Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article Special Issues

Some properties of n-quasi-(m,q)-isometric operators on a Banach space

  • In this paper, we introduced the class of n-quasi-(m,q)-isometric operators on a Banach space. Such a class seems to be a natural generalization of m-isometric operators on Banach spaces and of n-quasi-m-isometric operators on Hilbert spaces. We started by giving some of their elementary properties and studying the products and the power of such operators. Next, we focused on the dynamic of a n-quasi-m-isometry. More precisely, we proved a result by characterizing the supercyclicity of such a class.

    Citation: Khadija Gherairi, Zayd Hajjej, Haiyan Li, Hedi Regeiba. Some properties of n-quasi-(m,q)-isometric operators on a Banach space[J]. AIMS Mathematics, 2023, 8(12): 31246-31257. doi: 10.3934/math.20231599

    Related Papers:

    [1] Khadija Gherairi, Zayd Hajjej, Haiyan Li, Hedi Regeiba . n-quasi-A-(m,q)-isometry on a Banach space. AIMS Mathematics, 2023, 8(12): 28308-28321. doi: 10.3934/math.20231448
    [2] Hadi Obaid Alshammari . Higher order hyperexpansivity and higher order hypercontractivity. AIMS Mathematics, 2023, 8(11): 27227-27240. doi: 10.3934/math.20231393
    [3] Hadi Obaid Alshammari, Abdulrahman Obaid Alshammari . A study of (m,q)-isometric multimappings in the context of G-metric spaces. AIMS Mathematics, 2025, 10(5): 11369-11381. doi: 10.3934/math.2025517
    [4] Sid Ahmed Ould Beinane, Sid Ahmed Ould Ahmed Mahmoud . On (n1,,nm)-hyponormal tuples of Hilbert space operators. AIMS Mathematics, 2024, 9(10): 27784-27796. doi: 10.3934/math.20241349
    [5] Lijun Ma, Shuxia Liu, Zihong Tian . The binary codes generated from quadrics in projective spaces. AIMS Mathematics, 2024, 9(10): 29333-29345. doi: 10.3934/math.20241421
    [6] Taja Yaying, S. A. Mohiuddine, Jabr Aljedani . Exploring the q-analogue of Fibonacci sequence spaces associated with c and c0. AIMS Mathematics, 2025, 10(1): 634-653. doi: 10.3934/math.2025028
    [7] Anas Al-Masarwah, Abd Ghafur Ahmad . Subalgebras of type (α, β) based on m-polar fuzzy points in BCK/BCI-algebras. AIMS Mathematics, 2020, 5(2): 1035-1049. doi: 10.3934/math.2020072
    [8] Sharief Deshmukh, Amira Ishan, Olga Belova . On eigenfunctions corresponding to first non-zero eigenvalue of the sphere Sn(c) on a Riemannian manifold. AIMS Mathematics, 2024, 9(12): 34272-34288. doi: 10.3934/math.20241633
    [9] Ohud Bulayhan Almutairi, Sid Ahmed Ould Ahmed Mahmoud . New extension of quasi-M-hypnormal operators. AIMS Mathematics, 2024, 9(8): 21383-21396. doi: 10.3934/math.20241038
    [10] Mohammad H. M. Rashid, Feras Bani-Ahmad . An estimate for the numerical radius of the Hilbert space operators and a numerical radius inequality. AIMS Mathematics, 2023, 8(11): 26384-26405. doi: 10.3934/math.20231347
  • In this paper, we introduced the class of n-quasi-(m,q)-isometric operators on a Banach space. Such a class seems to be a natural generalization of m-isometric operators on Banach spaces and of n-quasi-m-isometric operators on Hilbert spaces. We started by giving some of their elementary properties and studying the products and the power of such operators. Next, we focused on the dynamic of a n-quasi-m-isometry. More precisely, we proved a result by characterizing the supercyclicity of such a class.



    Let H be a complex separable Hilbert space. We denote by B(H) the Banach algebra of all bounded linear operators on H.

    The class of m-isometric operators on H has been introduced by J. Agler [1] and later has been intensively studied by J. Agler and M. Stankus (see [2,3,4]). In fact, an operator TB(H) is said to be a m-isometry if, and only if,

    βm(T):=mk=0(1)mk(mk)TkTk=0, (1.1)

    where T denotes the adjoint operator of T. Equivalently,

    Δm(T,x):=mk=0(1)mk(mk)Tkx2=0, (1.2)

    for all xH. If m=1, the operator T is said to be an isometry.

    Recently, the study of the family of m-isometric operators has been developed by many researchers (see [5,6,7,8]). In quest of generality, the interest is devoted to introduce a new class of operators that generalizes the m-isometries, namely, the n-quasi-m-isometric operators. Such a class of bounded linear operators was first introduced by J. Shen and F. Zuo in [9]. Later, many authors investigated in details the study of the n-quasi-m-isometric operators. For example, we quote the readers to the works of S. Mecheri and T. Prasad [10] and O. A. Mahmoud Sid Ahmed, A. Saddi and K. Gherairi [11]. This class of bounded operators generalizes that of m-isometric operators on a Hilbert space, an operator TB(H) is said to be a n-quasi-m-isometry if, and only if,

    βm,n(T):=Tn(mk=0(1)mk(mk)TkTk)Tn=0, (1.3)

    which is equivalent to

    Δm,n(T,x):=mk=0(1)mk(mk)Tk+nx2=0,xH. (1.4)

    In [12], O. A. M. Sid Ahmed extended the study of m-isometric operators to a Banach space structure. Let X be a Banach space. An operator TB(X) is called an m-isometry if

    mk=0(1)mk(mk)Tkx2=0,xX. (1.5)

    In [13], F. Bayart has noted that the exponent two can be replaced by any real number q1 and has introduced the (m,q)-isometry by the following definition.

