Theorem 3.1. Let F∈SXF([u,ν],F0,p). Then, θ-levels define the family of IVFs Fθ:[u,ν]⊂R→KC+ are given by Fθ(ω)=[F∗(ω,θ),F∗(ω,θ)] for all ω∈[u,ν] and for all θ∈[0,1]. If F∈FR([u,ν],θ), then
F([up+νp2]1p)≼pνp−up(FR)∫νuωp−1F(ω)dω≼F(u) +F(ν)2. | (19) |
If F(ω) is p-concave FIVF, then
F([up+νp2]1p)≽pνp−up(FR)∫νuωp−1F(ω)dω≽F(u) +F(ν)2. | (20) |
Proof. Let F:[u,ν]→F0 be a p-convex FIVF. Then, by hypothesis, we have
2F([up+νp2]1p)≼F([ηup+(1−η)vp]1p) +F([(1−η)up+ηνp]1p). |
Therefore, for every θ∈[0,1], we have
2F∗([up+νp2]1p,θ)≤F∗([ηup+(1−η)νp]1p,θ)+F∗([(1−η)up+ηνp]1p,θ),2F∗([up+νp2]1p,θ)≤F∗([ηup+(1−η)νp]1p,θ)+F∗([(1−η)up+ηνp]1p,θ). |
Then
2∫10F∗([up+νp2]1p,θ)dη≤∫10F∗([ηup+(1−η)νp]1p,θ)dη+∫10F∗([(1−η)up+ηνp]1p,θ)dη,2∫10F∗([up+νp2]1p,θ)dη≤∫10F∗([ηup+(1−η)νp]1p,θ)dη+∫10F∗([(1−η)up+ηνp]1p,θ)dη. |
It follows that
F∗([up+νp2]1p,θ)≤pνp−up∫νuωp−1F∗(ω,θ)dω,F∗([up+νp2]1p,θ)≤pνp−up∫νuωp−1F∗(ω,θ)dω. |
That is
[F∗([up+νp2]1p,θ),F∗([up+νp2]1p,θ)]≤Ipνp−up[∫νuωp−1F∗(ω,θ)dω,∫νuωp−1F∗(ω,θ)dω]. |
Thus,
F([up+νp2]1p)≼pνp−up(FR)∫νuωp−1F(ω)dω. | (21) |
In a similar way as above, we have
pνp−up(FR)∫νuωp−1F(ω)dω≼F(u) +F(ν)2. | (22) |
Combining (21) and (22), we have
F([up+νp2]1p)≼pνp−up(FR)∫νuωp−1F(ω)dω≼F(u) +F(ν)2. |
Hence, the required result.
Remark 3.2. If p=1, then Theorem 3.1, reduces to the result for convex FIVF, see [25]:
F(u+ν2)≼1ν−u(FR)∫νuF(ω)dω≼F(u) +F(ν)2. |
If F∗(ω,θ)=F∗(ω,θ) withθ=1, then Theorem 3.1, reduces to the result for p-convex function [43]:
F([up+νp2]1p)≤pνp−up(R)∫νuωp−1F(ω)dω≤F(u)+F(ν)2. |
If F∗(ω,θ)=F∗(ω,θ) with θ=1 and p=1, then Theorem 3.1, reduces to the result for classical convex function:
F(u+ν2)≤1ν−u(R)∫νuF(ω)dω≤F(u)+F(ν)2. |
Example 3.3. Let p be an odd number and the FIVF F:[u,ν]=[2,3]→F0 defined by,
F(ω)(λ)={λ(2−ωp2)λ∈[0,2−ωp2],2(2−ωp2)−λ(2−ωp2)λ∈(2−ωp2,2(2−ωp2)],0otherwise. | (23) |
Then, for each θ∈[0,1], we have Fθ(ω)=[θ(2−ωp2),(2−θ)(2−ωp2)]. Since end point functions F∗(ω,θ)=θ(2−ωp2), F∗(ω,θ)=(2−θ)(2−ωp2) are p-convex functions for each θ∈[0,1]. Then, F(ω) is p-convex FIVF.
We now computing the following
F∗([up+νp2]1p,θ)=4−√102θ,F∗([up+νp2]1p,θ)=4−√102(2−θ), |
pνp−up∫νuωp−1F∗(ω,θ)dω=θ∫32(2−ωp2)dω=2150θ,pνp−up∫νuωp−1F∗(ω,θ)dω=(2−θ)∫32(2−ωp2)dω=2150(2−θ), |
F∗(u,θ)+F∗(ν,θ)2=4−√2−√32θ,F∗(u,θ)+F∗(ν,θ)2=4−√2−√32(2−θ), |
for all θ∈[0,1]. That means
[4−√102θ,4−√102(2−θ)]≤I[2150θ,2150(2−θ)]≤I[4−√2−√32θ,4−√2−√32(2−θ)], |
for all θ∈[0,1], and the Theorem 3.1 has been verified.
To prove some related inequalities for the above theorem, we obtain following inequality for p-convex FIVFs
Theorem 3.4. Let F∈SXF([u,ν],F0,p). Then, θ-levels define the family of IVFs Fθ:[u,ν]⊂R→KC+ are given by Fθ(ω)=[F∗(ω,θ),F∗(ω,θ)] for all ω∈[u,ν] and for all θ∈[0,1]. If F∈FR([u,ν],θ), then
F([up+νp2]1p)≼⪧2≼pνp−up(FR)∫νuωp−1F(ω)dω≼⪧1≼F(u) +F(ν)2, |
where
⪧1=F(u) +F(ν)2 +F([up+νp2]1p)2,⪧2=F([3up+νp4]1p) +F([up+3νp4]1p)2,and⪧1=[⪧1∗,⪧1∗],⪧2=[⪧2∗,⪧2∗]. |
Proof. Take [up,up+νp2], we have
2F([ηup+(1−η)up+νp2]1p2+[(1−η)up+ηup+νp2]1p2)≼F([ηup+(1−η)up+νp2]1p) +F([(1−η)up+ηup+νp2]1p). |
Therefore, for every θ∈[0,1], we have
2F∗([ηup+(1−η)up+νp2]1p2+[(1−η)up+ηup+νp2]1p2,θ)≤F∗([ηup+(1−η)up+νp2]1p,θ)+F∗([(1−η)up+ηup+νp2]1p,θ), |
2F∗([ηup+(1−η)up+νp2]1p2+[(1−η)up+ηup+νp2]1p2,θ)≤F∗([ηup+(1−η)up+νp2]1p,θ)+F∗([(1−η)up+ηup+νp2]1p,θ). |
In consequence, we obtain
F∗([3up+νp4]1p,θ)2≤pνp−up∫up+νp2uF∗(ω,θ)dω,F∗([3up+νp4]1p,θ)2≤pνp−up∫up+νp2uF∗(ω,θ)dω. |
That is
[F∗([3up+νp4]1p,θ),F∗([3up+νp4]1p,θ)]2≤pνp−up[∫up+νp2uF∗(ω,θ)dω,∫up+νp2uF∗(ω,θ)dω]. |
It follows that
F([3up+νp4]1p)2≼pνp−up(FR)∫up+νp2uF(ω)dω. | (24) |
In a similar way as above, we have
F([up+3νp4]1p)2≼pνp−up(FR)∫νup+νp2F(ω)dω. | (25) |
Combining (24) and (25), we have
[F([3up+νp4]1p) +F([up+3νp4]1p)]2≼pνp−up(FR)∫νuF(ω)dω. |
By using Theorem 3.1, we have
F([up+νp2]1p)=F([12.3up+νp4+12.up+3νp4]1p). |
Therefore, for every θ∈[0,1], we have
F∗([up+νp2]1p,θ)=F∗([12.3up+νp4+12.up+3νp4]1p,θ),F∗([up+νp2]1p,θ)=F∗([12.3up+νp4+12.up+3νp4]1p,θ), |
≤[12F∗([3up+νp4]1p,θ)+12F∗([up+3νp4]1p,θ)],≤[12F∗([3up+νp4]1p,θ)+12F∗([up+3νp4]1p,θ)], |
=⪧2∗,=⪧2∗, |
≤pνp−up∫νuF∗(ω,θ)dω,≤pνp−up∫νuF∗(ω,θ)dω, |
≤12[F∗(u,θ)+F∗(ν,θ)2+F∗([up+νp2]1p,θ)],≤12[F∗(u,θ)+F∗(ν,θ)2+F∗([up+νp2]1p,θ)], |
=⪧1∗,=⪧1∗, |
≤12[F∗(u,θ)+F∗(ν,θ)2+F∗(u,θ)+F∗(ν,θ)2],≤12[F∗(u,θ)+F∗(ν,θ)2+F∗(u,θ)+F∗(ν,θ)2], |
=F∗(u,θ)+F∗(ν,θ)2,=F∗(u,θ)+F∗(ν,θ)2, |
that is
F([up+νp2]1p)≼⪧2≼pνp−up(FR)∫νuF(ω)dω≼⪧1≼F(u) +F(ν)2, |
hence, the result follows.
Example 3.5. Let p be an odd number and the FIVF F:[u,ν]=[2,3]→F0 defined by, Fθ(ω)=[θ(2−ωp2),(2−θ)(2−ωp2)], as in Example 3.3, then F(ω) is p-convex FIVF and satisfying (38). We have F∗(ω,θ)=θ(2−ωp2) and F∗(ω,θ)=(2−θ)(2−ωp2). We now computing the following
[F∗(u,θ)+F∗(ν,θ)2]=4−√2−√32θ,[F∗(u,θ)+F∗(ν,θ)2]=4−√2−√32(2−θ), |
⪧1∗=F∗(u,θ)+F∗(ν,θ)2+F∗([up+νp2]1p,θ)2=8−√2−√3−√104θ,⪧1∗=F∗(u,θ)+F∗(ν,θ)2+F∗([up+νp2]1p,θ)2=8−√2−√3−√104(2−θ), |
⪧2∗=12[F∗([3up+νp4]1p,θ)+F∗([up+3νp4]1p,θ)]=5−√114θ,⪧2∗=12[F∗([3up+νp4]1p,θ)+F∗([up+3νp4]1p,θ)]=5−√114(2−θ), |
F∗([up+νp2]1p,θ)=4−√102θ,F∗([up+νp2]1p,θ)=4−√102(2−θ). |
Then, we obtain that
4−√102θ≤5−√114θ≤2150θ≤8−√2−√3−√104θ≤4−√2−√32θ,4−√102(2−θ)≤5−√114(2−θ)≤2150(2−θ)≤8−√2−√3−√104(2−θ)≤4−√2−√32(2−θ). |
Hence, Theorem 3.4 is verified.
From Theorem 3.6 and Theorem 3.7, we now obtain some H-H inequalities for the product of p-convex FIVFs. These inequalities are refinements of some known inequalities [42,43].
Theorem 3.6. Let F,J∈SXF([u,ν],F0,p). Then, θ-levels Fθ,Jθ:[u,ν]⊂R→KC+ are defined by Fθ(ω)=[F∗(ω,θ),F∗(ω,θ)] and Jθ(ω)=[J∗(ω,θ),J∗(ω,θ)] for all ω∈[u,ν] and for all θ∈[0,1]. If F,J and FJ∈FR([u,ν],θ), then
pνp−up(FR)∫νuωp−1F(ω) ×J(ω)dω≼M(u,ν)3 +N(u,ν)6. |
Where M(u,ν)=F(u) ×J(u) +F(ν) ×J(ν), N(u,ν)=F(u) ×J(ν) +F(ν) ×J(u), and Mθ(u,ν)=[M∗((u,ν),θ),M∗((u,ν),θ)] and Nθ(u,ν)=[N∗((u,ν),θ),N∗((u,ν),θ)].
Proof. The proof is similar to the proof of Theorem 3.3 [46].
Example 3.7. Let p be an odd number, and p-convex FIVFs F,J:[u,ν]=[2,3]→F0 are, respectively defined by, Fθ(ω)=[θ(2−ωp2),(2−θ)(2−ωp2)], as in Example 3.3 and Jθ(ω)=[θωp,(2−θ)ωp]. Since F(ω) and J(ω) both are p-convex FIVFs and F∗(ω,θ)=θ(2−ωp2), F∗(ω,θ)=(2−θ)(2−ωp2), and J∗(ω,θ)=θωp, J∗(ω,θ)=(2−θ)ωp, then we computing the following
pνp−up∫νuωp−1F∗(ω,θ)×J∗(ω,θ)dω=θ2,pνp−up∫νuωp−1F∗(ω,θ)×J∗(ω,θ)dω=(2−θ)2, |
M∗((u,ν),θ)=(10−2√2−3√3)θ23,M∗((u,ν),θ)=(10−2√2−3√3)(2−θ)23, |
N∗((u,ν),θ)=(10−3√2−2√3)θ26N∗((u,ν),θ)=(10−3√2−2√3)(2−θ)26, |
for each θ∈[0,1], that means
θ2≤(30−7√2−8√3)θ26,(2−θ)2≤(30−7√2−8√3)(2−θ)26. |
Hence, Theorem 3.6 is demonstrated.
Theorem 3.8. Let F,J∈SXF([u,ν],F0,p). Then, θ-levels define the family of IVFs Fθ,Jθ:[u,ν]⊂R→KC+ are given by Fθ(ω)=[F∗(ω,θ),F∗(ω,θ)] and Jθ(ω)=[J∗(ω,θ),J∗(ω,θ)] for all ω∈[u,ν] and for all θ∈[0,1]. If F ×J∈FR([u,ν],θ), then
2F([up+νp2]1p) ×J([up+νp2]1p)≼pνp−up(FR)∫νuωp−1F(ω) ×J(ω)dω +M(u,ν)6 +N(u,ν)3. |
WhereM(u,ν)=F(u) ×J(u) +F(ν) ×J(ν), N(u,ν)=F(u) ×J(ν) +F(ν) ×J(u), and Mθ(u,ν)=[M∗((u,ν),θ),M∗((u,ν),θ)] and Nθ(u,ν)=[N∗((u,ν),θ),N∗((u,ν),θ)].
Proof. By hypothesis, for each θ∈[0,1], we have
F∗([up+νp2]1p,θ)×J∗([up+νp2]1p,θ)F∗([up+νp2]1p,θ)×J∗([up+νp2]1p,θ) |
≤14[F∗([ηup+(1−η)νp]1p,θ)×J∗([ηup+(1−η)νp]1p,θ)+F∗([ηup+(1−η)νp]1p,θ)×J∗([(1−η)up+ηνp]1p,θ)] |
+14[F∗([(1−η)up+ηνp]1p,θ)×J∗([ηup+(1−η)νp]1p,θ)+F∗([(1−η)up+ηνp]1p,θ)×J∗([(1−η)up+ηνp]1p,θ)] |
,≤14[F∗([ηup+(1−η)νp]1p,θ)×J∗([ηup+(1−η)νp]1p,θ)+F∗([ηup+(1−η)νp]1p,θ)×J∗([(1−η)up+ηνp]1p,θ)]+14[F∗([(1−η)up+ηνp]1p,θ)×J∗([ηup+(1−η)νp]1p,θ)+F∗([(1−η)up+ηνp]1p,θ)×J∗([(1−η)up+ηνp]1p,θ)], |
≤14[F∗([ηup+(1−η)νp]1p,θ)×J∗([ηup+(1−η)νp]1p,θ)+F∗([(1−η)up+ηνp]1p,θ)×J∗([(1−η)up+ηνp]1p,θ)]+14[(ηF∗(u,θ)+(1−η)F∗(ν,θ))×((1−η)J∗(u,θ)+ηJ∗(ν,θ))+((1−η)F∗(u,θ)+ηF∗(ν,θ))×(ηJ∗(u,θ)+(1−η)J∗(ν,θ))],≤14[F∗([ηup+(1−η)νp]1p,θ)×J∗([ηup+(1−η)νp]1p,θ)+F∗([(1−η)up+ηνp]1p,θ)×J∗([(1−η)up+ηνp]1p,θ)]+14[(ηF∗(u,θ)+(1−η)F∗(ν,θ))×((1−η)J∗(u,θ)+ηJ∗(ν,θ))+((1−η)F∗(u,θ)+ηF∗(ν,θ))×(ηJ∗(u,θ)+(1−η)J∗(ν,θ))], |
=14[F∗([ηup+(1−η)νp]1p,θ)×J∗([ηup+(1−η)νp]1p,θ)+F∗([(1−η)up+ηνp]1p,θ)×J∗([(1−η)up+ηνp]1p,θ)]+12[{η2+(1−η)2}N∗((u,ν),θ)+{η(1−η)+(1−η)η}M∗((u,ν),θ)],=14[F∗([ηup+(1−η)νp]1p,θ)×J∗([ηup+(1−η)νp]1p,θ)+F∗([(1−η)up+ηνp]1p,θ)×J∗([(1−η)up+ηνp]1p,θ)]+12[{η2+(1−η)2}N∗((u,ν),θ)+{η(1−η)+(1−η)η}M∗((u,ν),θ)], |
R-Integrating over [0,1], we have
2F∗([up+νp2]1p,θ)×J∗([up+νp2]1p,θ)≤pνp−up∫νuωp−1F∗(ω,θ)×J∗(ω,θ)dω+M∗((u,ν),θ)6+N∗((u,ν),θ)3,2F∗([up+νp2]1p,θ)×J∗([up+νp2]1p,θ)≤pνp−up∫νuωp−1F∗(ω,θ)×J∗(ω,θ)dω+M∗((u,ν),θ)6+N∗((u,ν),θ)3, |
that is
2F([up+νp2]1p) ×J([up+νp2]1p)≼pνp−up(FR)∫νuωp−1F(ω) ×J(ω)dω +M(u,ν)6 +N(u,ν)3. |
Hence, the required result.
Example 3.9. Let p be an odd number, and p-convex FIVFs F,J:[u,ν]=[2,3]→F0 are, respectively defined by, Fθ(ω)=[θ(2−ωp2),(2−θ)(2−ωp2)], as in Example 3.3 and Jθ(ω)=[θωp,(2−θ)ωp]. Since F(ω) and J(ω) both are p-convex FIVFs and F∗(ω,θ)=θ(2−ωp2), F∗(ω,θ)=(2−θ)(2−ωp2), and J∗(ω,θ)=θωp, {\mathcal{J}}^{\mathcal{*}}\left(\omega, \theta \right) = (2-\theta){\omega }^{p} , then we computing the following
\begin{array}{c}2{\mathcal{F}}_{\mathcal{*}}\left({\left[\frac{{\mathit{u}}^{p}+{\nu }^{p}}{2}\right]}^{\frac{1}{p}}, \theta \right)\times {\mathcal{J}}_{\mathcal{*}}\left({\left[\frac{{\mathit{u}}^{p}+{\nu }^{p}}{2}\right]}^{\frac{1}{p}}, \theta \right) = \frac{20-5\sqrt{10}}{2}{\theta }^{2}, \\ 2{\mathcal{F}}^{\mathcal{*}}\left({\left[\frac{{\mathit{u}}^{p}+{\nu }^{p}}{2}\right]}^{\frac{1}{p}}, \theta \right)\times {\mathcal{J}}^{\mathcal{*}}\left({\left[\frac{{\mathit{u}}^{p}+{\nu }^{p}}{2}\right]}^{\frac{1}{p}}, \theta \right) = \frac{20-5\sqrt{10}}{2}{(2-\theta )}^{2}, \end{array} |
\begin{array}{c}\frac{{\mathcal{M}}_{\mathcal{*}}\left(\left(\mathit{u}, \nu \right), \theta \right)}{6} = \left(10-2\sqrt{2}-3\sqrt{3}\right)\frac{{\theta }^{2}}{6}, \\ \frac{{\mathcal{M}}^{\mathcal{*}}\left(\left(\mathit{u}, \nu \right), \theta \right)}{6} = \left(10-2\sqrt{2}-3\sqrt{3}\right)\frac{{(2-\theta )}^{2}}{6}, \end{array} |
\begin{array}{c}\frac{{\mathcal{N}}_{\mathcal{*}}\left(\left(\mathit{u}, \nu \right), \theta \right)}{3} = \left(10-3\sqrt{2}-2\sqrt{3}\right)\frac{{\theta }^{\begin{array}{c}\\ 2\end{array}}}{3}, \\ \frac{{\mathcal{N}}^{\mathcal{*}}\left(\left(\mathit{u}, \nu \right), \theta \right)}{3} = \left(10-3\sqrt{2}-2\sqrt{3}\right)\frac{{(2-\theta )}^{2}}{3}, \end{array} |
for each \theta \in \left[0, 1\right], that means
\begin{array}{c}\frac{20-5\sqrt{10}}{2}{\theta }^{2}\le \left(30-8\sqrt{2}-7\sqrt{3}\right)\frac{{\theta }^{2}}{6}, \\ \frac{20-5\sqrt{10}}{2}{(2-\theta )}^{2}\le \left(30-8\sqrt{2}-7\sqrt{3}\right)\frac{{(2-\theta )}^{2}}{6}, \end{array} |
hence, Theorem 3.8 is verified.
We now give H-H Fejér inequalities for p -convex FIVFs. Firstly, we obtain the second H-H Fejér inequality for p -convex FIVF.
Theorem 3.10. Let \mathcal{F}\in SXF\left(\left[\mathit{u}, \nu \right], {\mathbb{F}}_{0}, p\right) . Then, \theta -levels define the family of IVFs {\mathcal{F}}_{\theta }:\left[\mathit{u}, \nu \right]\subset \mathbb{R}\to {{\mathcal{K}}_{C}}^{+} are given by {\mathcal{F}}_{\theta }\left(\omega \right) = \left[{\mathcal{F}}_{\mathcal{*}}\left(\omega, \theta \right), {\mathcal{F}}^{\mathcal{*}}\left(\omega, \theta \right)\right] for all \omega \in \left[\mathit{u}, \nu \right] and for all \theta \in \left[0, 1\right] . If \mathcal{F}\in {\mathcal{F}\mathcal{R}}_{\left(\left[\mathit{u}, \nu \right], \theta \right)} and \Omega :\left[\mathit{u}, \nu \right]\to \mathbb{R}, \Omega \left(\omega \right)\ge 0, symmetric with respect to {\left[\frac{{\mathit{u}}^{p}+{\nu }^{p}}{2}\right]}^{\frac{1}{p}}, then
\frac{p}{{\nu }^{p}-{\mathit{u}}^{p}}\left(FR\right){\int }_{\mathit{u}}^{\nu }{\omega }^{p-1}\mathcal{F}\left(\omega \right)\Omega \left(\omega \right)d\omega \preccurlyeq \left[\mathcal{F}\left(\mathit{u}\right)\stackrel{~}{+}\mathcal{F}\left(\nu \right)\right]{\int }_{0}^{1}\eta \Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)d\eta . | (26) |
If \mathcal{F} is p -concave FIVF, then inequality (26) is reversed.