    Definition 1.1. [13] Let TB(X), m1 and q[1,+). The operator T is said to be a (m,q)-isometry if, for any xX,

    Δqm(T,x):=mk=0(1)mk(mk)Tkxq=0. (1.6)

    It is called a m-isometry if it is an (m,p)-isometry for some p1.

    We note that if X is an Hilbert space and q=2 the (m,2)-isometry corresponds to Agler's definition of an m-isometry.

    In this paper, we aim to generalize this notion by introducing and studying a new class called n-quasi-(m,q)-isometric operators on a Banach space. Throughout this paper N denotes the set of positive integers, X a Banach space and I=IX the identity operator. For every TB(X), we denote by R(T) the range of T. We notice that R(T) is a T-invariant subspace.

    The paper is organized as follows. Section 2 is devoted to present some definitions and basic properties. The power and the product of n-quasi-(m,q)-isometric operators are discussed in Section 3. In the closing section, we study the dynamic of such a class. More precisely, we prove that a n-quasi-(m,q)-isometry on a Banach can never be supercyclic.

    In this section, we give some properties of n-quasi-(m,q)-isometries and we prove results that generalize the existing ones corresponding to (m,q)-isometries on Banach spaces.

    Let us begin with the following definition in which we generalize the (m,q)-isometry notion by defining the class of n-quasi-(m,q)-isometries.

    Definition 2.1. Let TB(X), m,nN and q[1, +). The operator T is said to be an n-quasi-(m,q)-isometry if

    Δqm,n(T,x):=mk=0(1)mk(mk)Tn+kxq=0,xX. (2.1)

    Remark 2.1. If X is a Hilbert space and q=2, then the notion of n-quasi-(m,2)-isometry corresponds to n-quasi-m-isometry on a Hilbert space; that is Δ2m,n(T)=Δm,n(T).

    The following proposition gives a characterization of the n-quasi-(m,q)-isometric operators. It will be used to prove results with some interest in this paper.

    Proposition 2.1. Let TB(X), then T is a n-quasi-(m,q)-isometry if, and only if, T is a (m,q)-isometry on ¯R(Tn).

    Proof. Let TB(X), T be a n-quasi-(m,q)-isometry on X if, and only if, for all xX, we have

    0=mk=0(1)mk(mk)Tn+kxq=mk=0(1)mk(mk)Tk(Tnx=y)q=mk=0(1)mk(mk)Tk(y)q,yR(Tn).

    Now, Let z¯R(Tn), then there exists (yp)pR(Tn) such that z=lim. Thus, we have

    \begin{eqnarray*} & &\sum\limits_{k = 0}^m(-1)^{m-k}\binom{m}{k}\Vert T^{k}z\Vert^q\\ & = &\underset{p\to\infty}{\lim} \sum\limits_{k = 0}^m(-1)^{m-k}\binom{m}{k}\Vert T^{k}y_p\Vert^q\\ & = &0, \end{eqnarray*}

    then \sum_{k = 0}^m(-1)^{m-k}\binom{m}{k}\Vert T^{k}z\Vert^q = 0, \quad \forall z\in \overline{\mathcal{R}(T^n)} .

    This ends the proof of Proposition 2.1.

    Remark 2.2. Regarding Proposition 2.1, if \mathcal{R}(T^n) is dense in X , then T is a n -quasi- (m, q) -isometry on X if, and only if, T is a (m, q) -isometry on X . For this reason, we will assume throughout this paper that \mathcal{R}(T^n) is not dense on X .

    Proposition 2.2. Let T\in\mathcal{B}(X) be a n -quasi- (m, q) -isometry, then T is a n_1 -quasi- (m, q) -isometry for all n_1\geq n.

    Proof. Assume that T is a n -quasi- (m, q) -isometry on X . Referring to Proposition 2.1, we get that T is a (m, q) -isometry on \overline{\mathcal{R}(T^n)}. On the other hand, let n_1\geq n and y\in\overline{\mathcal{R}(T^{n_1})}

    \begin{eqnarray*} &\Rightarrow & \exists\ (y_k)_k\subset\mathcal{R}(T^{n_1}) \text{ such that } \underset{k\to\infty}{\lim}y_k = y\\ &\Rightarrow &\forall k\in \mathbb{N}\ \exists x_k\in X \text{ such that } y_k = T^{n_1}(x_k)\\ &\Rightarrow &\forall k\in \mathbb{N}\ \exists x_k\in X \text{ such that } y_k = T^{n}(T^{n_1-n}(x_k))\\ &\Rightarrow & \forall k\in \mathbb{N}, \ y_k\in \mathcal{R}(T^{n})\text{ and } y\in\overline{\mathcal{R}(T^n)}\\ &\Rightarrow &\overline{\mathcal{R}(T^n)}\supset\overline{\mathcal{R}(T^{n_1})}\quad \mbox{for all}\ n_1\geq n. \end{eqnarray*}

    This implies that T is a (m, q) -isometry on \overline{\mathcal{R}(T^{n_1})}. Therefore, T is a n_1 -quasi- (m, q) -isometry for all n_1\geq n.