Proof. Let \mathcal{F} be a p -convex FIVF. Then, for each \theta \in \left[0, 1\right], we have
{\mathcal{F}}_{\mathcal{*}}\left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)\Omega \left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}\right)\\ \le \left(\eta {\mathcal{F}}_{\mathcal{*}}\left(\mathit{u}, \theta \right)+\left(1-\eta \right){\mathcal{F}}_{\mathcal{*}}\left(\nu , \theta \right)\right)\Omega \left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}\right), | (27) |
{\mathcal{F}}^{\mathcal{*}}\left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)\Omega \left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}\right)\\ \le \left(\eta {\mathcal{F}}^{\mathcal{*}}\left(\mathit{u}, \theta \right)+\left(1-\eta \right){\mathcal{F}}^{\mathcal{*}}\left(\nu , \theta \right)\right)\Omega \left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}\right) |
And
\begin{array}{c}\\ {\mathcal{F}}_{\mathcal{*}}\left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)\Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)\\ \le \left(\left(1-\eta \right){\mathcal{F}}_{\mathcal{*}}\left(\mathit{u}, \theta \right)+\eta {\mathcal{F}}_{\mathcal{*}}\left(\nu , \theta \right)\right)\Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right), \\ {\mathcal{F}}^{\mathcal{*}}\left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)\Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)\\ \le \left(\left(1-\eta \right){\mathcal{F}}^{\mathcal{*}}\left(\mathit{u}, \theta \right)+\eta {\mathcal{F}}^{\mathcal{*}}\left(\nu , \theta \right)\right)\Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right).\end{array} | (28) |
After adding (27) and (28), and integrating over \left[0, 1\right], we get
\begin{array}{c}\\ {\int }_{0}^{1}{\mathcal{F}}_{\mathcal{*}}\left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)\Omega \left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}\right)d\eta \\ +{\int }_{0}^{1}{\mathcal{F}}_{\mathcal{*}}\left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)\Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)d\eta \\ \le {\int }_{0}^{1}\left[\begin{array}{c}{\mathcal{F}}_{\mathcal{*}}\left(\mathit{u}, \theta \right)\left\{\eta \Omega \left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}\right)+\left(1-\eta \right)\Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)\right\}\\ +{\mathcal{F}}_{\mathcal{*}}\left(\nu , \theta \right)\left\{\left(1-\eta \right)\Omega \left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}\right)+\eta \Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)\right\}\end{array}\right]d\eta , \\ {\int }_{0}^{1}{\mathcal{F}}^{\mathcal{*}}\left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)\Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)d\eta \\ +{\int }_{0}^{1}{\mathcal{F}}^{\mathcal{*}}\left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)\Omega \left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}\right)d\eta \\ \le {\int }_{0}^{1}\left[\begin{array}{c}{\mathcal{F}}^{\mathcal{*}}\left(\mathit{u}, \theta \right)\left\{\eta \Omega \left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}\right)+\left(1-\eta \right)\Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)\right\}\\ +{\mathcal{F}}^{\mathcal{*}}\left(\nu , \theta \right)\left\{\left(1-\eta \right)\Omega \left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}\right)+\eta \Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)\right\}\end{array}\right]d\eta , \end{array} |
\begin{array}{c}\\ = 2{\mathcal{F}}_{\mathcal{*}}\left(\mathit{u}, \theta \right){\int }_{0}^{1}\begin{array}{c}\eta \Omega \left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}\right)\end{array}d\eta +2{\mathcal{F}}_{\mathcal{*}}\left(\nu , \theta \right){\int }_{0}^{1}\begin{array}{c}\eta \Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)\end{array}d\eta , \\ = 2{\mathcal{F}}^{\mathcal{*}}\left(\mathit{u}, \theta \right){\int }_{0}^{1}\begin{array}{c}\eta \Omega \left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}\right)\end{array}d\eta +2{\mathcal{F}}^{\mathcal{*}}\left(\nu , \theta \right){\int }_{0}^{1}\begin{array}{c}\eta \Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)\end{array}d\eta .\end{array} |
Since \Omega is symmetric, then
\begin{array}{c}\\ = 2\left[{\mathcal{F}}_{\mathcal{*}}\left(\mathit{u}, \theta \right)+{\mathcal{F}}_{\mathcal{*}}\left(\nu , \theta \right)\right]{\int }_{0}^{1}\begin{array}{c}\eta \Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)\end{array}d\eta , \\ = 2\left[{\mathcal{F}}^{\mathcal{*}}\left(\mathit{u}, \theta \right)+{\mathcal{F}}^{\mathcal{*}}\left(\nu , \theta \right)\right]{\int }_{0}^{1}\begin{array}{c}\eta \Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)\end{array}d\eta .\end{array} | (29) |
Since
\begin{array}{c}\\ {\int }_{0}^{1}{\mathcal{F}}_{\mathcal{*}}\left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)\Omega \left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}\right)d\eta \\ = {\int }_{0}^{1}{\mathcal{F}}_{\mathcal{*}}\left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)\Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)d\eta \\ = \frac{p}{{\nu }^{p}-{\mathit{u}}^{p}}{\int }_{\mathit{u}}^{\nu }{\omega }^{p-1}{\mathcal{F}}_{\mathcal{*}}\left(\omega , \theta \right)\Omega \left(\omega \right)d\omega \\ {\int }_{0}^{1}{\mathcal{F}}^{\mathcal{*}}\left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)\Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)d\eta \\ = {\int }_{0}^{1}{\mathcal{F}}^{\mathcal{*}}\left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)\Omega \left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}\right)d\eta \\ = \frac{p}{{\nu }^{p}-{\mathit{u}}^{p}}{\int }_{\mathit{u}}^{\nu }{\omega }^{p-1}{\mathcal{F}}^{\mathcal{*}}\left(\omega , \theta \right)\Omega \left(\omega \right)d\omega .\end{array} | (30) |
Then, from (29), we have
\begin{array}{c}\\ \frac{p}{{\nu }^{p}-{\mathit{u}}^{p}}{\int }_{\mathit{u}}^{\nu }{\omega }^{p-1}{\mathcal{F}}_{\mathcal{*}}\left(\omega , \theta \right)\Omega \left(\omega \right)d\omega \le \left[{\mathcal{F}}_{\mathcal{*}}\left(\mathit{u}, \theta \right)+{\mathcal{F}}_{\mathcal{*}}\left(\nu , \theta \right)\right]{\int }_{0}^{1}\begin{array}{c}\eta \Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)\end{array}d\eta , \\ \\ \frac{p}{{\nu }^{p}-{\mathit{u}}^{p}}{\int }_{\mathit{u}}^{\nu }{\omega }^{p-1}{\mathcal{F}}^{\mathcal{*}}\left(\omega , \theta \right)\Omega \left(\omega \right)d\omega \le \left[{\mathcal{F}}^{\mathcal{*}}\left(\mathit{u}, \theta \right)+{\mathcal{F}}^{\mathcal{*}}\left(\nu , \theta \right)\right]{\int }_{0}^{1}\begin{array}{c}\eta \Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)\end{array}d\eta , \end{array} |
that is
\left[\frac{p}{{\nu }^{p}-{\mathit{u}}^{p}}{\int }_{\mathit{u}}^{\nu }{\omega }^{p-1}{\mathcal{F}}_{\mathcal{*}}\left(\omega , \theta \right)\Omega \left(\omega \right)d\omega , \frac{p}{{\nu }^{p}-{\mathit{u}}^{p}}{\int }_{\mathit{u}}^{\nu }{\omega }^{p-1}{\mathcal{F}}^{\mathcal{*}}\left(\omega , \theta \right)\Omega \left(\omega \right)d\omega \right] |
{\le }_{p}\left[{\mathcal{F}}_{\mathcal{*}}\left(\mathit{u}, \theta \right)+{\mathcal{F}}_{\mathcal{*}}\left(\nu , \theta \right), {\mathcal{F}}^{\mathcal{*}}\left(\mathit{u}, \theta \right)+{\mathcal{F}}^{\mathcal{*}}\left(\nu , \theta \right)\right]{\int }_{0}^{1}\begin{array}{c}\eta \Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)\end{array}d\eta , |
hence
\frac{p}{{\nu }^{p}-{\mathit{u}}^{p}}\left(FR\right){\int }_{\mathit{u}}^{\nu }{\omega }^{p-1}\mathcal{F}\left(\omega \right)\Omega \left(\omega \right)d\omega \preccurlyeq \left[\mathcal{F}\left(\mathit{u}\right)\stackrel{~}{+}\mathcal{F}\left(\nu \right)\right]{\int }_{0}^{1}\eta \Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)d\eta . |
Next, we construct first H-H Fejér inequality for p -convex FIVF, which generalizes first H-H Fejér inequalities for convex function [44].
Theorem 3.11. Let \mathcal{F}\in SXF\left(\left[\mathit{u}, \nu \right], {\mathbb{F}}_{0}, p\right) . Then, \theta -levels define the family of IVFs {\mathcal{F}}_{\theta }:\left[\mathit{u}, \nu \right]\subset \mathbb{R}\to {{\mathcal{K}}_{C}}^{+} are given by {\mathcal{F}}_{\theta }\left(\omega \right) = \left[{\mathcal{F}}_{\mathcal{*}}\left(\omega, \theta \right), {\mathcal{F}}^{\mathcal{*}}\left(\omega, \theta \right)\right] for all \omega \in \left[\mathit{u}, \nu \right] and for all \theta \in \left[0, 1\right] . If \mathcal{F}\in {\mathcal{F}\mathcal{R}}_{\left(\left[\mathit{u}, \nu \right], \theta \right)} and \Omega :\left[\mathit{u}, \nu \right]\to \mathbb{R}, \Omega \left(\omega \right)\ge 0, symmetric with respect to {\left[\frac{{\mathit{u}}^{p}+{\nu }^{p}}{2}\right]}^{\frac{1}{p}}, and {\int }_{\mathit{u}}^{\nu }{\omega }^{p-1}\Omega \left(\omega \right)d\omega > 0 , then
\mathcal{F}\left({\left[\frac{{\mathit{u}}^{p}+{\nu }^{p}}{2}\right]}^{\frac{1}{p}}\right)\preccurlyeq \frac{1}{{\int }_{\mathit{u}}^{\nu }{\omega }^{p-1}\Omega \left(\omega \right)d\omega }\left(FR\right){\int }_{\mathit{u}}^{\nu }{\omega }^{p-1}\mathcal{F}\left(\omega \right)\Omega \left(\omega \right)d\omega . | (31) |
If \mathcal{F} is p -concave FIVF, then inequality (31) is reversed.
Proof. Since \mathcal{F} is a convex, then for \theta \in \left[0, 1\right], we have
\begin{array}{c}\\ {\mathcal{F}}_{\mathcal{*}}\left({\left[\frac{{\mathit{u}}^{p}+{\nu }^{p}}{2}\right]}^{\frac{1}{p}}, \theta \right)\le \frac{1}{2}\left({\mathcal{F}}_{\mathcal{*}}\left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)+{\mathcal{F}}_{\mathcal{*}}\left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)\right), \\ {\mathcal{F}}^{\mathcal{*}}\left({\left[\frac{{\mathit{u}}^{p}+{\nu }^{p}}{2}\right]}^{\frac{1}{p}}, \theta \right)\le \frac{1}{2}\left({\mathcal{F}}^{\mathcal{*}}\left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)+{\mathcal{F}}^{\mathcal{*}}\left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)\right), \end{array} | (32) |
Since \Omega \left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}\right) = \Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right) , then by multiplying (32) by \Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right) and integrate it with respect to \eta over \left[0, 1\right], we obtain
\begin{array}{c}\\ {\mathcal{F}}_{\mathcal{*}}\left({\left[\frac{{\mathit{u}}^{p}+{\nu }^{p}}{2}\right]}^{\frac{1}{p}}, \theta \right){\int }_{0}^{1}\Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)d\eta \\ \le \frac{1}{2}\left(\begin{array}{c}{\int }_{0}^{1}{\mathcal{F}}_{\mathcal{*}}\left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)\Omega \left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}\right)d\eta \\ +{\int }_{0}^{1}{\mathcal{F}}_{\mathcal{*}}\left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)d\eta \Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)\end{array}\right), \\ {\mathcal{F}}^{\mathcal{*}}\left({\left[\frac{{\mathit{u}}^{p}+{\nu }^{p}}{2}\right]}^{\frac{1}{p}}, \theta \right){\int }_{0}^{1}\Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)d\eta \\ \le \frac{1}{2}\left(\begin{array}{c}{\int }_{0}^{1}{\mathcal{F}}^{\mathcal{*}}\left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)\Omega \left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}\right)d\eta \\ +{\int }_{0}^{1}{\mathcal{F}}^{\mathcal{*}}\left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)\Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)d\eta \end{array}\right).\end{array} | (33) |
Since
\begin{array}{c}\\ {\int }_{0}^{1}{\mathcal{F}}_{\mathcal{*}}\left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)\Omega \left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}\right)d\eta \\ = {\int }_{0}^{1}{\mathcal{F}}_{\mathcal{*}}\left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)\Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)d\eta \\ = \frac{p}{{\nu }^{p}-{\mathit{u}}^{p}}{\int }_{\mathit{u}}^{\nu }{\omega }^{p-1}{\mathcal{F}}_{\mathcal{*}}\left(\omega , \theta \right)\Omega \left(\omega \right)d\omega , \\ \\ {\int }_{0}^{1}{\mathcal{F}}^{\mathcal{*}}\left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)\Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)d\eta \\ = {\int }_{0}^{1}{\mathcal{F}}^{\mathcal{*}}\left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)\Omega \left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}\right)d\eta \\ = \frac{p}{{\nu }^{p}-{\mathit{u}}^{p}}{\int }_{\mathit{u}}^{\nu }{\omega }^{p-1}{\mathcal{F}}^{\mathcal{*}}\left(\omega , \theta \right)\Omega \left(\omega \right)d\omega .\\ \end{array} | (34) |
Then, from (34) we have
\begin{array}{c}\\ {\mathcal{F}}_{\mathcal{*}}\left({\left[\frac{{\mathit{u}}^{p}+{\nu }^{p}}{2}\right]}^{\frac{1}{p}}, \theta \right)\le \frac{1}{{\int }_{\mathit{u}}^{\nu }{\omega }^{p-1}\Omega \left(\omega \right)d\omega }{\int }_{\mathit{u}}^{\nu }{\omega }^{p-1}{\mathcal{F}}_{\mathcal{*}}\left(\omega , \theta \right)\Omega \left(\omega \right)d\omega , \\ {\mathcal{F}}^{\mathcal{*}}\left({\left[\frac{{\mathit{u}}^{p}+{\nu }^{p}}{2}\right]}^{\frac{1}{p}}, \theta \right)\le \frac{1}{{\int }_{\mathit{u}}^{\nu }{\omega }^{p-1}\Omega \left(\omega \right)d\omega }{\int }_{\mathit{u}}^{\nu }{\omega }^{p-1}{\mathcal{F}}^{\mathcal{*}}\left(\omega , \theta \right)\Omega \left(\omega \right)d\omega , \end{array} |
from which, we have
\begin{array}{c}\\ \left[{\mathcal{F}}_{\mathcal{*}}\left({\left[\frac{{\mathit{u}}^{p}+{\nu }^{p}}{2}\right]}^{\frac{1}{p}}, \theta \right), {\mathcal{F}}^{\mathcal{*}}\left({\left[\frac{{\mathit{u}}^{p}+{\nu }^{p}}{2}\right]}^{\frac{1}{p}}, \theta \right)\right]\\ {\begin{array}{c}\begin{array}{c}\le \end{array}\end{array}}_{I}\frac{1}{{\int }_{\mathit{u}}^{\nu }{\omega }^{p-1}\Omega \left(\omega \right)d\omega }\left[{\int }_{\mathit{u}}^{\nu }{\omega }^{p-1}{\mathcal{F}}_{\mathcal{*}}\left(\omega , \theta \right)\Omega \left(\omega \right)d\omega , {\int }_{\mathit{u}}^{\nu }{\omega }^{p-1}{\mathcal{F}}^{\mathcal{*}}\left(\omega , \theta \right)\Omega \left(\omega \right)d\omega \right], \\ \end{array} |
that is
\mathcal{F}\left({\left[\frac{{\mathit{u}}^{p}+{\nu }^{p}}{2}\right]}^{\frac{1}{p}}\right)\preccurlyeq \frac{1}{{\int }_{\mathit{u}}^{\nu }{\omega }^{p-1}\Omega \left(\omega \right)d\omega }\left(FR\right){\int }_{\mathit{u}}^{\nu }{\omega }^{p-1}\mathcal{F}\left(\omega \right)\Omega \left(\omega \right)d\omega , |
this completes the proof.
Remark 3.12. If in the Theorem 3.10 and Theorem 3.11, p = 1 , then we obtain the appropriate theorems for convex fuzzy-IVFs [26].
If in the Theorem 3.10 and Theorem 3.11, {\mathcal{T}}_{\mathcal{*}}\left(\omega, \gamma \right) = {\mathcal{T}}^{\mathcal{*}}\left(\omega, \gamma \right) with \gamma = 1 , then we obtain the appropriate theorems for p -convex function [43].
If in the Theorem 3.10 and Theorem 3.11, {\mathcal{T}}_{\mathcal{*}}\left(\omega, \gamma \right) = {\mathcal{T}}^{\mathcal{*}}\left(\omega, \gamma \right) with \gamma = 1 and p = 1 , then we obtain the appropriate theorems for convex function [44].
If \Omega \left(\omega \right) = 1, then combining Theorem 3.10 and Theorem 3.11, we get Theorem 3.1.
Example 3.13. We consider the FIVF \mathcal{F}:\left[1, 4\right]\to {\mathbb{F}}_{0} defined by,
\mathcal{F}\left(\omega \right)\left(\lambda \right) = \left\{\begin{array}{c}\frac{\lambda -{e}^{{\omega }^{p}}}{{e}^{{\omega }^{p}}},& \lambda \in \left[{e}^{{\omega }^{p}}, 2{e}^{{\omega }^{p}}\right], \\ \frac{4{e}^{{\omega }^{p}}-\lambda }{2{e}^{{\omega }^{p}}},& \lambda \in \left(2{e}^{{\omega }^{p}}, 4{e}^{{\omega }^{p}}\right], \\ 0, &otherwise, \end{array}\right. | (35) |
then, for each \theta \in \left[0, 1\right], we have {\mathcal{F}}_{\theta }\left(\omega \right) = \left[(1+\theta){e}^{{\omega }^{p}}, 2(2-\theta){e}^{{\omega }^{p}}\right] . Since end point functions {\mathcal{F}}_{\mathcal{*}}\left(\omega, \theta \right), {\mathcal{F}}^{\mathcal{*}}\left(\omega, \theta \right) are p -convex functions, for each \theta \in [0, 1] , then \mathcal{F}\left(\omega \right) is p -convex FIVF. If
\Omega \left(\omega \right) = \left\{\begin{array}{c}{\omega }^{p}-1, \lambda \in \left[1, \frac{5}{2}\right], \\ 4-{\omega }^{p}, \lambda \in \left(\frac{5}{2}, 4\right], \end{array}\right. | (36) |
where p = 1 . Then, we have
\begin{array}{c}\\ \frac{p}{{\nu }^{p}-{\mathit{u}}^{p}}{\int }_{1}^{4}{\omega }^{p-1}{\mathcal{F}}_{\mathcal{*}}\left(\omega , \theta \right)\Omega \left(\omega \right)d\omega = \frac{1}{3}{\int }_{1}^{4}{\omega }^{p-1}{\mathcal{F}}_{\mathcal{*}}\left(\omega , \theta \right)\Omega \left(\omega \right)d\omega \\ = \frac{1}{3}{\int }_{1}^{\frac{5}{2}}{\omega }^{p-1}{\mathcal{F}}_{\mathcal{*}}\left(\omega , \theta \right)\Omega \left(\omega \right)d\omega +\frac{1}{3}{\int }_{\frac{5}{2}}^{4}{\omega }^{p-1}{\mathcal{F}}_{\mathcal{*}}\left(\omega , \theta \right)\Omega \left(\omega \right)d\omega , \\ = \frac{1}{3}\left(1+\theta \right){\int }_{1}^{\frac{5}{2}}{e}^{\omega }\left(\omega -1\right)d\omega +\frac{1}{3}\left(1+\theta \right){\int }_{\frac{5}{2}}^{4}{e}^{\omega }\left(4-\omega \right)d\omega \approx 11\left(1+\theta \right), \\ \frac{p}{{\nu }^{p}-{\mathit{u}}^{p}}{\int }_{1}^{4}{\omega }^{p-1}{\mathcal{F}}^{\mathcal{*}}\left(\omega , \theta \right)\Omega \left(\omega \right)d\omega = \frac{1}{3}{\int }_{1}^{4}{\omega }^{p-1}{\mathcal{F}}^{\mathcal{*}}\left(\omega , \theta \right)\Omega \left(\omega \right)d\omega \\ = \frac{1}{3}{\int }_{1}^{\frac{5}{2}}{\omega }^{p-1}{\mathcal{F}}^{\mathcal{*}}\left(\omega , \theta \right)\Omega \left(\omega \right)d\omega +\frac{1}{3}{\int }_{\frac{5}{2}}^{4}{\omega }^{p-1}{\mathcal{F}}^{\mathcal{*}}\left(\omega , \theta \right)\Omega \left(\omega \right)d\omega , \\ \begin{array}{c}\\ = \frac{2}{3}\left(2-\theta \right){\int }_{1}^{\frac{5}{2}}{e}^{\omega }\left(\omega -1\right)d\omega +\frac{2}{3}\left(2-\theta \right){\int }_{\frac{5}{2}}^{4}{e}^{\omega }\left(4-\omega \right)d\omega \approx 22\left(2-\theta \right), \\ \end{array}\end{array} | (37) |
and
\begin{array}{c}\\ \left[{\mathcal{F}}_{\mathcal{*}}\left(\mathit{u}, \theta \right)+{\mathcal{F}}_{\mathcal{*}}\left(\nu , \theta \right)\right]{\int }_{0}^{1}\begin{array}{c}\eta \Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)\end{array}d\eta \\ \\ \left[{\mathcal{F}}^{\mathcal{*}}\left(\mathit{u}, \theta \right)+{\mathcal{F}}^{\mathcal{*}}\left(\nu , \theta \right)\right]{\int }_{0}^{1}\begin{array}{c}\eta \Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)\end{array}d\eta \end{array} |
\begin{array}{c} = \left(1+\theta \right)\left[e+{e}^{4}\right]\left[{\int }_{0}^{\frac{1}{2}}3{\eta }^{2}d\omega +{\int }_{\frac{1}{2}}^{1}\eta \left(3-3\eta \right)d\eta \right]\approx \frac{43}{2}\left(1+\theta \right).\\ \\ = 2\left(2-\theta \right)\left[e+{e}^{4}\right]\left[{\int }_{0}^{\frac{1}{2}}3{\eta }^{2}d\omega +{\int }_{\frac{1}{2}}^{1}\eta \left(3-3\eta \right)d\eta \right]\approx 43\left(2-\theta \right).\end{array} | (38) |
From (37) and (38), we have
\left[11\left(1+\theta \right), 22\left(2-\theta \right)\right]{\begin{array}{c}\begin{array}{c}\le \end{array}\end{array}}_{I}\left[\frac{43}{2}\left(1+\theta \right), 43\left(2-\theta \right)\right], for each \theta \in \left[0, 1\right].
Hence, Theorem 3.10 is verified.
For Theorem 3.11, we have
\begin{array}{c}{\mathcal{F}}_{\mathcal{*}}\left({\left[\frac{{\mathit{u}}^{p}+{\nu }^{p}}{2}\right]}^{\frac{1}{p}}, \theta \right)\approx \frac{61}{5}\left(1+\theta \right), \\ {\mathcal{F}}^{\mathcal{*}}\left({\left[\frac{{\mathit{u}}^{p}+{\nu }^{p}}{2}\right]}^{\frac{1}{p}}, \theta \right)\approx \frac{122}{5}\left(2-\theta \right), \\ \end{array} | (39) |
{\int }_{\mathit{u}}^{\nu }\Omega \left(\omega \right)d\omega = {\int }_{1}^{\frac{5}{2}}\left(\omega -1\right)d\omega {\int }_{\frac{5}{2}}^{4}\left(4-\omega \right)d\omega = \frac{9}{4}, |
\begin{array}{c}\\ \frac{p}{{\int }_{\mathit{u}}^{\nu }\Omega \left(\omega \right)d\omega }{\int }_{1}^{4}{\omega }^{p-1}{\mathcal{F}}_{\mathcal{*}}\left(\omega , \theta \right)\Omega \left(\omega \right)d\omega \approx \frac{73}{5}\left(1+\theta \right), \\ \frac{p}{{\int }_{\mathit{u}}^{\nu }\Omega \left(\omega \right)d\omega }{\int }_{1}^{4}{\omega }^{p-1}{\mathcal{F}}^{\mathcal{*}}\left(\omega , \theta \right)\Omega \left(\omega \right)d\omega \approx \frac{293}{10}\left(2-\theta \right).\\ \end{array} | (40) |
From (39) and (40), we have
\left[\frac{61}{5}\left(1+\theta \right), \frac{122}{5}\left(2-\theta \right)\right]{\begin{array}{c}\begin{array}{c}\le \end{array}\end{array}}_{I}\left[\frac{73}{5}\left(1+\theta \right), \frac{293}{10}\left(2-\theta \right)\right] , |
hence, Theorem 3.11 is demonstrated.