    Example 2.1. Let T\in\mathcal{B}(l^q(\mathbb{N})) , where q\geq1 , be the unilateral weighted forward shift operator defined on l^q(\mathbb{N}) as follows

    T(\alpha_1, \alpha_2, \alpha_3, \alpha_4, ...): = (0, 2\alpha_1, 3\alpha_2, \alpha_3, \alpha_4, ...).

    By a direct computation, it holds for \alpha = (\alpha_1, \alpha_2, \alpha_3, ...)\in l^q(\mathbb{N}) that

    \begin{eqnarray*} &&\Vert T^4(\alpha_1, \alpha_2, \alpha_3, ...)\Vert^q-2\Vert T^3(\alpha_1, \alpha_2, \alpha_3, ...)\Vert^q+\Vert T^2(\alpha_1, \alpha_2, \alpha_3, ...)\Vert^q\\ & = &\left(\vert 6\alpha_1\vert^q+\vert 3\alpha_2\vert^q+\sum\limits_{n = 3}^{+\infty}\vert\alpha_n\vert^q\right)-2\left(\vert 6\alpha_1\vert^q+\vert 3\alpha_2\vert^q+\sum\limits_{n = 3}^{+\infty}\vert\alpha_n\vert^q\right)\\ &&+\left(\vert 6\alpha_1\vert^q+\vert 3\alpha_2\vert^q+\sum\limits_{n = 3}^{+\infty}\vert\alpha_n\vert^q\right) = 0. \end{eqnarray*}

    Taking (\alpha_1, \alpha_2, \alpha_3, \cdots)\in l^q(\mathbb{N}) with \alpha_1\neq0 , we obtain

    \begin{eqnarray*} &&\Vert T^3(\alpha_1, \alpha_2, \alpha_3, ...)\Vert^q-2\Vert T^2(\alpha_1, \alpha_2, \alpha_3, ...)\Vert^q+\Vert T(\alpha_1, \alpha_2, \alpha_3, ...)\Vert^q\\ & = &\left(\vert 6\alpha_1\vert^q+\vert 3\alpha_2\vert^q+\sum\limits_{n = 3}^{+\infty}\vert\alpha_n\vert^q\right)-2\left(\vert 6\alpha_1\vert^q+\vert 3\alpha_2\vert^q+\sum\limits_{n = 3}^{+\infty}\vert\alpha_n\vert^q\right)\\ &&+\left(\vert 2\alpha_1\vert^q+\vert 3\alpha_2\vert^q+\sum\limits_{n = 3}^{+\infty}\vert\alpha_n\vert^q\right)\\ & = &\vert2\alpha_1\vert^q-\vert6\alpha_1\vert^q\neq0. \end{eqnarray*}

    It follows that T is a 2 -quasi- (2, q) -isometry, but is not a quasi- (2, q) -isometry.

    In the previous example, we have shown that an n -quasi- (m, q) -isometric operator is not necessarily a (n-1) -quasi- (m, q) -isomerty. In this context, O. A. M. Sid Ahmed, A. Saddi and K. Gherairi proved in [11, Theorem 2.9] that for q = 2 , if T\in \mathcal{B}(\mathcal{H}) is an n -quasi- m -isometry for n\geq 2 and \mathcal{N}(T^{*p}) = \mathcal{N}(T^{*(p+1)}) for some 1\leq p\leq n-1 , then T is a p -quasi- m -isometry. In the following result, we will add a suitable condition to have a similar result.

    Theorem 2.1. Let T\in\mathcal{B}(X) be an n -quasi- (m, q) -isometry. If \overline{\mathcal{R}(T^{p})} = \overline{\mathcal{R}(T^{(p+1)})} , then T is a p -quasi- (m, q) -isometric operator on X for some 1\leq p\leq n-1.

    Proof. Under the assumption \overline{\mathcal{R}(T^{p})} = \overline{\mathcal{R}(T^{p+1})} , we have \overline{\mathcal{R}(T^{p})} = \overline{\mathcal{R}(T^{n})} . Indeed, we start by proving that \overline{\mathcal{R}(T^{p+1})} = \overline{\mathcal{R}(T^{p+2})} . The first inclusion \overline{\mathcal{R}(T^{p+2})}\subset\overline{\mathcal{R}(T^{p+1})} is trivial. Conversely, let x\in \overline{\mathcal{R}(T^{p+1})} , then there exists (y_k)_k\subset X such that

    x = \underset{k\to\infty}{\lim}T^{p+1}(y_k) = \underset{k\to\infty}{\lim}T(T^p(y_k)) ,

    and we denote by z_k = T^p(y_k)\in\mathcal{R}(T^p)\subset\overline{\mathcal{R}(T^p)} = \overline{\mathcal{R}(T^{p+1})}, \forall k\in\mathbb{N} . We have x = \underset{k\to\infty}{\lim}T(z_k) . Thus, we get the existence of (u_{k, m})\subset X such that

    x = {\underset{m\to\infty}{\lim}}{\underset{k\to\infty}{\lim}}TT^{p+1}(u_{k, m}) = {\underset{m\to\infty}{\lim}}{\underset{k\to\infty}{\lim}}T^{p+2}(u_{k, m}) .

    Since \overline{\mathcal{R}(T^{p+2})} is a closed set, we obtain that x\in \overline{\mathcal{R}(T^{p+2})} . Therefore, it holds that \overline{\mathcal{R}(T^{p+1})}\subset\overline{\mathcal{R}(T^{p+2})} and, hence, we have \overline{\mathcal{R}(T^{p+1})} = \overline{\mathcal{R}(T^{p+2})} . By applying the same procedure (n-p) times, we obtain that \overline{\mathcal{R}(T^{p})} = \overline{\mathcal{R}(T^{n})} . It results that \overline{\mathcal{R}(T^{p})} = \overline{\mathcal{R}(T^{n})}, which gives that T is an n -quasi- (m, q) -isometric operator on X , and so T is a (m, q) -isometry on \overline{\mathcal{R}(T^n)} = \overline{\mathcal{R}(T^p)} . Hence, T is a p -quasi- (m, q) -isometric operator on X for some 1\leq p\leq n-1.