In this section, we propose the concept of discrete Jensen's and Schur's type inequality for p -convex FIVF. Some refinements of discrete Jensen's type inequality are also obtained. We begin by presenting the discrete Jensen's type inequality for p -convex FIVF in the following result.
Theorem 4.1. (Discrete Jense's type inequality for p -convex FIVF) Let {\eta }_{j}\in {\mathbb{R}}^{+} , {\mathit{u}}_{j}\in \left[\mathit{u}, \nu \right], \left(j = 1, 2, 3, \dots, k, k\ge 2\right) and \mathcal{F}\in SXF\left(\left[\mathit{u}, \nu \right], {\mathbb{F}}_{0}, p\right) and for all \theta \in \left[0, 1\right] , \theta -levels define the family of IVFs {\mathcal{F}}_{\theta }:\left[\mathit{u}, \nu \right]\subset \mathbb{R}\to {{\mathcal{K}}_{C}}^{+} are given by {\mathcal{F}}_{\theta }\left(\omega \right) = \left[{\mathcal{F}}_{\mathcal{*}}\left(\omega, \theta \right), {\mathcal{F}}^{\mathcal{*}}\left(\omega, \theta \right)\right] for all \omega \in \left[\mathit{u}, \nu \right] . Then,
\mathcal{F}\left({\left[\frac{1}{{W}_{k}}\sum _{j = 1}^{k}{\eta }_{j}{{\mathit{u}}_{j}}^{p}\right]}^{\frac{1}{p}}\right)\preccurlyeq {\sum }_{j}^{k}\frac{{\eta }_{j}}{{W}_{k}}\mathcal{F}\left({\mathit{u}}_{j}\right), | (41) |
where {W}_{k} = \sum _{j = 1}^{k}{\eta }_{j}. If \mathcal{F} is p -concave, then inequality (41) is reversed.
Proof. When k = 2 then, inequality (41) is true. Consider inequality (19) is true for k = n-1, then
\mathcal{F}\left({\left[\frac{1}{{W}_{n-1}}\sum \limits_{j = 1}^{n-1}{\eta }_{j}{{\mathit{u}}_{j}}^{p}\right]}^{\frac{1}{p}}\right)\preccurlyeq {\sum }_{j = 1}^{n-1}\frac{{\eta }_{j}}{{W}_{n-1}}\mathcal{F}\left({\mathit{u}}_{j}\right). |
Now, let us prove that inequality (41) holds for k = n.
\mathcal{F}\left({\left[\frac{1}{{W}_{n}}\sum\limits _{j = 1}^{n}{\eta }_{j}{{\mathit{u}}_{j}}^{p}\right]}^{\frac{1}{p}}\right) = \mathcal{F}\left({\left[\frac{1}{{W}_{n}}\sum\limits _{j = 1}^{n-2}{\eta }_{j}{{\mathit{u}}_{j}}^{p}+\frac{{\eta }_{n-1}+{\eta }_{n}}{{W}_{n}}(\frac{{\eta }_{n-1}}{{\eta }_{n-1}+{\eta }_{n}}{{\mathit{u}}_{n-1}}^{p}+\frac{{\eta }_{n}}{{\eta }_{n-1}+{\eta }_{n}}{{\mathit{u}}_{n}}^{p}\right]}^{\frac{1}{p}}\right). |
Therefore, for each \theta \in \left[0, 1\right], we have
\begin{array}{c}{\mathcal{F}}_{\mathcal{*}}\left({\left[\frac{1}{{W}_{n}}\sum _{j = 1}^{n}{\eta }_{j}{{\mathit{u}}_{j}}^{p}\right]}^{\frac{1}{p}}, \theta \right)\\ {\mathcal{F}}^{\mathcal{*}}\left({\left[\frac{1}{{W}_{n}}\sum _{j = 1}^{n}{\eta }_{j}{{\mathit{u}}_{j}}^{p}\right]}^{\frac{1}{p}}, \theta \right)\end{array} |
\begin{array}{c} = {\mathcal{F}}_{\mathcal{*}}\left({\left[\frac{1}{{W}_{n}}\sum _{j = 1}^{n-2}{\eta }_{j}{{\mathit{u}}_{j}}^{p}+\frac{{\eta }_{n-1}+{\eta }_{n}}{{W}_{n}}(\frac{{\eta }_{n-1}}{{\eta }_{n-1}+{\eta }_{n}}{{\mathit{u}}_{n-1}}^{p}+\frac{{\eta }_{n}}{{\eta }_{n-1}+{\eta }_{n}}{{\mathit{u}}_{n}}^{p}\right]}^{\frac{1}{p}}, \theta \right), \\ = {\mathcal{F}}^{\mathcal{*}}\left({\left[\frac{1}{{W}_{n}}\sum _{j = 1}^{n-2}{\eta }_{j}{{\mathit{u}}_{j}}^{p}+\frac{{\eta }_{n-1}+{\eta }_{n}}{{W}_{n}}(\frac{{\eta }_{n-1}}{{\eta }_{n-1}+{\eta }_{n}}{{\mathit{u}}_{n-1}}^{p}+\frac{{\eta }_{n}}{{\eta }_{n-1}+{\eta }_{n}}{{\mathit{u}}_{n}}^{p}\right]}^{\frac{1}{p}}, \theta \right), \end{array} |
\begin{array}{c}\le {\sum }_{j = 1}^{n-2}\frac{{\eta }_{j}}{{W}_{n}}{\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{j}, \theta \right)+\frac{{\eta }_{n-1}+{\eta }_{n}}{{W}_{n}}{\mathcal{F}}_{\mathcal{*}}\left({\left[\frac{{\eta }_{n-1}}{{\eta }_{n-1}+{\eta }_{n}}{{\mathit{u}}_{n-1}}^{p}+\frac{{\eta }_{n}}{{\eta }_{n-1}+{\eta }_{n}}{{\mathit{u}}_{n}}^{p}\right]}^{\frac{1}{p}}, \theta \right), \\ \le {\sum }_{j = 1}^{n-2}\frac{{\eta }_{j}}{{W}_{n}}{\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{j}, \theta \right)+\frac{{\eta }_{n-1}+{\eta }_{n}}{{W}_{n}}{\mathcal{F}}^{\mathcal{*}}\left({\left[\frac{{\eta }_{n-1}}{{\eta }_{n-1}+{\eta }_{n}}{{\mathit{u}}_{n-1}}^{p}+\frac{{\eta }_{n}}{{\eta }_{n-1}+{\eta }_{n}}{{\mathit{u}}_{n}}^{p}\right]}^{\frac{1}{p}}, \theta \right), \end{array} |
\begin{array}{c}\le {\sum }_{j = 1}^{n-2}\frac{{\eta }_{j}}{{W}_{n}}{\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{j}, \theta \right)+\frac{{\eta }_{n-1}+{\eta }_{n}}{{W}_{n}}\left[\frac{{\eta }_{n-1}}{{\eta }_{n-1}+{\eta }_{n}}{\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{n-1}, \theta \right)+\frac{{\eta }_{n}}{{\eta }_{n-1}+{\eta }_{n}}{\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{n}, \theta \right)\right], \\ \le {\sum }_{j = 1}^{n-2}\frac{{\eta }_{j}}{{W}_{n}}{\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{j}, \theta \right)+\frac{{\eta }_{n-1}+{\eta }_{n}}{{W}_{n}}\left[\frac{{\eta }_{n-1}}{{\eta }_{n-1}+{\eta }_{n}}{\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{n-1}, \theta \right)+\frac{{\eta }_{n}}{{\eta }_{n-1}+{\eta }_{n}}{\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{n}, \theta \right)\right], \end{array} |
\begin{array}{c}\le {\sum }_{j = 1}^{n-2}\frac{{\eta }_{j}}{{W}_{n}}{\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{j}, \theta \right)+\left[\frac{{\eta }_{n-1}}{{W}_{n}}{\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{n-1}, \theta \right)+\frac{{\eta }_{n}}{{W}_{n}}{\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{n}, \theta \right)\right], \\ \le {\sum }_{j = 1}^{n-2}\frac{{\eta }_{j}}{{W}_{n}}{\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{j}, \theta \right)+\left[\frac{{\eta }_{n-1}}{{W}_{n}}{\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{n-1}, \theta \right)+\frac{{\eta }_{n}}{{W}_{n}}{\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{n}, \theta \right)\right], \end{array} |
\begin{array}{c} = {\sum }_{j = 1}^{n}\frac{{\eta }_{j}}{{W}_{n}}{\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{j}, \theta \right), \\ = {\sum }_{j = 1}^{n}\frac{{\eta }_{j}}{{W}_{n}}{\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{j}, \theta \right).\end{array} |
From which, we have
\left[{\mathcal{F}}_{\mathcal{*}}\left({\left[\frac{1}{{W}_{n}}\sum \limits_{j = 1}^{n}{\eta }_{j}{{\mathit{u}}_{j}}^{p}\right]}^{\frac{1}{p}}, \theta \right), {\mathcal{F}}^{\mathcal{*}}\left({\left[\frac{1}{{W}_{n}}\sum\limits _{j = 1}^{n}{\eta }_{j}{{\mathit{u}}_{j}}^{p}\right]}^{\frac{1}{p}}, \theta \right)\right]{\le }_{I}\left[{\sum }_{j = 1}^{n}\frac{{\eta }_{j}}{{W}_{n}}{\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{j}, \theta \right), {\sum }_{j = 1}^{n}\frac{{\eta }_{j}}{{W}_{n}}{\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{j}, \theta \right)\right], |
that is,
\mathcal{F}\left({\left[\frac{1}{{W}_{n}}\sum \limits_{j = 1}^{n}{\eta }_{j}{{\mathit{u}}_{j}}^{p}\right]}^{\frac{1}{p}}\right)\preccurlyeq {\sum }_{j = 1}^{n}\frac{{\eta }_{j}}{{W}_{n}}\mathcal{F}\left({\mathit{u}}_{j}\right), |
and the result follows.
If {\eta }_{1} = {\eta }_{2} = {\eta }_{3} = \dots = {\eta }_{k} = 1, then Theorem 4.1 reduces to the following result:
Corollary 4.2. Let {\mathit{u}}_{j}\in \left[\mathit{u}, \nu \right], \left(j = 1, 2, 3, \dots, k, k\ge 2\right) and \mathcal{F}\in SXF\left(\left[\mathit{u}, \nu \right], {\mathbb{F}}_{0}, p\right) . Then, \theta -levels define the family of IVFs {\mathcal{F}}_{\theta }:\left[\mathit{u}, \nu \right]\subset \mathbb{R}\to {{\mathcal{K}}_{C}}^{+} are given by {\mathcal{F}}_{\theta }\left(\omega \right) = \left[{\mathcal{F}}_{\mathcal{*}}\left(\omega, \theta \right), {\mathcal{F}}^{\mathcal{*}}\left(\omega, \theta \right)\right] for all \omega \in \left[\mathit{u}, \nu \right] and for all \theta \in \left[0, 1\right] . Then,
\mathcal{F}\left({\left[\frac{1}{{W}_{k}}\sum _{j = 1}^{k}{\eta }_{j}{{\mathit{u}}_{j}}^{p}\right]}^{\frac{1}{p}}\right)\preccurlyeq {\sum }_{J = 1}^{k}\frac{1}{k}\mathcal{F}\left({\mathit{u}}_{j}\right). | (42) |
If \mathcal{F} is a p -concave, then inequality (42) is reversed.
The next Theorem 4.3 gives the Schur's type inequality for p -convex FIVFs.