    Example 2.2. Let T\in\mathcal{B}({l^q(\mathbb{N})}) , with q\geq 1 , defined by

    T(\alpha_1, \alpha_2, \alpha_3, \cdots) = (0, w_1\alpha_1, w_2\alpha_2, w_3\alpha_3, \cdots),

    where the weights sequence (w_n)_{n > 0} is given by

    w_n: = \left\{ \begin{array}{cc} 0&\mbox{if} \ n \ \mbox{ is even, }\\ \frac{1}{\sqrt{2n-1}}& \mbox{if} \ n \ \mbox{is odd.} \end{array} \right.

    We can easily check that \overline{\mathcal{R}(T)}\neq\overline{\mathcal{R}(T^2)} and T is a two quasi- (2, 3) -isometry but is not a quasi- (2, 3) -isometry.

    On the other hand, a similar result can be found using the semigroup theory. Let's begin with the following elementary definition.

    Definition 2.2. [14] A strongly continuous semigroup (or a \mathcal{C}_0 -semigroup) on a Banach space X is a mapping T:\mathbb{R}_+\longrightarrow\mathcal{B}(X) , which satisfies:

    (1) T(0) = I (identity operator),

    (2) T(t+s) = T(t)T(s), for all t, s\geq0 (semigroup property),

    (3) \lim_{t\rightarrow0^+}T(t)u = u, for all u\in X in the strong operator topology.

    Definition 2.3. A C_0 -semigroup \{T(t)\}_{t\geq0} is an n -quasi- (m, q) -isometry if T(t) is an n -quasi- (m, q) -isometry operator for every t\geq0 .

    Proposition 2.3. Let T: = \{T(t)\}_{t\geq0} be a \mathcal{C}_0 -semigroup, then T is an n -quasi- (m, q) -isometry if, and only if, T is a (m, q) -isometry.

    Proof. We know that every (m, q) -isometry is an n -quasi- (m, q) -isometry. Conversely, assume that T is an n -quasi- (m, q) -isometry, then

    \sum\limits_{k = 0}^m(-1)^{m-k}\binom{m}{k}\Vert T^{n+k}(t)x\Vert^q = 0 , \quad \forall t\geq0.

    Since \{T(t)\}_{t\geq0} is a \mathcal{C}_0 -semigroup, we deduce that

    \sum\limits_{k = 0}^m(-1)^{m-k}\binom{m}{k}\Vert T^{k}(nt)x\Vert^q = 0 , \quad \forall t\geq0.

    Thanks to a change of variable t' = nt , it holds that T is a (m, q) -isometry.

    Theorem 2.2. Let T\in\mathcal{B}(X) be an n -quasi- (m, q) -isometry, then T is an n -quasi- (l, q) -isometry for all l\geq m.

    Proof. It is enough to prove the result for l = m+1 . So, for all x\in X , we have

    \begin{eqnarray*} \Delta_{m+1, n}^q(T, x)& = & \sum\limits_{k = 0}^{m+1}(-1)^{k}\binom{m+1}{k}\Vert T^{n+m+1-k}x\Vert^q\\ & = &\Vert T^{n+m+1}x\Vert^q+\sum\limits_{k = 1}^{m}(-1)^{k}\binom{m+1}{k}\Vert T^{n+m+1-k}x\Vert^q+(-1)^{m+1}\Vert T^nx\Vert^q\\ & = &\Vert T^{n+m+1}x\Vert^q+\sum\limits_{k = 1}^{m}(-1)^{k}\left(\binom{m}{k}+\binom{m}{k-1}\right)\Vert T^{n+m+1-k}x\Vert^q\\ &&+(-1)^{m+1}\Vert T^nx\Vert^q\\ & = &\Vert T^{n+m+1}x\Vert^q+\sum\limits_{k = 1}^{m}(-1)^{k}\binom{m}{k}\Vert T^{n+m+1-k}x\Vert^q\\ && +\sum\limits_{k = 1}^{m}(-1)^{k}\binom{m}{k-1}\Vert T^{n+m+1-k}x\Vert^q+(-1)^{m+1}\Vert T^nx\Vert^q\\ & = & \Delta_{m, n+1}^q(T, x)+\sum\limits_{k = 0}^{m-1}(-1)^{k+1}\binom{m}{k}\Vert T^{n+m-k}x\Vert^q+(-1)^{m+1}\Vert T^nx\Vert^q\\ & = & \Delta_{m, n+1}^q(T, x)-\Delta_{m, n}^q(T, x). \end{eqnarray*}

    Since T is an n -quasi- (m, q) -isometry, we have \Delta_{m, n}^q(T, x) = 0 for all x\in X . Referring to Proposition 2.2, we obtain that \Delta_{m, n+1}^q(T, x) = 0 for all x\in X .

    Usually, the reciprocal meaning is not verified, as shown in the following example.