Theorem 4.3. (Discrete Schur's type inequality for p -convex FIVF) Let \mathcal{F}\in SXF\left(\left[\mathit{u}, \nu \right], {\mathbb{F}}_{0}, p\right) . Then, \theta -levels define the family of IVFs {\mathcal{F}}_{\theta }:\left[\mathit{u}, \nu \right]\subset \mathbb{R}\to {{\mathcal{K}}_{C}}^{+} are given by {\mathcal{F}}_{\theta }\left(\omega \right) = \left[{\mathcal{F}}_{\mathcal{*}}\left(\omega, \theta \right), {\mathcal{F}}^{\mathcal{*}}\left(\omega, \theta \right)\right] for all \omega \in \left[\mathit{u}, \nu \right] and for all \theta \in \left[0, 1\right] . If {\mathit{u}}_{1}, {\mathit{u}}_{2}, {\mathit{u}}_{3}\in \left[\mathit{u}, \nu \right] , such that {\mathit{u}}_{1} < {\mathit{u}}_{2} < {\mathit{u}}_{3} and {{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{1}}^{p} , {{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{2}}^{p}, {{\mathit{u}}_{2}}^{p}-{{\mathit{u}}_{1}}^{p}\in \left[0, 1\right] , then we have
\left({{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{1}}^{p}\right)\mathcal{F}\left({\mathit{u}}_{2}\right)\preccurlyeq \left({{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{2}}^{p}\right)\mathcal{F}\left({\mathit{u}}_{1}\right)+\left({{\mathit{u}}_{2}}^{p}-{{\mathit{u}}_{1}}^{p}\right)\mathcal{F}\left({\mathit{u}}_{3}\right). | (43) |
If \mathcal{F} is a p -concave, then inequality (43) is reversed.
Proof. Let {\mathit{u}}_{1}, {\mathit{u}}_{2}, {\mathit{u}}_{3}\in \left[\mathit{u}, \nu \right] and {{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{1}}^{p} > 0. Consider \eta = \frac{{{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{2}}^{p}}{{{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{1}}^{p}} , then {{\mathit{u}}_{2}}^{p} = \eta {{\mathit{u}}_{1}}^{p}+\left(1-\eta \right){{\mathit{u}}_{3}}^{p}. Since \mathcal{F} is a p -convex FIVF, then by hypothesis, we have
\mathcal{F}\left({\mathit{u}}_{2}\right)\preccurlyeq \left(\frac{{{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{2}}^{p}}{{{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{1}}^{p}}\right)\mathcal{F}\left({\mathit{u}}_{1}\right)+\left(\frac{{{\mathit{u}}_{2}}^{p}-{{\mathit{u}}_{1}}^{p}}{{{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{1}}^{p}}\right)\mathcal{F}\left({\mathit{u}}_{3}\right). |
Therefore, for each \theta \in \left[0, 1\right], we have
\begin{array}{c}{\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{2}, \theta \right)\le \left(\frac{{{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{2}}^{p}}{{{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{1}}^{p}}\right){\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{1}, \theta \right)+\left(\frac{{{\mathit{u}}_{2}}^{p}-{{\mathit{u}}_{1}}^{p}}{{{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{1}}^{p}}\right){\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{3}, \theta \right), \\ {\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{2}, \theta \right)\le \left(\frac{{{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{2}}^{p}}{{{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{1}}^{p}}\right){\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{1}, \theta \right)+\left(\frac{{{\mathit{u}}_{2}}^{p}-{{\mathit{u}}_{1}}^{p}}{{{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{1}}^{p}}\right){\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{3}, \theta \right), \end{array} | (44) |
\begin{array}{c} = \frac{\left({{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{2}}^{p}\right)}{\left({{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{1}}^{p}\right)}{\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{1}, \theta \right)+\frac{\left({{\mathit{u}}_{2}}^{p}-{{\mathit{u}}_{1}}^{p}\right)}{\left({{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{1}}^{p}\right)}{\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{3}, \theta \right), \\ = \frac{\left({{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{2}}^{p}\right)}{\left({{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{1}}^{p}\right)}{\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{1}, \theta \right)+\frac{\left({{\mathit{u}}_{2}}^{p}-{{\mathit{u}}_{1}}^{p}\right)}{\left({{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{1}}^{p}\right)}{\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{3}, \theta \right).\end{array} | (45) |
From (45), we have
\begin{array}{c}\left({{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{1}}^{p}\right){\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{2}, \theta \right)\le \left({{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{2}}^{p}\right){\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{1}, \theta \right)+\left({{\mathit{u}}_{2}}^{p}-{{\mathit{u}}_{1}}^{p}\right){\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{3}, \theta \right), \\ \left({{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{1}}^{p}\right){\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{2}, \theta \right)\le \left({{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{2}}^{p}\right){\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{1}, \theta \right)+\left({{\mathit{u}}_{2}}^{p}-{{\mathit{u}}_{1}}^{p}\right){\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{3}, \theta \right), \end{array} |
that is
\left[\left({{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{1}}^{p}\right){\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{2}, \theta \right), \left({{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{1}}^{p}\right){\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{2}, \theta \right)\right]{\le }_{I}\left[\left({{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{2}}^{p}\right){\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{1}, \theta \right)+\left({{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{2}}^{p}\right){\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{3}, \theta \right), \left({{\mathit{u}}_{2}}^{p}-{{\mathit{u}}_{1}}^{p}\right){\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{1}, \theta \right)+\left({{\mathit{u}}_{2}}^{p}-{{\mathit{u}}_{1}}^{p}\right){\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{3}, \theta \right)\right], |
hence
\left({{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{1}}^{p}\right)\mathcal{F}\left({\mathit{u}}_{2}\right)\preccurlyeq {{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{2}}^{p}\mathcal{F}\left({\mathit{u}}_{1}\right)+\left({{\mathit{u}}_{2}}^{p}-{{\mathit{u}}_{1}}^{p}\right)\mathcal{F}\left({\mathit{u}}_{3}\right). |
A refinement of Jense's type inequality for p -convex FIVF is given in the following theorem.
Theorem 4.4. Let {\eta }_{j}\in {\mathbb{R}}^{+} , {\mathit{u}}_{j}\in \left[\mathit{u}, \nu \right], \left(j = 1, 2, 3, \dots, k, k\ge 2\right) and \mathcal{F}\in SXF\left(\left[\mathit{u}, \nu \right], {\mathbb{F}}_{0}, p\right) . Then, \theta -levels define the family of IVFs {\mathcal{F}}_{\theta }:\left[\mathit{u}, \nu \right]\subset \mathbb{R}\to {{\mathcal{K}}_{C}}^{+} are given by {\mathcal{F}}_{\theta }\left(\omega \right) = \left[{\mathcal{F}}_{\mathcal{*}}\left(\omega, \theta \right), {\mathcal{F}}^{\mathcal{*}}\left(\omega, \theta \right)\right] for all \omega \in \left[\mathit{u}, \nu \right] and for all \theta \in \left[0, 1\right] . If \left(L, U\right)\subseteq [\mathit{u}, \nu] , then
{\sum }_{j = 1}^{k}\left(\frac{{\eta }_{j}}{{W}_{k}}\right)\mathcal{F}\left({\mathit{u}}_{j}\right)\preccurlyeq {\sum }_{j = 1}^{k}\left(\left(\frac{{U}^{p}-{{\mathit{u}}_{j}}^{p}}{{U}^{p}-{L}^{p}}\right)\left(\frac{{\eta }_{j}}{{W}_{k}}\right)\mathcal{F}\left(L, \theta \right)+\left(\frac{{{\mathit{u}}_{j}}^{p}-{L}^{p}}{{U}^{p}-{L}^{p}}\right)\left(\frac{{\eta }_{j}}{{W}_{k}}\right)\mathcal{F}\left(U, \theta \right)\right), | (46) |
where {W}_{k} = \sum _{j = 1}^{k}{\eta }_{j}. If \mathcal{F} is p -concave, then inequality (46) is reversed.
Proof. Consider = {\mathit{u}}_{1}, {\mathit{u}}_{j} = {\mathit{u}}_{2}, \left(j = 1, 2, 3, \dots, k\right) , U = {\mathit{u}}_{3} . Then, by hypothesis and inequality (44), we have
\mathcal{F}\left({\mathit{u}}_{j}\right)\le \left(\frac{{U}^{p}-{{\mathit{u}}_{j}}^{p}}{{U}^{p}-{L}^{p}}\right)\mathcal{F}\left(L, \theta \right)+\left(\frac{{{\mathit{u}}_{j}}^{p}-{L}^{p}}{{U}^{p}-{L}^{p}}\right)\mathcal{F}\left(U, \theta \right). |