    Example 2.3. Consider the weighted shift operator T\in\mathcal{B}(l^q(\mathbb{N})) given by T(\alpha_1, \alpha_2, \alpha_3, \cdots) = (0, w_1\alpha_1, w_2\alpha_2, w_3\alpha_3, \cdots) with weights sequence (w_n)_{n > 0} given by w_n: = \left(\frac{n+1}{n}\right)^{\frac{2}{q}}. By a direct calculation, we obtain that

    \begin{eqnarray*} &&\Vert T^4(\alpha_1, \alpha_2, \alpha_3, \cdots)\Vert^q-3\Vert T^3(\alpha_1, \alpha_2, \alpha_3, \cdots)\Vert^q+3\Vert T^2(\alpha_1, \alpha_2, \alpha_3, \cdots)\Vert^q\\& &-\Vert T(\alpha_1, \alpha_2, \alpha_3, \cdots)\Vert^q\\ & = &\sum\limits_{n = 1}^{+\infty}\Big(\vert w_nw_{n+1}w_{n+2}w_{n+3}\vert^q-3\vert w_nw_{n+1}w_{n+2}\vert^q+3\vert w_nw_{n+1}\vert^q-\vert w_n\vert^q\Big)\vert\alpha_n\vert^q\\ & = &\sum\limits_{n = 1}^{+\infty}\left(\left(\frac{n+4}{n}\right)^2-3\left(\frac{n+3}{n}\right)^2+3\left(\frac{n+2}{n}\right)^2-\left(\frac{n+1}{n}\right)^2\right)\vert\alpha_n\vert^q = 0, \end{eqnarray*}

    and

    \begin{eqnarray*} &&\Vert T^3(\alpha_1, \alpha_2, \alpha_3, \cdots)\Vert^q-2\Vert T^2(\alpha_1, \alpha_2, \alpha_3, \cdots)\Vert^q+\Vert T(\alpha_1, \alpha_2, \alpha_3, \cdots)\Vert^q\\ & = &\sum\limits_{n = 1}^{+\infty}\Big(\vert w_nw_{n+1}w_{n+2}\vert^q- 2 \vert w_nw_{n+1}\vert^q+\vert w_n\vert^q\Big)\vert\alpha_n\vert^q\\ & = &\sum\limits_{n = 1}^{+\infty}\left(\left(\frac{n+3}{n}\right)^2-2\left(\frac{n+2}{n}\right)^2+\left(\frac{n+1}{n}\right)^2\right)\vert\alpha_n\vert^q\\ & = &2\Vert (\alpha_1, \alpha_2, \alpha_3, \cdots)\Vert^q\neq0. \end{eqnarray*}

    Hence, T is a quasi- (3, q) -isometry, which is not a quasi- (2, q) -isometry.

    In the following result, we give some property of the approximate spectral of an n -quasi- (m, q) -isometric operator.

    Proposition 2.4. Let T be an n -quasi- (m, q) -isometry, then, a nonzero approximate eigenvalue of T lies in the unit circle.

    Proof. Let \lambda\neq0 be an approximate eigenvalue of T , then, there exists (x_j)\subset X with \Vert x_j\Vert = 1 and (T-\lambda)x_j\longrightarrow0 , so for all integer k\geq1 we have (T^{n+k}-\lambda^{n+k})x_j\longrightarrow0 . Since T is an n -quasi- (m, q) -isometry, we get

    \begin{eqnarray*} 0& = &\sum\limits_{k = 0}^m(-1)^{m-k}\binom{m}{k}\Vert T^{n+k}x_j\Vert^q\\ & = &\sum\limits_{k = 0}^m(-1)^{m-k}\binom{m}{k}\vert \lambda\vert^{q(n+k)}\\ & = & \vert\lambda\vert^{qn}\left(\vert\lambda\vert^{q}-1\right)^m. \end{eqnarray*}

    Since \lambda\neq0 , we obtain \vert\lambda\vert = 1 . Hence, the desired claim follows from that.

    In this section we aim to study the stability of an n -quasi- (m, q) -isometry under products and powers.

    Let's begin with the following result in which we will generalize [6, Theorem 3.1] and [11, Theorem 2.12]. More precisely, we will show that any power of an n -quasi- (m, q) -isometry is also an n -quasi- (m, q) -isometry.

    Theorem 3.1. Let T be an n -quasi- (m, q) -isometric operator on X , then T^k is also an n -quasi- (m, q) -isometry, for all positive integer k.

    Proof. Let T\in \mathcal{B}(X) be an n -quasi- (m, q) -isometry on X , then T is a (m, q) -isometry on \overline{\mathcal{R}(T^n)}. Referring to [6, Theorem 3.1], we get that T^k is a (m, q) -isometry on \overline{\mathcal{R}(T^n)} . We obtain

    \overline{\mathcal{R}(T^n)}\supset\overline{\mathcal{R}(T^{nk})}.

    This implies that T^k is a (m, q) -isometry on \overline{\mathcal{R}((T^k)^n)} . Hence, T^k is an n -quasi- (m, q) -isometry on X for all k\geq1.

    Example 3.1. Let T be the bounded linear operator defined as in Example 2.1. By a simple calculation we can show that T^2 is a quasi- (2, q) -isometry but T is not quasi- (2, q) -isometric.

    Proposition 3.1. Let T\in\mathcal{B}(X) and n_1, \, n_2, \, r, \, s, \, m, \, l be positive integers. If T^r is an n_1 -quasi- (m, q) -isometry and T^s is an n_2 -quasi- (l, q) -isometry, then T^t is an n_0 -quasi- (p, q) -isometry, where t is the greatest common divisor of r and s , n_0 = \max\big(\frac{n_1r}{t}, \ \frac{n_2s}{t}\big) and p = \min(m, \ l).