Therefore, for each \theta \in \left[0, 1\right] , we have
\begin{array}{c}{\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{j}, \theta \right)\le \left(\frac{{U}^{p}-{{\mathit{u}}_{j}}^{p}}{{U}^{p}-{L}^{p}}\right){\mathcal{F}}_{\mathcal{*}}\left(L, \theta \right)+\left(\frac{{{\mathit{u}}_{j}}^{p}-{L}^{p}}{{U}^{p}-{L}^{p}}\right){\mathcal{F}}_{\mathcal{*}}\left(U, \theta \right), \\ {\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{j}, \theta \right)\le \left(\frac{U-{{\mathit{u}}_{j}}^{p}}{{U}^{p}-{L}^{p}}\right){\mathcal{F}}^{\mathcal{*}}\left(L, \theta \right)+\left(\frac{{{\mathit{u}}_{j}}^{p}-{L}^{p}}{{U}^{p}-{L}^{p}}\right){\mathcal{F}}^{\mathcal{*}}\left(U, \theta \right).\end{array} |
Above inequality can be written as,
\begin{array}{c}\left(\frac{{\eta }_{j}}{{W}_{k}}\right){\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{j}, \theta \right)\le \left(\frac{{U}^{p}-{{\mathit{u}}_{j}}^{p}}{{U}^{p}-{L}^{p}}\right)\left(\frac{{\eta }_{j}}{{W}_{k}}\right){\mathcal{F}}_{\mathcal{*}}\left(L, \theta \right)+\left(\frac{{{\mathit{u}}_{j}}^{p}-{L}^{p}}{{U}^{p}-{L}^{p}}\right)\left(\frac{{\eta }_{j}}{{W}_{k}}\right){\mathcal{F}}_{\mathcal{*}}\left(U, \theta \right), \\ \left(\frac{{\eta }_{j}}{{W}_{k}}\right){\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{j}, \theta \right)\le \left(\frac{{U}^{p}-{{\mathit{u}}_{j}}^{p}}{{U}^{p}-{L}^{p}}\right)\left(\frac{{\eta }_{j}}{{W}_{k}}\right){\mathcal{F}}^{\mathcal{*}}\left(L, \theta \right)+\left(\frac{{{\mathit{u}}_{j}}^{p}-{L}^{p}}{{U}^{p}-{L}^{p}}\right)\left(\frac{{\eta }_{j}}{{W}_{k}}\right){\mathcal{F}}^{\mathcal{*}}\left(U, \theta \right).\end{array} | (47) |
Taking sum of all inequalities (47) for j = 1, 2, 3, \dots, k, we have
\begin{array}{c}{\sum }_{j = 1}^{k}\left(\frac{{\eta }_{j}}{{W}_{k}}\right){\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{j}, \theta \right)\le {\sum }_{j = 1}^{k}\left(\left(\frac{{U}^{p}-{{\mathit{u}}_{j}}^{p}}{{U}^{p}-{L}^{p}}\right)\left(\frac{{\eta }_{j}}{{W}_{k}}\right){\mathcal{F}}_{\mathcal{*}}\left(L, \theta \right)+\left(\frac{{{\mathit{u}}_{j}}^{p}-{L}^{p}}{{U}^{p}-{L}^{p}}\right)\left(\frac{{\eta }_{j}}{{W}_{k}}\right){\mathcal{F}}_{\mathcal{*}}\left(U, \theta \right)\right), \\ {\sum }_{j = 1}^{k}\left(\frac{{\eta }_{j}}{{W}_{k}}\right){\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{j}, \theta \right)\le {\sum }_{j = 1}^{k}\left(\left(\frac{{U}^{p}-{{\mathit{u}}_{j}}^{p}}{{U}^{p}-{L}^{p}}\right)\left(\frac{{\eta }_{j}}{{W}_{k}}\right){\mathcal{F}}^{\mathcal{*}}\left(L, \theta \right)+\left(\frac{{{\mathit{u}}_{j}}^{p}-{L}^{p}}{{U}^{p}-{L}^{p}}\right)\left(\frac{{\eta }_{j}}{{W}_{k}}\right){\mathcal{F}}^{\mathcal{*}}\left(U, \theta \right)\right).\end{array} |
that is
{\sum }_{j = 1}^{k}\left(\frac{{\eta }_{j}}{{W}_{k}}\right)\mathcal{F}\left({\mathit{u}}_{j}\right) = \left[{\sum }_{j = 1}^{k}\left(\frac{{\eta }_{j}}{{W}_{k}}\right){\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{j}, \theta \right), {\sum }_{j = 1}^{k}\left(\frac{{\eta }_{j}}{{W}_{k}}\right){\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{j}, \theta \right)\right] |
{\le }_{I}\left[{\sum }_{j = 1}^{k}\left(\begin{array}{c}\left(\frac{{U}^{p}-{{\mathit{u}}_{j}}^{p}}{{U}^{p}-{L}^{p}}\right)\left(\frac{{\eta }_{j}}{{W}_{k}}\right){\mathcal{F}}_{\mathcal{*}}\left(L, \theta \right)\\ +\left(\frac{{{\mathit{u}}_{j}}^{p}-{L}^{p}}{{U}^{p}-{L}^{p}}\right)\left(\frac{{\eta }_{j}}{{W}_{k}}\right){\mathcal{F}}_{\mathcal{*}}\left(U, \theta \right)\end{array}\right), {\sum }_{j = 1}^{k}\left(\begin{array}{c}\left(\frac{{U}^{p}-{{\mathit{u}}_{j}}^{p}}{{U}^{p}-{L}^{p}}\right)\left(\frac{{\eta }_{j}}{{W}_{k}}\right){\mathcal{F}}^{\mathcal{*}}\left(L, \theta \right)\\ +\left(\frac{{{\mathit{u}}_{j}}^{p}-{L}^{p}}{{U}^{p}-{L}^{p}}\right)\left(\frac{{\eta }_{j}}{{W}_{k}}\right){\mathcal{F}}^{\mathcal{*}}\left(U, \theta \right)\end{array}\right)\right], |
{\le }_{I}{\sum }_{j = 1}^{k}\left(\frac{{U}^{p}-{{\mathit{u}}_{j}}^{p}}{{U}^{p}-{L}^{p}}\right)\left(\frac{{\eta }_{j}}{{W}_{k}}\right)\left[{\mathcal{F}}_{\mathcal{*}}\left(L, \theta \right), {\mathcal{F}}^{\mathcal{*}}\left(L, \theta \right)\right]+{\sum }_{j = 1}^{k}\left(\frac{{U}^{p}-{{\mathit{u}}_{j}}^{p}}{{U}^{p}-{L}^{p}}\right)\left(\frac{{\eta }_{j}}{{W}_{k}}\right)\left[{\mathcal{F}}_{\mathcal{*}}\left(U, \theta \right), {\mathcal{F}}^{\mathcal{*}}\left(U, \theta \right)\right]. |
= {\sum }_{j = 1}^{k}\left(\frac{{U}^{p}-{{\mathit{u}}_{j}}^{p}}{{U}^{p}-{L}^{p}}\right)\left(\frac{{\eta }_{j}}{{W}_{k}}\right)\mathcal{F}\left(L, \theta \right)+{\sum }_{j = 1}^{k}\left(\frac{{U}^{p}-{{\mathit{u}}_{j}}^{p}}{{U}^{p}-{L}^{p}}\right)\left(\frac{{\eta }_{j}}{{W}_{k}}\right)\mathcal{F}\left(U, \theta \right). |
Thus,
{\sum }_{j = 1}^{k}\left(\frac{{\eta }_{j}}{{W}_{k}}\right)\mathcal{F}\left({\mathit{u}}_{j}\right)\preccurlyeq {\sum }_{j = 1}^{k}\left(\left(\frac{{U}^{p}-{{\mathit{u}}_{j}}^{p}}{{U}^{p}-{L}^{p}}\right)\left(\frac{{\eta }_{j}}{{W}_{k}}\right)\mathcal{F}\left(L\right)+\left(\frac{{{\mathit{u}}_{j}}^{p}-{L}^{p}}{{U}^{p}-{L}^{p}}\right)\left(\frac{{\eta }_{j}}{{W}_{k}}\right)\mathcal{F}\left(U\right)\right), |
this completes the proof.
We now consider some special cases of Theorem 4.1 and 4.4.
If {\mathcal{F}}_{\mathcal{*}}\left(\omega, \theta \right) = {\mathcal{F}}_{\mathcal{*}}\left(\omega, \theta \right) with \theta = 1 , then Theorem 3.1 and 3.4 reduce to the following results:
Corollary 4.5. [42] (Jense's inequality for p -convex function) Let {\eta }_{j}\in {\mathbb{R}}^{+} , {\mathit{u}}_{j}\in \left[\mathit{u}, \nu \right], \left(j = 1, 2, 3, \dots, k, k\ge 2\right) and let \mathcal{F}:\left[\mathit{u}, \nu \right]\to {\mathbb{R}}^{+} be a non-negative real-valued function. If \mathcal{F} is a p -convex function, then
\mathcal{F}\left({\left[\frac{1}{{W}_{k}}\sum _{j = 1}^{k}{\eta }_{j}{{\mathit{u}}_{j}}^{p}\right]}^{\frac{1}{p}}\right)\le {\sum }_{j = 1}^{k}\left(\frac{{\eta }_{j}}{{W}_{k}}\right)\mathcal{F}\left({\mathit{u}}_{j}\right), | (48) |
where {W}_{k} = \sum _{j = 1}^{k}{\eta }_{j}. If \mathcal{F} is p -concave function, then inequality (48) is reversed.
Corollary 4.6. Let {\eta }_{j}\in {\mathbb{R}}^{+} , {\mathit{u}}_{j}\in \left[\mathit{u}, \nu \right], \left(j = 1, 2, 3, \dots, k, k\ge 2\right) and \mathcal{F}:\left[\mathit{u}, \nu \right]\to {\mathbb{R}}^{+} be an non-negative real-valued function. If \mathcal{F} is a p -convex function and {\mathit{u}}_{1}, {\mathit{u}}_{2}, \dots, {\mathit{u}}_{j}\in \left(L, U\right)\subseteq [\mathit{u}, \nu] then,
{\sum }_{j = 1}^{k}\left(\frac{{\eta }_{j}}{{W}_{k}}\right)\mathcal{F}\left({\mathit{u}}_{j}\right)\le {\sum }_{j = 1}^{k}\left(\left(\frac{{U}^{p}-{{\mathit{u}}_{j}}^{p}}{{U}^{p}-{L}^{p}}\right)\left(\frac{{\eta }_{j}}{{W}_{k}}\right)\mathcal{F}\left(L\right)+\left(\frac{{{\mathit{u}}_{j}}^{p}-{L}^{p}}{{U}^{p}-{L}^{p}}\right)\left(\frac{{\eta }_{j}}{{W}_{k}}\right)\mathcal{F}\left(U\right)\right), | (49) |
where {W}_{k} = \sum _{j = 1}^{k}{\eta }_{j}. If \mathcal{F} is a p -concave function, then inequality (49) is reversed.
In this we defined the p -convex (concave, affine) class for fuzzy-IVFs. We obtained some HH -inequalities for p -convex fuzzy-IVFs via fuzzy Riemann integrals. Moreover, we derived some novel discrete Jensen's and Schur's type inequalitities for p -convex fuzzy-IVFs. With the help of examples, we showed that our results include a wide class of new and known inequalities for p convex fuzzy-IVFs and their variant forms as special cases. In future, we try to explore these concepts and to investigate Jensen's and HH -inequalities for IVF and fuzzy-IVFs on time scale. In future, we will explore this by using fuzzy Katugampola fractional integrals for p -convex fuzzy-IVFs. We hope that the concepts and techniques of this paper may be starting point for further research in this area.
The work was supported by Taif University Researches Supporting Project number (TURSP-2020/318), Taif University, Taif, Saudi Arabia.
The authors would like to thank the Rector, COMSATS University Islamabad, Islamabad, Pakistan, for providing excellent research and academic environments and work was supported by Taif University Researches Supporting Project number (TURSP-2020/318), Taif University, Taif, Saudi Arabia.
The authors declare that they have no competing interests.
[1] |
Z. Pawlak, Rough sets, International Journal of Computer and Information Sciences, 11 (1982), 341–356. http://doi.org/10.1007/BF01001956 doi: 10.1007/BF01001956
![]() |
[2] | M. Podsiadło, H. Rybiński, Rough sets in economy and finance, In: Transactions on rough sets XVII, Berlin: Springer, 2014,109–173. https://doi.org/10.1007/978-3-642-54756-0_6 |
[3] |
A. Skowron, S. Dutta, Rough sets: past, present, and future, Nat. Comput., 17 (2018), 855–876. https://doi.org/10.1007/s11047-018-9700-3 doi: 10.1007/s11047-018-9700-3
![]() |
[4] |
Z. Pawlak, A. Skowron, Rough sets and Boolean reasoning, Inform. Sciences, 177 (2007), 41–73. https://doi.org/10.1016/j.ins.2006.06.007 doi: 10.1016/j.ins.2006.06.007
![]() |
[5] |
P. Pattaraintakorn, N. Cercone, Integrating rough set theory and medical applications, Appl. Math. Lett., 21 (2008), 400–403. https://doi.org/10.1016/j.aml.2007.05.010 doi: 10.1016/j.aml.2007.05.010
![]() |
[6] |
N. Bağırmaz, A. F. Özcan, Rough semigroups on approximation spaces, International Journal of Algebra, 9 (2015), 339–350. http://doi.org/10.12988/ija.2015.5742 doi: 10.12988/ija.2015.5742
![]() |
[7] | R. Biswas, S. Nanda, Rough groups and rough subgroups, Bull. Polish Acad. Sci. Math., 42 (1994), 251–254. |
[8] |
W. Cheng, Z. W. Mo, J. Wang, Notes on "the lower and upper approximations in a fuzzy group" and "rough ideals in semigroups", Inform. Sciences, 177 (2007), 5134–5140. https://doi.org/10.1016/j.ins.2006.12.006 doi: 10.1016/j.ins.2006.12.006
![]() |
[9] |
B. Davvaz, Roughness in rings, Inform. Sciences, 164 (2004), 147–163. https://doi.org/10.1016/j.ins.2003.10.001 doi: 10.1016/j.ins.2003.10.001
![]() |
[10] |
N. Kuroki, P. P. Wang, The lower and upper approximations in a fuzzy group, Inform. Sciences, 90 (1996), 203–220. https://doi.org/10.1016/0020-0255(95)00282-0 doi: 10.1016/0020-0255(95)00282-0
![]() |
[11] |
N. Kuroki, Rough ideals in semigroups, Inform. Sciences, 100 (1997), 139–163. https://doi.org/10.1016/S0020-0255(96)00274-5 doi: 10.1016/S0020-0255(96)00274-5
![]() |
[12] |
F. Li, Z. L. Zhang, The homomorphisms and operations of rough groups, Sci. World J., 2014 (2014), 507972. https://doi.org/10.1155/2014/507972 doi: 10.1155/2014/507972
![]() |
[13] | D. Q. Miao, S. Q. Han, D. G. Li, L. J. Sun, Rough group, rough subgroup and their properties, In: Rough sets, fuzzy sets, data mining, and granular computing, Berlin: Springer, 2005,104–113. https://doi.org/10.1007/11548669_11 |
[14] |
C. Z. Wang, D. G. Chen, A short note on some properties of rough groups, Comput. Math. Appl., 59 (2010), 431–436. https://doi.org/10.1016/j.camwa.2009.06.024 doi: 10.1016/j.camwa.2009.06.024
![]() |
[15] |
Z. H. Wang, L. Shu, The lower and upper approximations in a group, Int. J. Math. Comput. Sci., 6 (2012), 158–162. https://doi.org/10.5281/zenodo.1072425 doi: 10.5281/zenodo.1072425
![]() |
[16] |
C. Z. Wang, D. G. Chen, Q. H. Hu, On rough approximations of groups, Int. J. Mach. Learn. & Cyber., 4 (2013), 445–449. https://doi.org/10.1007/s13042-012-0108-6 doi: 10.1007/s13042-012-0108-6
![]() |
[17] |
H. Tasbozan, I. Icen, The upper and lower approximations in rough subgroupoid of a groupoid, Moroccan Journal of Pure and Applied Analysis, 4 (2018), 85–93. https://doi.org/10.1515/mjpaa-2018-0009 doi: 10.1515/mjpaa-2018-0009
![]() |
[18] | Q. F. Zhang, A. M. Fu, S. X. Zhao, Rough modules and their some properties, 2006 International Conference on Machine Learning and Cybernetics, Dalian, China, 2006, 2290–2293. https://doi.org/10.1109/ICMLC.2006.258675 |
[19] |
F. A. Agusfrianto, F. Fitriani, Y. Mahatma, Rough rings, rough subrings and rough ideeals, Journal of Fundamental Mathematics and Applications, 5 (2022), 96–103. https://doi.org/10.14710/jfma.v5i2.15194 doi: 10.14710/jfma.v5i2.15194
![]() |
[20] |
S. T. Almohammadi, C. Ozel, A new approach to rough vector spaces, General Letters in Mathematics, 6 (2019), 1–9. https://doi.org/10.31559/glm2019.6.1.1 doi: 10.31559/glm2019.6.1.1
![]() |
[21] | A. Skowron, On topology in information system, Bulletin of the Polish Academic Science and Mathematics, 36 (1988), 477–480. |
[22] | A. Wiweger, On topological rough sets, Bulletin of the Polish Academy of Sciences Mathematics, 37 (1989), 51–62. |
[23] |
E. F. Lashin, A. M. Kozae, A. A. A. Khadra, T. Medhat, Rough set theory for topological spaces, Int. J. Approx. Reason., 40 (2005), 35–43. https://doi.org/10.1016/j.ijar.2004.11.007 doi: 10.1016/j.ijar.2004.11.007
![]() |
[24] |
Y. Y. Yao, Relational interpretations of neighborhood operators and rough set approximation operators, Inform. Sciences, 111 (1998), 239–259. https://doi.org/10.1016/S0020-0255(98)10006-3 doi: 10.1016/S0020-0255(98)10006-3
![]() |
[25] |
K. Y. Qin, J. L. Yang, Z. Pei, Generalized rough sets based on reflexive and transitive relations, Inform. Sciences, 178 (2008), 4138–4141. https://doi.org/10.1016/j.ins.2008.07.002 doi: 10.1016/j.ins.2008.07.002
![]() |
[26] | A. A. Allam, M. Y. Bakeir, E. A. Abo-Tabl, Some methods for generating topologies by relations, B. Malays. Math. Sci. So., 31 (2008), 35–45. |
[27] |
Z. Pei, D. W. Pei, L. Zheng, Topology vs generalized rough sets, Int. J. Approx. Reason., 52 (2011), 231–239. https://doi.org/10.1016/j.ijar.2010.07.010 doi: 10.1016/j.ijar.2010.07.010
![]() |
[28] | A. Kandil, M. M. Yakout, A. Zakaria, Generalized rough sets via ideals, Annals of Fuzzy Mathematics and Informatics, 5 (2013), 525–532. |
[29] |
M. Hosny, Idealization of j-approximation spaces, Filomat, 34 (2020), 287–301. https://doi.org/10.2298/FIL2002287H doi: 10.2298/FIL2002287H
![]() |
[30] |
M. Hosny, Rough sets theory via new topological notions based on ideals and applications, AIMS Mathematics, 7 (2022), 869–902. https://doi.org/10.3934/math.2022052 doi: 10.3934/math.2022052
![]() |
[31] |
H. I. Mustafaa, T. M. Al-shami, R. Wassefa, Rough set paradigms via containment neighborhoods and ideals, Filomat, 37 (2023), 4683–4702. https://doi.org/10.2298/FIL2314683M doi: 10.2298/FIL2314683M
![]() |
[32] |
T. M. Al-Shami, Topological approach to generate new rough set models, Complex Intell. Syst., 8 (2022), 4101–4113. https://doi.org/10.1007/s40747-022-00704-x doi: 10.1007/s40747-022-00704-x
![]() |
[33] |
T. M. Al-Shami, Improvement of the approximations and accuracy measure of a rough set using somewhere dense sets, Soft Comput., 25 (2021), 14449–14460. https://doi.org/10.1007/s00500-021-06358-0 doi: 10.1007/s00500-021-06358-0
![]() |
[34] |
T. M. Al-Shami, I. Alshammari, Rough sets models inspired by supra-topology structures, Artif. Intell. Rev., 56 (2023), 6855–6883. https://doi.org/10.1007/s10462-022-10346-7 doi: 10.1007/s10462-022-10346-7
![]() |
[35] |
T. M. Al-Shami, A. Mhemdi, Approximation operators and accuracy measures of rough sets from an infra-topology view, Soft Comput., 27 (2023), 1317–1330. https://doi.org/10.1007/s00500-022-07627-2 doi: 10.1007/s00500-022-07627-2
![]() |
[36] |
T. M. Al-Shami, A. Mhemdi, Approximation spaces inspired by subset rough neighborhoods with applications, Demonstr. Math., 56 (2023), 20220223. https://doi.org/10.1515/dema-2022-0223 doi: 10.1515/dema-2022-0223
![]() |
[37] |
A. Ç. Güler, E. D. Yıldırım, O. B. Özbakır, Rough approximations based on different topologies via ideals, Turk. J. Math., 46 (2022), 1177–1192. https://doi.org/10.55730/1300-0098.3150 doi: 10.55730/1300-0098.3150
![]() |
[38] |
N. Bağırmaz, İ. İçen, A. F. Özcan, Topological rough groups, Topol. Algebra Appl., 4 (2016), 31–38. https://doi.org/10.1515/taa-2016-0004 doi: 10.1515/taa-2016-0004
![]() |
[39] |
A. Altassan, N. Alharbi, H. Aydi, C. Özel, Rough action on topological rough groups, Appl. Gen. Topol., 21 (2020), 295–304. https://doi.org/10.4995/agt.2020.13156 doi: 10.4995/agt.2020.13156
![]() |
[40] |
P. Y. Li, W. L. Liu, L. Mou, Z. F. Guo, On separation axioms of topological rough groups, Soft Comput., 27 (2023), 57–61. https://doi.org/10.1007/s00500-022-07521-x doi: 10.1007/s00500-022-07521-x
![]() |
[41] |
N. Alharbi, A. Altassan, H. Aydi, C. Özel, Rough quotient in topological rough sets, Open Math., 17 (2019), 1750–1755. https://doi.org/10.1515/math-2019-0138 doi: 10.1515/math-2019-0138
![]() |
[42] |
T. M. G. Ahsanullah, Rough uniformity of topological rough groups and L-fuzzy approximation groups, J. Intell. Fuzzy Syst., 43 (2022), 1129–1139. https://doi.org/10.3233/JIFS-212634 doi: 10.3233/JIFS-212634
![]() |
[43] |
F. C. Lin, Q. Q. Sun, Y. J. Lin, J. J. Li, Some topological properties of topological rough groups, Soft Comput., 25 (2021), 3441–3453. https://doi.org/10.1007/s00500-021-05631-6 doi: 10.1007/s00500-021-05631-6
![]() |
[44] |
E. Kieou, M. Todjro, Y. Mensah, Rough representations of rough topological groups, Appl. Gen. Topol., 24 (2023), 333–341. http://doi.org/10.4995/agt.2023.18577 doi: 10.4995/agt.2023.18577
![]() |
[45] |
G. Oğuz, İ. İçen, M. H. Gürsoy, Lie rough groups, Filomat, 32 (2018), 5735–5741. https://doi.org/10.2298/FIL1816735O doi: 10.2298/FIL1816735O
![]() |
[46] | J. H. Carruth, J. A. Hildebrant, R. J. Koch, The theory of topological semigroups, New York: Marcel Dekker Inc, 1983. |
1. | Hari Mohan Srivastava, Soubhagya Kumar Sahoo, Pshtiwan Othman Mohammed, Dumitru Baleanu, Bibhakar Kodamasingh, Hermite–Hadamard Type Inequalities for Interval-Valued Preinvex Functions via Fractional Integral Operators, 2022, 15, 1875-6883, 10.1007/s44196-021-00061-6 | |
2. | Muhammad Bilal Khan, Gustavo Santos-García, Hatim Ghazi Zaini, Savin Treanță, Mohamed S. Soliman, Some New Concepts Related to Integral Operators and Inequalities on Coordinates in Fuzzy Fractional Calculus, 2022, 10, 2227-7390, 534, 10.3390/math10040534 | |
3. | Muhammad Bilal Khan, Adriana Cătaș, Tareq Saeed, Generalized Fractional Integral Inequalities for p-Convex Fuzzy Interval-Valued Mappings, 2022, 6, 2504-3110, 324, 10.3390/fractalfract6060324 | |
4. | Mudassir Shams, Nasreen Kausar, Praveen Agarwal, Shaher Momani, Mohd Asif Shah, Highly efficient numerical scheme for solving fuzzy system of linear and non-linear equations with application in differential equations, 2022, 30, 2769-0911, 777, 10.1080/27690911.2022.2147165 | |
5. | T. Rasheed, S.I. Butt, Đ. Pečarić, J. Pečarić, Generalized cyclic Jensen and information inequalities, 2022, 163, 09600779, 112602, 10.1016/j.chaos.2022.112602 | |
6. | Vuk Stojiljković, Rajagopalan Ramaswamy, Ola A. Ashour Abdelnaby, Stojan Radenović, Riemann-Liouville Fractional Inclusions for Convex Functions Using Interval Valued Setting, 2022, 10, 2227-7390, 3491, 10.3390/math10193491 | |
7. | Gustavo Santos-García, Muhammad Bilal Khan, Hleil Alrweili, Ahmad Aziz Alahmadi, Sherif S. M. Ghoneim, Hermite–Hadamard and Pachpatte Type Inequalities for Coordinated Preinvex Fuzzy-Interval-Valued Functions Pertaining to a Fuzzy-Interval Double Integral Operator, 2022, 10, 2227-7390, 2756, 10.3390/math10152756 | |
8. | Muhammad Bilal Khan, Savin Treanțǎ, Mohamed S. Soliman, Kamsing Nonlaopon, Hatim Ghazi Zaini, Some New Versions of Integral Inequalities for Left and Right Preinvex Functions in the Interval-Valued Settings, 2022, 10, 2227-7390, 611, 10.3390/math10040611 | |
9. | Muhammad Bilal Khan, Hatim Ghazi Zaini, Savin Treanțǎ, Mohamed S. Soliman, Kamsing Nonlaopon, Riemann–Liouville Fractional Integral Inequalities for Generalized Pre-Invex Functions of Interval-Valued Settings Based upon Pseudo Order Relation, 2022, 10, 2227-7390, 204, 10.3390/math10020204 | |
10. | Muhammad Bilal Khan, Muhammad Aslam Noor, Nehad Ali Shah, Khadijah M. Abualnaja, Thongchai Botmart, Some New Versions of Hermite–Hadamard Integral Inequalities in Fuzzy Fractional Calculus for Generalized Pre-Invex Functions via Fuzzy-Interval-Valued Settings, 2022, 6, 2504-3110, 83, 10.3390/fractalfract6020083 | |
11. | Muhammad Bilal Khan, Hatim Ghazi Zaini, Savin Treanțǎ, Gustavo Santos-García, Jorge E. Macías-Díaz, Mohamed S. Soliman, Fractional Calculus for Convex Functions in Interval-Valued Settings and Inequalities, 2022, 14, 2073-8994, 341, 10.3390/sym14020341 |