    Proof. Since T^r is an n_1 -quasi- (m, q) -isometry and T^s is an n_2 -quasi- (l, q) -isometry on X , we deduce that T^r is a (m, q) -isometry on \overline{\mathcal{R}(T^{rn_1})} and T^s is a (l, q) -isometry on \overline{\mathcal{R}(T^{sn_2})} . On the other hand, if we define t as the greatest common divisor of r and s , then

    \overline{\mathcal{R}(T^{rn_1})} = \overline{\mathcal{R}((T^{t})^{\frac{r}{t}n_1})}\quad \mbox{and}\quad \overline{\mathcal{R}(T^{sn_2})} = \overline{\mathcal{R}((T^{t})^{\frac{s}{t}n_2})}.

    Let n_0: = \max\big(\frac{r}{t}n_1, \ \frac{s}{t}n_2\big), then \overline{\mathcal{R}(T^{rn_1})}\supset\overline{\mathcal{R}(T^{tn_0})} and \overline{\mathcal{R}(T^{sn_2})}\supset\overline{\mathcal{R}(T^{tn_0})} . It follows that T^r is a (m, q) -isometry and T^s is a (l, q) -isometry on \overline{\mathcal{R}(T^{tn_0})} . By using [6, Theorem 3.6], we can easily show that T^t is a (p, q) -isometry on \overline{\mathcal{R}(T^{tn_0})} , where p = \min(m, \ l) . According to Proposition 2.1, we get that T^t is an n_0 -quasi- (p, q) -isometry on X .

    As an immediate consequence of Proposition 3.1, we have the following result.

    Corollary 3.1. Let T \in {\mathcal B}({X}) and r, s, m, n, l be positive integers, then the following properties hold.

    (1) If T is an n -quasi- (m, q) -isometry such that T^s is an n -quasi- (1, q) -isometry, then T is an ns -quasi- (1, q) -isometry.

    (2) If T^r and T^{r+1} are n -quasi- (m, q) -isometries, then T is a n(r+1) -quasi- (m, q) -isometry.

    (3) If T^r is an n -quasi- (m, q) -isometry and T^{r+1} is an n -quasi- (l, q) -isometry with m < l , then T is a n(r+1) -quasi- (m, q) -isometry.

    T. Bermúdez, A. Martinón and J. A. Noda [7] have proved that if T is a (m, q) -isometry and S is a (l, q) -isometry with T S = ST , then ST is a (m +l-1, q) -isometry. In the following theorem, we will generalize this result for the class of n -quasi- (m, q) isometric operators.

    Theorem 3.2. Let T, \, S\in\mathcal{B}(X) such that TS = ST . If T is an n_1 -quasi- (m, q) -isometry and S is an n_2 -quasi- (l, q) -isometry, then TS is an n -quasi- (m+l-1, q) -isometry, where n = \max(n_1, n_2).

    Proof. For all x\in X , we have

    \begin{eqnarray*} \Delta_{m+l-1, n}^q(TS, x)& = & \sum\limits_{k = 0}^{m+l-1}(-1)^{m+l-1-k}\binom{m+l-1}{k}\Vert (TS)^{n+k}x\Vert^q. \end{eqnarray*}

    Since TS = ST , we obtain

    \begin{eqnarray*} \Delta_{m+l-1, n}^q(TS, x)& = & \sum\limits_{k = 0}^{m+l-1}(-1)^{m+l-1-k}\binom{m+l-1}{k}\Vert (T S)^k{(\underset{ = y}{\underbrace{(TS)^n(x)}})}\Vert^q \quad (\forall x\in X)\\ & = & \sum\limits_{k = 0}^{m+l-1}(-1)^{m+l-1-k}\binom{m+l-1}{k}\Vert (TS)^k{(y)}\Vert^q\quad (\forall {y}\in {\mathcal{R}\left((TS)^n\right)}). \end{eqnarray*}

    Likewise to the proof of Proposition 2.1, we deduce that

    \sum\limits_{k = 0}^{m+l-1}(-1)^{m+l-1-k}\binom{m+l-1}{k}\Vert (TS)^k(y)\Vert^q\quad (\forall y\in \overline{\mathcal{R}\left((TS)^n\right)}).

    Thanks to [7, Theorem 3.3], we have

    \sum\limits_{k = 0}^{m+l-1}(-1)^{m+l-1-k}\binom{m+l-1}{k}\Vert T^{k}S^kx\Vert^q = 0 \text{ for all }x\in X,

    in particular for all x\in\overline{\mathcal{R}\left((TS)^n\right)} . This implies that TS is a (m+l-1, q) -isometry on \overline{\mathcal{R}\left((TS)^n\right)} . Referring to Proposition 2.1, we get that TS is an n -quasi- (m+l-1, q) -isometry, with n = \max(n_1, n_2).

    The following example shows that Theorem 3.2 is not necessarily true if TS\neq ST.

    Example 3.2. Let q\geq1 and T, \, S\in\mathcal{B}(l^q(\mathbb{N})) be the weighted shift operators defined by

    T(\alpha_1, \alpha_2, \alpha_3, \cdots) = (0, w_1\alpha_1, w_2\alpha_2, w_3\alpha_3, \cdots), \; S(\alpha_1, \alpha_2, \alpha_3, \cdots) = (0, \gamma_1\alpha_1, \gamma_2\alpha_2, \gamma_3\alpha_3, \cdots),

    with w_k: = \left(\frac{3k+4}{3k+1}\right)^{\frac{1}{q}} and \gamma_k: = \left(\frac{k+2}{k+1}\right)^{\frac{1}{q}}. It is immediate to verify that TS\neq ST . The operators T and S are quasi- (2, q) -isometries. Indeed,

    \begin{eqnarray*} &&\Vert T^3(\alpha_1, \alpha_2, \alpha_3, \cdots)\Vert^q-2\Vert T^2(\alpha_1, \alpha_2, \alpha_3, \cdots)\Vert^q+\Vert T(\alpha_1, \alpha_2, \alpha_3, \cdots)\Vert^q\\ & = &\sum\limits_{n = 1}^{+\infty}\vert w_nw_{n+1}w_{n+2}\vert^q\vert\ \alpha_n\vert^q-2\sum\limits_{n = 1}^{+\infty}\vert w_nw_{n+1}\vert^q \vert \alpha_n\vert^q+\sum\limits_{n = 1}^{+\infty}\vert w_n\vert^q \vert \alpha_n\vert^q\\ & = & \sum\limits_{n = 1}^{+\infty}\left(\frac{3n+10}{3n+1}-2\frac{3n+7}{3n+1}+\frac{3n+4}{3n+1}\right)\vert \alpha_n\vert^q = 0, \end{eqnarray*}

    and

    \begin{eqnarray*} &&\Vert S^3(\alpha_1, \alpha_2, \alpha_3, \cdots)\Vert^q-2\Vert S^2(\alpha_1, \alpha_2, \alpha_3, \cdots)\Vert^q+\Vert S(\alpha_1, \alpha_2, \alpha_3, \cdots)\Vert^q\\ & = &\sum\limits_{n = 1}^{+\infty}\vert \gamma_n \gamma_{n+1} \gamma_{n+2}\vert^q\vert\ \alpha_n\vert^q-2\sum\limits_{n = 1}^{+\infty}\vert \gamma_n \gamma_{n+1}\vert^q \vert \alpha_n\vert^q+\sum\limits_{n = 1}^{+\infty}\vert \gamma_n\vert^q \vert \alpha_n\vert^q\\ & = & \sum\limits_{n = 1}^{+\infty}\left(\frac{n+4}{n+1}-2\frac{n+3}{n+1}+\frac{n+2}{n+1}\right)\vert \alpha_n\vert^q = 0. \end{eqnarray*}

    On the other hand, we have

    \begin{eqnarray*} &&\Vert (TS)^4(\alpha_1, \alpha_2, \alpha_3, \cdots)\Vert^q-3\Vert (TS)^3(\alpha_1, \alpha_2, \alpha_3, \cdots)\Vert^q+3\Vert (TS)^2(\alpha_1, \alpha_2, \alpha_3, \cdots)\Vert^q\\ & &-\Vert TS (\alpha_1, \alpha_2, \alpha_3, \cdots)\Vert^q\\ & = &\sum\limits_{n = 1}^{+\infty}\vert \gamma_n \gamma_{n+2} \gamma_{n+4} \gamma_{n+6}w_{n+1}w_{n+3}w_{n+5}w_{n+7}\vert^q\vert\ \alpha_n\vert^q\\ &&-3\sum\limits_{n = 1}^{+\infty}\vert \gamma_n \gamma_{n+2} \gamma_{n+4} w_{n+1}w_{n+3}w_{n+5}\vert^q\vert\ \alpha_n\vert^q\\ &&+3\sum\limits_{n = 1}^{+\infty}\vert \gamma_n \gamma_{n+2} w_{n+1}w_{n+3}\vert^q\vert\ \alpha_n\vert^q-\sum\limits_{n = 1}^{+\infty}\vert \gamma_n w_{n+1}\vert^q\vert\ \alpha_n\vert^q\\ & = & \sum\limits_{n = 1}^{+\infty}\frac{-48(9n^3+90n^2+263n+238)}{(n+1)(n+3)(n+5)(n+7)(3n+4)(3n+10)(3n+16)(3n+22)}\vert\ \alpha_n\vert^q\\ &\neq&0, \end{eqnarray*}

    which yields that TS is not a quasi- (3, q) -isometry.

    In [11, Theorem 2.18] and for q = 2 , it was proven that if S, \, T\in{\mathcal B}({\mathcal H}) are doubly commuting, T is a n_1 -quasi- m -isometric and S is a n _2 -quasi- l -isometric, then TS is a \max\{n_1, n_2\} -quasi- (m+l-1) -isometry. By using Theorem 3.2, we can show this result by assuming only that T and S are commuting.

    Corollary 3.2. Let T, \, S\in {\mathcal B}(X) be commuting operators. If T is an n_1 -quasi- (m, q) -isometry and S is an n_2 -quasi- (l, q) -isometry, then T^tS^r is a \max\{n_1, \; n_2\} -quasi- \big((m+l-1), q\big) -isometry for all positive integers t, \, r .

    Proof. Since T is an n_1 -quasi- (m, q) -isometry and S is an n_2 -quasi- (l, q) -isometry, it follows from Theorem 3.1 that T^t is an n_1 -quasi- (m, q) -isometry and S^r is an n_2 -quasi- (l, q) -isometry for all positive integers t, \, r . Moreover, since TS = ST , we deduce that T^tS^r = S^rT^t . Referring to Theorem 3.2, it holds that T^tS^r is a \max\{n_1, \; n_2\} -quasi- \big((m+l-1), q\big) -isometry.

    In this section, we aim to study the supercyclicity of a n -quasi- (m, q) -isometry on a complex Banach space X .

    Definition 4.1. Let X be a separable Banach space.

    (1) The orbit of E\subset X under T is defined by:

    Orb(T, E) = \cup_{k = 0}^\infty T^k(E).

    (2) An operator T\in \mathcal{B}(X) is said to be supercyclic, if E = \text{span}\langle x\rangle with supercyclic vector x such that

    \overline{\mathbb{C} \ Orb(T, x)}: = \overline{\{\lambda T^nx, \lambda\in\mathbb{C}, n\geq0\}} = X.

    (3) An operator T\in \mathcal{B}(X) is said to be N -supercyclic with N\geq1 if there exists a subspace E\subset X with dim(E) = N such that

    \overline{Orb(T, E)} = X.

    It's clear that a supercyclic operator is a one supercyclic, then we get the relation between the properties as following

    \begin{eqnarray*} &\mbox {supercyclic}&\Rightarrow N-\mbox{supercyclic}\\ &\Downarrow & \\ &\mbox{cyclic}& \end{eqnarray*}

    In the following theorem we will investigate the supercycilcity of n -quasi- (m, q) -isometry operators.

    Theorem 4.1. On an infinite-dimensional Banach space X , an n -quasi- (m, q) -isometry is never supercyclic.

    Proof. We know for any operator T\in \mathcal{B}(X) that T\left(\overline{\mathcal{R}(T)}\right)\subset\overline{\mathcal{R}(T)} . Let T\in \mathcal{B}(T) be an n -quasi- (m, q) -isometry. We will discuss two cases:

    ● If \mathcal{R}(T) is dense, then by the Proposition 2.1 we get that T is a (m, q) -isometry. According to [13, Thoerem 3.3], T is not an N -supercyclic operator for any N\geq1 , then T is not a supercyclic operator.

    ● If \mathcal{R}(T) is not dense, then \mathcal{R}(T) is a nontrivial closed T -invariant subspace. By [15], T is not supercyclic operator.

    In this article, we introduce and study n -quasi- (m, q) -isometric operators in Banach space settings. The supercyclicity and some fundamental properties, including the power and the product, of such operators are explored. As a future work, we can generalize our study on a metric space.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work is supported by Researchers Supporting Project number (RSPD2023R736), King Saud University, Riyadh, Saudi Arabia.

    The authors declare that there is no conflict of interest.



    [1] J. Agler, A disconjugacy theorem for Toeplitz operators, Am. J. Math., 112 (1990), 1–14. https://doi.org/10.2307/2374849 doi: 10.2307/2374849
    [2] J. Agler, M. Stankus, m-isometric transformations of Hilbert space, Ⅰ, Integ. Equat. Oper. Th., 21 (1995), 383–429. https://doi.org/10.1007/BF01222016 doi: 10.1007/BF01222016
    [3] J. Agler, M. Stankus, m-isometric transformations of Hilbert space, Ⅱ, Integ. Equat. Oper. Th., 23 (1995), 1–48. https://doi.org/10.1007/BF01261201 doi: 10.1007/BF01261201
    [4] J. Agler, M. Stankus, m-isometric transformations of Hilbert space, Ⅲ, Integ. Equat. Oper. Th., 24 (1996), 379–421. https://doi.org/10.1007/BF01191619 doi: 10.1007/BF01191619
    [5] T. Bermúdez, A. Martinon, E. Negrin, Weighted shift operators which are m-isometries, Integ. Equat. Oper. Th., 68 (2010), 301–312. https://doi.org/10.1007/s00020-010-1801-z doi: 10.1007/s00020-010-1801-z
    [6] T. Bermúdez, C. D. Mendoza, A. Martinón, Powers of m-isometries, Stud. Math., 208 (2012), 249–255.
    [7] T. Bermúdez, A. Martinón, J. A. Noda, Products of m-isometries, Linear Algebra Appl., 438 (2013), 80–86. https://doi.org/10.1016/j.laa.2012.07.011 doi: 10.1016/j.laa.2012.07.011
    [8] T. Bermúdez, A. Martinón, V. Muller, J. A. Noda, Perturbation of m-isometries by nilpotent operators, Abstr. Appl. Anal., 2014 (2014), 1–6. https://doi.org/10.1155/2014/745479 doi: 10.1155/2014/745479
    [9] J. Shen, F. Zuo, Spectral properties of k-quasi-2-isomertic operators, J. Korean Soc. Math. Ed., 22 (2015), 275–283.
    [10] S. Mecheri, T. Prasad, On n-quasi-m-isometric operators, Asian-Eur. J. Math., 9 (2016). https://doi.org/10.1142/S179355711650073X
    [11] O. A. M. S. Ahmed, A. Saddi, K. Gherairi, Some results on higher orders quasi-isometries, Hacet. J. Math. Stat., 49 (2020), 1315–1333. https://doi.org/10.15672/hujms.532964 doi: 10.15672/hujms.532964
    [12] O. A. M. S. Ahmed, m-isometric operators on Banach spaces, Asian-Eur. J. Math., 3 (2010), 1–19. https://doi.org/10.1142/S1793557110000027 doi: 10.1142/S1793557110000027
    [13] F. Bayart, m-isometries on Banach spaces, Math. Nachr., 284 (2011), 2141–2147. https://doi.org/10.1002/mana.200910029 doi: 10.1002/mana.200910029
    [14] A. Pazy, Semigroups of linear operator and applications to partial differntial equations, New York: Springer-Verlag, 1983.
    [15] F. Bayart, E. Matheron, Dynamics of linear operators, New York: Cambridge University Press, 2009. https://doi.org/10.1017/CBO9780511581113
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1335) PDF downloads(61) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog