Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Fractional-time derivative in ISPH method to simulate bioconvection flow of a rotated star in a hexagonal porous cavity

  • A novel treatment of fractional-time derivative using the incompressible smoothed particle hydrodynamics (ISPH) method is introduced to simulate the bioconvection flow of nano-enhanced phase change materials (NEPCM) in a porous hexagonal cavity. The fractional-time derivative is based on the Caputo style, which reflects the fractional order behavior in complex systems. In this work, the circular rotation of the embedded four-pointed star and the motion of oxytactic microorganisms in a hexagonal cavity are conducted. Due to the significance of fractional derivatives in handling real physical problems with more flexibility than conventional derivatives, the present scheme of the ISPH method is developed to solve the fractional-time derivative of the bioconvection flow in a porous hexagonal cavity. This study implicates the variations of a fractional-time derivative, a parametric of an inner four-pointed star, and the pertinent physical parameters on the behavior of a bioconvection flow of a nanofluid in a hexagonal-cavity containing oxytactic microorganisms. The presence of microorganisms has a significant role in many biological, engineering, and medical phenomena. From the present numerical investigation, it is well mentioned that the computational time of the transient processes can be reduced by applying a fractional-time derivative. The variable sizes of an inner four-pointed star enhance the bioconvection flow in a hexagonal cavity.

    Citation: Abdelraheem M. Aly, Abd-Allah Hyder. Fractional-time derivative in ISPH method to simulate bioconvection flow of a rotated star in a hexagonal porous cavity[J]. AIMS Mathematics, 2023, 8(12): 31050-31069. doi: 10.3934/math.20231589

    Related Papers:

    [1] Mingzhou Xu, Xuhang Kong . Note on complete convergence and complete moment convergence for negatively dependent random variables under sub-linear expectations. AIMS Mathematics, 2023, 8(4): 8504-8521. doi: 10.3934/math.2023428
    [2] He Dong, Xili Tan, Yong Zhang . Complete convergence and complete integration convergence for weighted sums of arrays of rowwise m-END under sub-linear expectations space. AIMS Mathematics, 2023, 8(3): 6705-6724. doi: 10.3934/math.2023340
    [3] Mingzhou Xu . Complete convergence and complete moment convergence for maximal weighted sums of extended negatively dependent random variables under sub-linear expectations. AIMS Mathematics, 2023, 8(8): 19442-19460. doi: 10.3934/math.2023992
    [4] Qingfeng Wu, Xili Tan, Shuang Guo, Peiyu Sun . Strong law of large numbers for weighted sums of m-widely acceptable random variables under sub-linear expectation space. AIMS Mathematics, 2024, 9(11): 29773-29805. doi: 10.3934/math.20241442
    [5] Yuyan Wei, Xili Tan, Peiyu Sun, Shuang Guo . Weak and strong law of large numbers for weakly negatively dependent random variables under sublinear expectations. AIMS Mathematics, 2025, 10(3): 7540-7558. doi: 10.3934/math.2025347
    [6] Mingzhou Xu . Complete convergence of moving average processes produced by negatively dependent random variables under sub-linear expectations. AIMS Mathematics, 2023, 8(7): 17067-17080. doi: 10.3934/math.2023871
    [7] Qunying Wu . The convergence rate for the laws of logarithms under sub-linear expectations. AIMS Mathematics, 2023, 8(10): 24786-24801. doi: 10.3934/math.20231264
    [8] Lunyi Liu, Qunying Wu . Complete integral convergence for weighted sums of negatively dependent random variables under sub-linear expectations. AIMS Mathematics, 2023, 8(9): 22319-22337. doi: 10.3934/math.20231138
    [9] Mingzhou Xu, Kun Cheng, Wangke Yu . Complete convergence for weighted sums of negatively dependent random variables under sub-linear expectations. AIMS Mathematics, 2022, 7(11): 19998-20019. doi: 10.3934/math.20221094
    [10] Shuyan Li, Qunying Wu . Complete integration convergence for arrays of rowwise extended negatively dependent random variables under the sub-linear expectations. AIMS Mathematics, 2021, 6(11): 12166-12181. doi: 10.3934/math.2021706
  • A novel treatment of fractional-time derivative using the incompressible smoothed particle hydrodynamics (ISPH) method is introduced to simulate the bioconvection flow of nano-enhanced phase change materials (NEPCM) in a porous hexagonal cavity. The fractional-time derivative is based on the Caputo style, which reflects the fractional order behavior in complex systems. In this work, the circular rotation of the embedded four-pointed star and the motion of oxytactic microorganisms in a hexagonal cavity are conducted. Due to the significance of fractional derivatives in handling real physical problems with more flexibility than conventional derivatives, the present scheme of the ISPH method is developed to solve the fractional-time derivative of the bioconvection flow in a porous hexagonal cavity. This study implicates the variations of a fractional-time derivative, a parametric of an inner four-pointed star, and the pertinent physical parameters on the behavior of a bioconvection flow of a nanofluid in a hexagonal-cavity containing oxytactic microorganisms. The presence of microorganisms has a significant role in many biological, engineering, and medical phenomena. From the present numerical investigation, it is well mentioned that the computational time of the transient processes can be reduced by applying a fractional-time derivative. The variable sizes of an inner four-pointed star enhance the bioconvection flow in a hexagonal cavity.



    Uncertainty presents a primary challenge for financial and risk research institutes, which has led to the classical probabilistic space theory being greatly challenged in this field. The tools of probability and expectation additivity in probability space lose their effectiveness in nonlinear financial and risk studies. As a solution to this problem of non-additivity, Peng [1,2,3] proposed a complete theoretical framework and axiom system of sub-linear expectation space. This proposal has garnered the attention of numerous scholars, who are eagerly studying and researching this topic. As a result, a series of new theories in sub-linear expectation spaces have been continuously proven. For instance, Zhang [4,5,6,7] has established the exponential inequality, Rosenthal's type inequality, Kolmogorov's type strong law of large numbers, strong limit theorems, and the application of the law of iterated logarithm under sub-linear expectations. Wu and Jiang [8] have also proven the strong law of numbers and Chover's law of the iterated logarithm under sub-linear expectations.

    Exponential inequalities play a crucial role in the proof of strong limit theorems and provide a useful tool for establishing the convergence rate of the strong law of numbers. All kinds of exponential inequality theorems have been continuously proven in probabilistic space, such as those by Kim and Kim [9], Nooghabi and Azarnoosh [10], Xing et al. [11], Sung [12], Christofides and Hadjikyriakou [13], and Wang et al. [14]. The sub-linear expectation framework provides a good solution to the non-additive probability problem and extends many properties of probability spaces to sub-linear expectation spaces. Based on this theory, this paper establishes exponential inequalities and a strong law of large numbers with a convergence rate O(n1/2ln1/2n) for unbounded END random variable sequences under sub-linear expectations. As a result, the corresponding results obtained by Wang et al. [14] have been generalized to the sub-linear expectation space context. Similarly, Tang et al. [15] have also established exponential inequalities for extended independent random variables. However, the range of the extended negatively dependent random variables that we studied is wider than that of Tang et al. [15] extended independent random variables. Furthermore, we have obtained a conclusion that they do not include each other under weaker conditions, as shown in literature [15]. We expect that our results may be applied to some practical inverse problems where randomness plays an important role; see e.g., [16,17,18,19,20,21].

    The remainder of the paper is organized as follows: In Section 2, we briefly introduce the conceptual framework and properties under sub-linear expectations, as well as the necessary definitions and lemmas required for this paper. Section 3 establishes the exponential inequalities and a strong law of large numbers for unbounded END random variable sequences under sub-linear expectations. In Section 4, we provide the proof of the main results of Section 3. Finally, Section 5 presents the conclusion.

    We use the framework and notations of Peng [1,2,3]. Let (Ω,F) be a given measurable space and let H be a linear space of real functions defined on (Ω,F) such that if X1,,XnH then φ(X1,,Xn)H for each φCl,Lip(Rn), where Cl,Lip(Rn) denotes the linear space of (local Lipschitz) functions φ satisfying

    |φ(x)φ(y)|C(1+|x|m+|y|m)|xy|,x,yRn,

    for some C>0,mN depending on φ. H is considered as a space of "random variables". In this case we denote XH is considered as a space of "random variables". We also denote Cb,Lip(Rn) to be the bounded Lipschitz functions φ(x) satisfying

    |φ(x)|C, |φ(x)φ(y)|C|xy|,x,yRn,

    for some C>0, depending on φ.

    Definition 2.1. (Zhang[6]). A sub-linear expectation ˆE on H is a function ˆE:HˉR satisfying the following properties: for all X,YH, we have

    (a) Monotonicity: If XY then ˆEXˆEY;

    (b) Constant preserving: ˆEc=c;

    (c) Sub-additivity: ˆE(X+Y)ˆEX+ˆEY whenever ˆEX+ˆEY is not of the form + or +;

    (d) Positive homogeneity: ˆE(λX)=λˆEX,λ0.

    Here ˉR=[,+]. The triple (Ω,H,ˆE) is called a sub-linear expectation space. Given a sub-linear expectation ˆE, let us denote the conjugate expectation ˆε of ˆE by

    ˆεX:=ˆE(X),XH.

    From the definition, it is easily shown that ˆε(X)ˆE(X),ˆE(X+c)=ˆE(X)+c and ˆE(XY)ˆEXˆEY for all X,YH with ˆEY being finite. Further, if ˆE(|X|) is finite, then ˆεX and ˆEX are both finite. It is called to be countably sub-additive if ˆEXn=1ˆEXn, whenever Xn=1Xn, X,XnH and X0,Xn0,n1.

    Next, we introduce the capacities corresponding to the sub-linear expectations. Let GF. A function V:G[0,1] is called a capacity if

    V()=0, V(Ω)=1 and V(A)V(B) for AB,A,BG.

    It is called to be sub-additive if V(AB)V(A)+V(B) for all A,BG with ABG. It is called to be countably sub-additive if V(n=1An)n=1V(An),AnF.

    Let (Ω,H,ˆE) be a sub-linear space, and ˆε be the conjugate of ˆE. We denote a pair (V,V) of capacities by

    V(A):=inf{ˆEξ;IAξ,ξH}, V(A):=1V(Ac), AF,

    where Ac is the complement set of A. Then

    V(A):=ˆE(IA), V(A):=ˆε(IA), if IAH. (2.1)

    For example, if A= then IA=0H and if A=Ω then IA=1H. Further, we have

    ˆEfV(A)ˆEg, ˆεfV(A)ˆεg, iffIAg, f,gH. (2.2)

    It is obvious that V is sub-additive, but V and ˆε are not. However, we have

    V(AB)V(A)+V(B) and ˆε(X+Y)ˆεX+ˆEY. (2.3)

    Due to the fact that V(AcBc)=V(AcB)V(Ac)V(B) and ˆE(XY)ˆE(X)ˆEY.

    Also, we define the Choquet integrals expectations (CV,CV) by

    CV(X)=0V(X>t)dt+0[V(Xt)1]dt,

    with V being replaced by V and V respectively.

    Remark 2.1. From (2.2), for XH,x>0,p>0, it emerges that V(|X|y)ˆE(|X|p)/xp, which is the well-known Markov's inequality.

    Definition 2.2. (Peng [1], Zhang [4]). (i) (Identical distribution). Let X1 and X2 be two random vectors defined respectively in sub-linear expectation spaces (Ω,H,ˆE). They are called identically distributed, denoted by X1d=X2 if

    ˆE1[φ(X1)]=ˆE2[φ(X2)], φCl,Lip(R),

    whenever the sub-linear expectation are finite. A sequence {Xn,n1} of random variables is said to be identically distributed if Xid=X1 for each i1.

    (ii) (Extended negatively dependent). A sequence of random variables {Xn,n1} is named to be upper (resp. lower) extended negatively dependent if there is some dominating constant K1 such that

    ˆE(ni=1φi(Xi))Kni=1ˆE(φi(Xi)), n2,

    whenever the non-negative functions φi(x)Cb,Lip(R),i=1,2,..., are all non-decreasing (resp. all non-increasing). They are named extended negatively dependent (END) if they are both upper extended negatively dependent and lower extended negatively dependent. It shall be noted that the extended negatively dependence of {Xn;n1} under ˆE does not imply the extended negatively dependence under ˆε.

    It is obvious that, let {Xn;n1} be a sequence of extended negatively dependent random variables and f1(x),f2(x),...Cl,Lip(R) are all non-decreasing (resp. all non-increasing) functions, then {fn(Xn);n1} is also a sequence of extended negatively dependent random variables.

    In the following, let {Xn;n1} be a sequence random variables in (Ω,H,ˆE), and I() denote an indicator function. The symbol C stands for a generic positive constant which may differ from one place to another.

    To prove our results, we need the following three lemmas.

    Lemma 2.1. Let {Xn;n1} be a sequence of END random variables in (Ω,H,ˆE) with ˆEXn0 for each n1. If there exists a sequence of positive numbers {cn,n1} such that |Xi|ci for each i1, then for any t>0 and n1,

    ˆEexp{tni=1Xi}Cexp{t22ni=1etciˆEX2i}.

    Proof. It is easy to check that for all xR,ex1+x+12x2e|x|. Thus, by ˆEXi0 and |Xi|ci for each i1, we have

    ˆEetXi1+tˆEXi+12t2ˆE(X2iet|Xi|)1+12t2ˆE(X2iet|Xi|)1+12t2etciˆEX2iexp{12t2etciˆEX2i},

    for any t>0. By Definition 2.2, we can see that

    ˆEexp{tni=1Xi}Cni=1ˆEetXiCexp{t22ni=1etciˆEX2i}.

    This completes the proof of Lemma 2.1.

    Lemma 2.2. (Zhang[4], Theorem 3.1). Let {X1,...,Xn} be a sequence of END random variables in (Ω,H,ˆE) with ˆEXi0 Then

    V(Snx)CB2nx2, x>0,

    where Sn=ni=1Xi,B2n=ni=1ˆEX2i.

    Lemma 2.3. (Borel-Cantelli's lemma, Zhang[6] Lemma 3.9). Let {An;n1} be a sequence of events in F. Suppose that V is a countably sub-additive capacity. If n=1V(An)<, then

    V(An;i.o.)=0,where {An;i.o.}=n=1i=nAi.

    This section presents the main results of this paper. First, we provide the exponential inequalities for unbounded END random variable sequences. Then, we establish a strong law of large numbers with convergence rate O(n1/2ln1/2n).

    Let {Xn;n1} be a sequence of random variables in (Ω,H,ˆE), and {cn;n1} be a sequence of positive numbers. Define for 1in,n1,

    X1,i,n=cnI(Xi<cn)+XiI(cnXicn)+cnI(Xi>cn),X2,i,n=(Xicn)I(Xi>cn), X3,i,n=(Xi+cn)I(Xi<cn). (3.1)

    It is easy to check that X1,i,n+X2,i,n+X3,i,n=Xi for 1in,n1 and {X1,i,n;1in} are bounded by cn for each fixed n1.

    Let f1(x)=cI(x<c)+xI(cxc)+cI(x>c),f2(x)=(xc)I(x>c),f3(x)=(x+c)I(x<c) for any c>0, then {fi(x),i=1,2,3}Cl,Lip and {fi(x),i=1,2,3} is non-decreasing. So, if {Xn;n1} are END random variables in (Ω,H,ˆE), then {X1,i,n,X2,i,n,X3,i,n;1in}, are also END random variables in (Ω,H,ˆE) for each fixed n1 due to the fact that {fi(x),i=1,2,3}Cl,Lip and {fi(x),i=1,2,3} is non-decreasing.

    Theorem 3.1. Let {Xn;n1} be a sequence of END random variables in (Ω,H,ˆE) and {X1,i,n;1in,n1} be defined by (3.1). Define B2n=ni=1ˆEX2i,n1. Then for any ε>0 such that ε2eB2n/cn and n1,

    V(ni=1(X1,i,nˆEX1,i,n)>ε)Cexp{ε28eB2n}, (3.2)
    V(ni=1(X1,i,nˆεX1,i,n)<ε)Cexp{ε28eB2n}. (3.3)

    In particular, if ˆEX1,i,n=ˆεX1,i,n, then

    V(|ni=1(X1,i,nˆEX1,i,n)|>ε)2Cexp{ε28eB2n}. (3.4)

    Corollary 3.1. Let {Xn;n1} be a sequence of identically distributed END random variables in (Ω,H,ˆE) and {X1,i,n;1in,n1} be defined by (3.1). Then for any ε>0 such that ε2eˆEX21/cn,

     V(ni=1(X1,i,nˆEX1,i,n)>nε)Cexp{nε28eˆEX21}, V(ni=1(X1,i,nˆεX1,i,n)<nε)Cexp{nε28eˆEX21}.

    In particular, if ˆEX1,i,n=ˆεX1,i,n, then

    V(|ni=1(X1,i,nˆEX1,i,n)|>nε)2Cexp{nε28eˆEX21}.

    Theorem 3.2. Let {Xn;n1} be a sequence of identically distributed END random variables in (Ω,H,ˆE) and {Xq,i,n;1in,n1},q=2,3 be defined by (3.1) with limcˆE[(X21c)+]=0. Assume that there exists a δ>0 satisfying suptδˆEet|X1|Mδ<, where Mδ is a positive constant depending only on δ. Then for any ε>0 and t(0,δ],

    V(1nni=1(Xq,i,nˆEXq,i,n)>ε)CMδt2ε2netcn, (3.5)
    V(ni=1(Xq,i,nˆεXq,i,n)<ε)CMδt2ε2netcn. (3.6)

    In particular, if ˆEXq,i,n=ˆεXq,i,n, then

    V(1n|ni=1(Xq,i,nˆEXq,i,n)|>ε)2CMδt2ε2netcn. (3.7)

    Corollary 3.2. Let {Xn;n1} be a sequence of identically distributed END random variables in (Ω,H,ˆE) with limcˆE[(X21c)+]=0 and ˆEeδ|X1|< for some δ>0. Let {Xq,i,n;1in,n1},q=2,3 be defined by (3.1). Then for any ε>0,

    V(1nni=1(Xq,i,nˆEXq,i,n)>ε)CˆEeδ|X1|δ2ε2neδcn,
    V(ni=1(Xq,i,nˆεXq,i,n)<ε)CˆEeδ|X1|δ2ε2neδcn.

    In particular, if ˆEXq,i,n=ˆεXq,i,n, then

    V(1n|ni=1(Xq,i,nˆEXq,i,n)|>ε)2CˆEeδ|X1|δ2ε2neδcn.

    Theorem 3.3. Let {Xn;n1} be a sequence of identically distributed END random variables in (Ω,H,ˆE) with limcˆE[(X21c)+]=0 and ˆEeδ|X1|< for some δ>0 and {cn;n1} be a sequence of positive numbers such that

    0<cn(enˆEX212δ)1/3for anynn0, (3.8)

    where n0 is a positive integer. Define εn=8δeˆEX21cn/n. Then for nn0,

    V(1nni=1(XiˆEXi)>3εn)C(1+2ˆEeδ|X1|δ3eˆEX21cn)eδcn, (3.9)
    V(ni=1(XiˆεXi)<3εn)C(1+2ˆEeδ|X1|δ3eˆEX21cn)eδcn. (3.10)

    In particular, if ˆEXi=ˆεXi, then

    V(1n|ni=1(XiˆEXi)|>3εn)2C(1+2ˆEeδ|X1|δ3eˆEX21cn)eδcn. (3.11)

    Theorem 3.4. Let {Xn;n1} be a sequence of identically distributed END random variables in (Ω,H,ˆE) with limcˆE[(X21c)+]=0 and ˆEeδ|X1|< for some δ>1. Suppose V is countably sub-additive, then

    lim supn1nni=1an(XiˆEXi)0a.s.V, (3.12)
    lim infn1nni=1an(XiˆεXi)0a.s.V. (3.13)

    In particular, if ˆEXi=ˆεXi, then

    limn1nni=1an(XiˆEXi)=0a.s.V, (3.14)

    where an=O(n1/2ln1/2n).

    Remark 3.1. Here, we extend the results of Tang et al. [15] for extended independent random variables to the case of extended negatively dependent random variables. Our Theorem 3.2 to Theorem 3.4 weaken the condition of [15] from ˆEeδX21< to ˆEeδ|X1|<. Furthermore, in Theorem 3.3, we improves the results of [15] for 0<cn(enˆEX212δ)1/4 to an arbitrary positive sequence satisfying (3.8) only.

    Proof of Theorem 3.1. It is easily seen that |X1,i,nˆEX1,i,n|2cn for each 1in,n1. Noting that (ab)22(a2+b2) and ˆEX21,i,nˆEX2i for 1in,

    ˆE(X1,i,nˆEX1,i,n)22ˆE(X21,i,n+(ˆEX1,i,n)2)4ˆEX21,i,n4ˆEX2i.

    Therefore, by Lemma 2.1, we have that for any t>0 and n1,

    ˆEexp{tni=1(X1,i,nˆEX1,i,n)}exp{t22e2tcnni=1ˆE(X1,i,nˆEX1,i,n)2}Cexp{2t2e2tcnni=1ˆEX2i}=Cexp{2t2e2tcnB2n}.

    By Markov's inequality, we have that for any t>0,

    V(ni=1(X1,i,nˆEX1,i,n)>ε)etεˆEexp{tni=1(X1,i,nˆEX1,i,n)}Cexp{tε+2t2e2tcnB2n}.

    Taking t=ε/(4eB2n), and noting that 2tcn1, we get

    V(ni=1(X1,i,nˆEX1,i,n)>ε)Cexp{tε+2t2e2tcnB2n}Cexp{ε24eB2n+ε28eB2n}=Cexp{ε28eB2n}.

    That is, (3.2) holds.

    Obviously, {X1,i,n;n1} is a sequence of END random variables in (Ω,H,ˆE), and also satisfies the conditions of Theorem 3.1. Considering {X1,i,n;n1} instead of {X1,i,n;n1} in (3.2), we can get

    V(ni=1(X1,i,nˆE(X1,i,n))>ε)Cexp{ε28eB2n}.

    By ˆεX1,i,n=ˆE(X1,i,n), we have

    V(ni=1(X1,i,nˆεX1,i,n)<ε)=V(ni=1(X1,i,nˆE(X1,i,n))>ε)Cexp{ε28eB2n}.

    That is, (3.3) holds.

    In particular, if ˆEX1,i,n=ˆεX1,i,n, (3.4) follow from (3.2), (3.3), then

    V(|ni=1(X1,i,nˆEX1,i,n)|>ε)V(ni=1(X1,i,nˆEX1,i,n)>ε)+V(ni=1(X1,i,nˆEX1,i,n)<ε)=V(ni=1(X1,i,nˆEX1,i,n)>ε)+V(ni=1(X1,i,nˆεX1,i,n)<ε)2Cexp{ε28eB2n}.

    That completes the proof of Theorem 3.1.

    Proof of Theorem 3.2. By Lemma 2.2 and (ab)22(a2+b2), we have

    V(1nni=1(Xq,i,nˆEXq,i,n)>ε)=V(ni=1(Xq,i,nˆEXq,i,n)>nε)Cni=1ˆE(Xq,i,nˆEXq,i,n)2n2ε2CˆEX2q,1,nnε2

    Therefore, it remains only to estimate ˆEX2q,1,n. Noting that ˆEetX1ˆEet|X1|Mδ for any t(0,δ]. From Lemma 3.9 of Zhang [7], we can infer directly that if limcˆE[(X2c)+]=0, then ˆE(X2)CV(X2). Noting that

    0limcˆE([(X1cn)2I(X1>cn)c]+)limcˆE[(X21c)+]=0,0limcˆE([(X1+cn)2I(X1<cn)c]+)limcˆE[(X21c)+]=0,

    we have ˆE((X1cn)2I(X1>cn))CV((X1cn)2I(X1>cn)) and ˆE((X1+cn)2I(X1<cn))CV((X1+cn)2I(X1<cn)).

    For q=2, by Markov's inequality, it follows that

    ˆEX22,1,n=ˆE((X1cn)2I(X1>cn))CV((X1cn)2I(X1>cn))=02yV(|X1cn|I(X1>cn)>y)dy=02yV(X1cn>y)dy=cn2(ucn)V(X1>u)du(y=ucn)cn2(ucn)etuˆEetX1duMδcn2(ucn)etudu=2Mδetcnt2.

    It follows that

    V(1nni=1(X2,i,nˆEX2,i,n)>ε)CˆEX22,1,nε2nCMδetcnt2ε2n.

    For q=3, by Markov's inequality, it follows that

    ˆEX23,1,n=ˆE((X1+cn)2I(X1<cn))CV((X1+cn)2I(X1<cn))=02yV(|X1+cn|I(X1<cn)>y)dy=02yV(X1+cn<y)dy=02yV(X1>y+cn)dy=cn2(ucn)V(X1>u)du(y=ucn)cn2(ucn)etuˆEetX1duMδcn2(ucn)etudu=2Mδetcnt2.

    It follows that

    V(1nni=1(X3,i,nˆEX3,i,n)>ε)CˆEX23,1,nε2nCMδetcnt2ε2n.

    That is, (3.5) holds.

    Obviously, {Xq,i,n;n1}, q=2,3 is a sequence of END random variables in (Ω,H,ˆE), and also satisfies the conditions of Theorem 3.2. Considering {Xq,i,n;n1} instead of {Xq,i,n;n1} in (3.5), we can get

    V(1nni=1(Xq,i,nˆE(Xq,i,n))>ε)CMδetcnt2ε2n.

    By ˆεXq,i,n=ˆE(Xq,i,n), we have

    V(1nni=1(Xq,i,nˆεXq,i,n)<ε)=V(1nni=1(Xq,i,nˆE(Xq,i,n))>ε)CMδetcnt2ε2n.

    That is, (3.6) holds.

    In particular, if ˆEXq,i,n=ˆεXq,i,n, (3.7) follow (3.5) and (3.6), then

    V(1n|ni=1(Xq,i,nˆE(Xq,i,n))|>ε)=V(1nni=1(Xq,i,nˆEXq,i,n)>ε)+(1nni=1(Xq,i,nˆεXq,i,n)<ε)2CMδetcnt2ε2n.

    That completes the proof of Theorem 3.2.

    Proof of Corollary 3.2. It is easily seen that suptδˆEet|X1|ˆEeδ|X1|=Mδ<, which implies the desired results immediately from Theorem 3.2.

    Proof of Theorem 3.3. It is easy to check that εncn2eˆEX21 and nε2n/(8eˆEX21)=δcn. It follows from Corollary 3.1 and Corollary 3.2 that

    V(1nni=1(XiˆEXi)>3εn)V(1nni=1(X1,i,nˆEX1,i,n)>εn)+V(1nni=1(X2,i,nˆEX2,i,n)>εn)+V(1nni=1(X3,i,nˆEX3,i,n)>εn)Cexp{nε2n8eˆEX21}+CˆEeδ|X1|eδcnδ2ε2nn+CˆEeδ|X1|eδcnδ2ε2nnC(1+2ˆEeδ|X1|δ3eˆEX21cn)eδcn,

    and

    V(1nni=1(XiˆεXi)<3εn)V(1nni=1(X1,i,nˆεX1,i,n)<εn)+V(1nni=1(X2,i,nˆεX2,i,n)<εn)+V(1nni=1(X3,i,nˆεX3,i,n)<εn)Cexp{nε2n8eˆEX21}+CˆEeδ|X1|eδcnδ2ε2nn+CˆEeδ|X1|eδcnδ2ε2nnC(1+2ˆEeδ|X1|δ3eˆEX21cn)eδcn.

    That is, (3.9) and (3.10) holds.

    In parrticular, if ˆEXi=ˆεXi, we have

    V(1n|ni=1(XiˆEXi)|>3εn)V(1n|ni=1(X1,i,nˆEX1,i,n)|>εn)+V(1n|ni=1(X2,i,nˆEX2,i,n)|>εn)+V(1n|ni=1(X3,i,nˆEX3,i,n)|>εn)2Cexp{nε2n8eˆEX21}+2CˆEeδ|X1|eδcnδ2ε2nn+2CˆEeδ|X1|eδcnδ2ε2nn2C(1+2ˆEeδ|X1|δ3eˆEX21cn)eδcn.

    The proof of Theorem 3.3 is completed.

    Proof of Theorem 3.4. Taking cn=lnn and δ>1 in Theorem 3.3, can get the following result

    n=1V(1nni=1(XiˆEXi)>3εn)=n=1V(1nni=1(XiˆEXi)>38δeˆEX21lnn/n)=n=1V(1nni=1(XiˆEXi)>38δeˆEX21(n1/2ln1/2n))Ci=1(1+2ˆEeδ|X1|δ3eˆEX21cn)eδcn=C(n=11nδ+2ˆEeδ|X1|δ3eˆEX21i=11nδlnn)<, (4.1)

    and

    n=1V(1nni=1(XiˆεXi)<3εn)=n=1V(1nni=1(XiˆεXi)>38δeˆEX21lnn/n)=n=1V(1nni=1(XiˆεXi)<38δeˆEX21(n1/2ln1/2n))Ci=1(1+2ˆEeδ|X1|δ3eˆEX21cn)eδcn=C(n=11nδ+2ˆEeδ|X1|δ3eˆEX21i=11nδlnn)<. (4.2)

    From Eqs (4.1) and (4.2), we can obtain that n=1V(1nni=1an(XiˆEXi)>ε)<, and n=1V(1nni=1an(XiˆεXi)<ε)< for any ε>0 and an=O(n1/2ln1/2n). Then for Lemma 2.3 (Borel-Canttelli's lemma) and V being countably sub-additive, we have

    lim supn1nni=1an(XiˆEXi)0a.s.V,

    and

    lim infn1nni=1an(XiˆεXi)0a.s.V.

    That is, (3.12) and (3.13) holds.

    In particular, if ˆEXi=ˆεXi, then n=1V(1nni=1an|(XiˆEXi)|>ε)< can be obtained directly from Eqs (4.1) and (4.2). By Lemma 2.3 (Borel-Canttelli's lemma) and V being countably sub-additive, we have

    limn1nni=1an(XiˆEXi)=0a.s.V.

    That completes the proof of Theorem 3.4.

    This paper presents new results regarding exponential inequalities and a strong law of large numbers for END random variables under sub-linear expectations. These theorems extend the corresponding results in classical linear expectation space.

    This work was supported by the National Natural Science Foundation of China (12161089).

    In this paper, all authors disclaim any conflict of interest.



    [1] S. U. S. Choi, J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, ASME International Mechanical Engineering Congress & Exposition, San Francisco, 1995.
    [2] S. K. Das, S. U. Choi, W. Yu, T. Pradeep, Nanofluids: science and technology, New York: John Wiley & Sons, 2007.
    [3] J. A. Eastman, U. S. Choi, S. Li, L. J. Thompson, S. Lee, Enhanced thermal conductivity through the development of nanofluids, MRS Online Proceedings Library, 457 (1996), 3–11. https://doi.org/10.1557/PROC-457-3 doi: 10.1557/PROC-457-3
    [4] J. Buongiorno, L. W. Hu, Innovative technologies: two-phase heat transfer in water-based nanofluids for nuclear applications final report, Nuclear Engineering Education Research (NEER) Program, 2009. https://doi.org/10.2172/958216 doi: 10.2172/958216
    [5] N. Putra, Yanuar, F. N. Iskandar, Application of nanofluids to a heat pipe liquid-block and the thermoelectric cooling of electronic equipment, Exp. Therm. Fluid Sci., 35 (2011), 1274–1281. https://doi.org/10.1016/j.expthermflusci.2011.04.015 doi: 10.1016/j.expthermflusci.2011.04.015
    [6] O. Mahian, A. Kianifar, S. A. Kalogirou, I. Pop, S. Wongwises, A review of the applications of nanofluids in solar energy, Int. J. Heat Mass Tran., 57 (2013), 582–594. https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.037 doi: 10.1016/j.ijheatmasstransfer.2012.10.037
    [7] S. Rashidi, O. Mahian, E. M. Languri, Applications of nanofluids in condensing and evaporating systems, J. Therm. Anal. Calorim., 131 (2018), 2027–2039. https://doi.org/10.1007/s10973-017-6773-7 doi: 10.1007/s10973-017-6773-7
    [8] M. A. Nazari, M. H. Ahmadi, M. Sadeghzadeh, M. B. Shafii, M. Goodarzi, A review on application of nanofluid in various types of heat pipes, J. Cent. South Univ., 26 (2019), 1021–1041. https://doi.org/10.1007/s11771-019-4068-9 doi: 10.1007/s11771-019-4068-9
    [9] J. Li, X. Zhang, B. Xu, M. Yuan, Nanofluid research and applications: a review, Int. J. Heat Mass Tran., 127 (2021), 105543. https://doi.org/10.1016/j.icheatmasstransfer doi: 10.1016/j.icheatmasstransfer
    [10] M. A. Sheremet, Applications of Nanofluids, Nanomaterials (Basel), 11 (2021), 1716. https://doi.org/10.3390/nano11071716 doi: 10.3390/nano11071716
    [11] A. V. Kuznetsov, The onset of thermo-bioconvection in a shallow fluid saturated porous layer heated from below in a suspension of oxytactic microorganisms, Eur. J. Mech. B-Fluid., 25 (2006), 223–233. https://doi.org/10.1016/j.euromechflu.2005.06.003 doi: 10.1016/j.euromechflu.2005.06.003
    [12] A. V. Kuznetsov, Nanofluid bioconvection in water-based suspensions containing nanoparticles and oxytactic microorganisms: oscillatory instability, Nanoscale Res. Lett., 6 (2011), 100. https://doi.org/10.1186/1556-276X-6-100 doi: 10.1186/1556-276X-6-100
    [13] A. J. Hillesdon, T. J. Pedley, Bioconvection in suspensions of oxytactic bacteria: linear theory, J. Fluid Mech., 324 (1996), 223–259. https://doi.org/10.1017/S0022112096007902 doi: 10.1017/S0022112096007902
    [14] T. J. Pedley, N. A. Hill, J. O. Kessler, The growth of bioconvection patterns in a uniform suspension of gyrotactic micro-organisms, J. Fluid Mech., 195 (1988), 223–237. https://doi.org/10.1017/S0022112088002393 doi: 10.1017/S0022112088002393
    [15] T. Yamamoto, Numerical simulation of the flows of phototactic microalgae suspensions in an illuminated circular channel, Nihon Reoroji Gakk., 43 (2015) 53–62. https://doi.org/10.1678/rheology.43.53 doi: 10.1678/rheology.43.53
    [16] M. A. Sheremet, I. Pop, Thermo-bioconvection in a square porous cavity filled by oxytactic microorganisms, Transp. Porous Med., 103 (2014), 191–205. https://doi.org/10.1007/s11242-014-0297-4 doi: 10.1007/s11242-014-0297-4
    [17] C. S. Balla, A. Ramesh, N. Kishan, A. M. Rashad, Z. M. A. Abdelrahman, Bioconvection in oxytactic microorganism-saturated porous square enclosure with thermal radiation impact, J. Therm. Anal. Calorim., 140 (2020), 2387–2395. https://doi.org/10.1007/s10973-019-09009-7 doi: 10.1007/s10973-019-09009-7
    [18] S. Ahmad, M. Ashraf, K. Ali, Bioconvection due to gyrotactic microbes in a nanofluid flow through a porous medium, Heliyon, 6 (2020), e05832. https://doi.org/10.1016/j.heliyon.2020.e05832 doi: 10.1016/j.heliyon.2020.e05832
    [19] D. K. Mandal, N. Biswas, N. K. Manna, R. S. R. Gorla, A. J. Chamkha, Role of surface undulation during mixed bioconvective nanofluid flow in porous media in presence of oxytactic bacteria and magnetic fields, Int. J. Mech. Sci., 211 (2021), 106778. https://doi.org/10.1016/j.ijmecsci.2021.106778 doi: 10.1016/j.ijmecsci.2021.106778
    [20] N. Biswas, D. K. Mandal, N. K. Manna, A. C. Benim, Magneto-hydrothermal triple-convection in a W-shaped porous cavity containing oxytactic bacteria, Sci. Rep., 12 (2022), 18053. https://doi.org/10.1038/s41598-022-18401-7 doi: 10.1038/s41598-022-18401-7
    [21] M. Habibishandiz, Z. Saghir, MHD mixed convection heat transfer of nanofluid containing oxytactic microorganisms inside a vertical annular porous cylinder, International Journal of Thermofluids, 14 (2022), 100151. https://doi.org/10.1016/j.ijft.2022.100151 doi: 10.1016/j.ijft.2022.100151
    [22] S. Hussain, A. M. Aly, H. F. Öztop, Magneto-bioconvection flow of hybrid nanofluid in the presence of oxytactic bacteria in a lid-driven cavity with a streamlined obstacle, Int. Commun. Heat Mass, 134 (2022), 106029. https://doi.org/10.1016/j.icheatmasstransfer.2022.106029 doi: 10.1016/j.icheatmasstransfer.2022.106029
    [23] A. M. Rashad, H. A. Nabwey, Gyrotactic mixed bioconvection flow of a nanofluid past a circular cylinder with convective boundary condition, J. Taiwan Inst. Chem. E., 99 (2019), 9–17. https://doi.org/10.1016/j.jtice.2019.02.035 doi: 10.1016/j.jtice.2019.02.035
    [24] B. P. Geridonmez, H. F. Oztop, Conjugate natural convection flow of a nanofluid with oxytactic bacteria under the effect of a periodic magnetic field, J. Magn. Magn. Mater., 564 (2022), 170135. https://doi.org/10.1016/j.jmmm.2022.170135 doi: 10.1016/j.jmmm.2022.170135
    [25] B. Chen, X. Wang, R. Zeng, Y. Zhang, X. Wang, J. Niu, et al., An experimental study of convective heat transfer with microencapsulated phase change material suspension: Laminar flow in a circular tube under constant heat flux, Exp. Therm. Fluid Sci., 32 (2008), 1638–1646. https://doi.org/10.1016/j.expthermflusci.2008.05.008 doi: 10.1016/j.expthermflusci.2008.05.008
    [26] W. Wu, H. Bostanci, L. C. Chow, Y. Hong, C. M. Wang, M. Su, et al., Heat transfer enhancement of PAO in microchannel heat exchanger using nano-encapsulated phase change indium particles, Int. J. Heat Mass Tran., 58 (2013), 348–355. https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.032 doi: 10.1016/j.ijheatmasstransfer.2012.11.032
    [27] C. J. Smith, P. M. Forster, R. Crook, Global analysis of photovoltaic energy output enhanced by phase change material cooling, Appl. Energ., 126 (2014), 21–28. https://doi.org/10.1016/j.apenergy.2014.03.083 doi: 10.1016/j.apenergy.2014.03.083
    [28] W. Su, J. Darkwa, G. Kokogiannakis, Review of solid-liquid phase change materials and their encapsulation technologies, Renew. Sust. Energ. Rev., 48 (2015), 373–391. https://doi.org/10.1016/j.rser.2015.04.044 doi: 10.1016/j.rser.2015.04.044
    [29] Y. Pahamli, M. J. Hosseini, A. A. Ranjbar, R. Bahrampoury, Analysis of the effect of eccentricity and operational parameters in PCM-filled single-pass shell and tube heat exchangers, Renew. Energ., 97 (2016), 344–357. https://doi.org/10.1016/j.renene.2016.05.090 doi: 10.1016/j.renene.2016.05.090
    [30] C. Liu, Z. Rao, J. Zhao, Y. Huo, Y. Li, Review on nanoencapsulated phase change materials: Preparation, characterization and heat transfer enhancement, Nano Energy, 13 (2015), 814–826. https://doi.org/10.1016/j.nanoen.2015.02.016 doi: 10.1016/j.nanoen.2015.02.016
    [31] H. R. Seyf, Z. Zhou, H. B. Ma, Y. Zhang, Three dimensional numerical study of heat-transfer enhancement by nano-encapsulated phase change material slurry in microtube heat sinks with tangential impingement, Int. J. Heat Mass Tran., 56 (2013), 561–573. https://doi.org/10.1016/j.ijheatmasstransfer.2012.08.052 doi: 10.1016/j.ijheatmasstransfer.2012.08.052
    [32] M. Ghalambaz, S. A. M. Mehryan, I. Zahmatkesh, A. Chamkha, Free convection heat transfer analysis of a suspension of nano-encapsulated phase change materials (NEPCMs) in an inclined porous cavity, Int. J. Therm. Sci., 157 (2020), 106503. https://doi.org/10.1016/j.ijthermalsci.2020.106503 doi: 10.1016/j.ijthermalsci.2020.106503
    [33] S. A. M. Mehryan, M. Ismael, M. Ghalambaz, Local thermal nonequilibrium conjugate natural convection of nano-encapsulated phase change particles in a partially porous enclosure, Math. Method. Appl. Sci., 2020 (2020), 6338. https://doi.org/10.1002/mma.6338 doi: 10.1002/mma.6338
    [34] S. Hussain, N. Alsedias, A. M. Aly, Natural convection of a water-based suspension containing nano-encapsulated phase change material in a porous grooved cavity, J. Energy Storage, 51 (2022), 104589. https://doi.org/10.1016/j.est.2022.104589 doi: 10.1016/j.est.2022.104589
    [35] C. J. Ho, Y. C. Liu, T. F. Yang, M. Ghalambaz, W. M. Yan, Convective heat transfer of nano-encapsulated phase change material suspension in a divergent minichannel heatsink, Int. J. Heat Mass Tran., 165 (2021), 120717. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120717 doi: 10.1016/j.ijheatmasstransfer.2020.120717
    [36] R. A. Gingold, J. J. Monaghan, Smoothed particle hydrodynamics: theory and application to non-spherical stars, Mon. Not. R. Astron. Soc., 181 (1977), 375–389. https://doi.org/10.1093/mnras/181.3.375 doi: 10.1093/mnras/181.3.375
    [37] L. B. Lucy, A numerical approach to the testing of the fission hypothesis, Astron. J., 82 (1977), 1013–1024. https://doi.org/10.1086/112164 doi: 10.1086/112164
    [38] S. J. Cummins, M. Rudman, An SPH projection method, J. Comput. Phys., 152 (1999), 584–607. https://doi.org/10.1006/jcph.1999.6246 doi: 10.1006/jcph.1999.6246
    [39] M. Asai, A. M. Aly, Y. Sonoda, Y. Sakai, A stabilized incompressible SPH method by relaxing the density invariance condition, J. Appl. Math., 2012 (2012), 139583. https://doi.org/10.1155/2012/139583 doi: 10.1155/2012/139583
    [40] F. Garoosi, A. Shakibaeinia, Numerical simulation of entropy generation due to natural convection heat transfer using Kernel Derivative-Free (KDF) Incompressible Smoothed Particle Hydrodynamics (ISPH) model, Int. J. Heat Mass Tran., 150 (2020), 119377. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119377 doi: 10.1016/j.ijheatmasstransfer.2020.119377
    [41] A. M. Aly, Mixing between solid and fluid particles during natural convection flow of a nanofluid-filled H-shaped cavity with three center gates using ISPH method, Int. J. Heat Mass Tran., 157 (2020), 119803. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119803 doi: 10.1016/j.ijheatmasstransfer.2020.119803
    [42] A. M. Aly, A. M. Yousef, N. Alsedais, MHD double diffusion of a nanofluid within a porous annulus using a time fractional derivative of the ISPH method, Int. J. Mod. Phys. C, 33 (2021), 2250056. https://doi.org/10.1142/S0129183122500565 doi: 10.1142/S0129183122500565
    [43] Y. Shimizu, H. Gotoh, A. Khayyer, K. Kita, Fundamental investigation on the applicability of higher-order consistent ISPH method, Int. J. Offshore Polar, 32 (22022), 275–284. https://doi.org/10.17736/ijope.2022.jc868 doi: 10.17736/ijope.2022.jc868
    [44] A. M. Salehizadeh, A. R. Shafiei, A coupled ISPH-TLSPH method for simulating fluid-elastic structure interaction problems, J. Marine. Sci. Appl., 21 (2022), 15–36. https://doi.org/10.1007/s11804-022-00260-3 doi: 10.1007/s11804-022-00260-3
    [45] N. Alsedais, A. Al-Hanaya, A. M. Aly, Magneto-bioconvection flow in a porous annulus between circular cylinders containing oxytactic microorganisms and NEPCM, Int. J. Numer. Method. H., 33 (2023), 3228–3254. https://doi.org/10.1108/HFF-02-2023-0095 doi: 10.1108/HFF-02-2023-0095
    [46] W. Alhejaili, A. M. Aly, Magneto-bioconvection flow in an annulus between circular cylinders containing oxytactic microorganisms, Int. Commun. Heat Mass, 146 (2023), 106893. https://doi.org/10.1016/j.icheatmasstransfer.2023.106893 doi: 10.1016/j.icheatmasstransfer.2023.106893
    [47] A. Alaria, A. M. Khan, D. L. Suthar, D. Kumar, Application of fractional operators in modelling for charge carrier transport in amorphous semiconductor with multiple trapping, Int. J. Appl. Comput. Math., 5 (2019), 167. https://doi.org/10.1007/s40819-019-0750-8 doi: 10.1007/s40819-019-0750-8
    [48] M. M. A. Khater, D. Baleanu, On abundant new solutions of two fractional complex models, Adv. Differ. Equ., 2020 (2020), 268. https://doi.org/10.1186/s13662-020-02705-x doi: 10.1186/s13662-020-02705-x
    [49] A. Hyder, A. H. Soliman, A new generalized θ-conformable calculus and its applications in mathematical physics, Phys. Scr., 96 (2020), 015208. https://doi.org/10.1088/1402-4896/abc6d9 doi: 10.1088/1402-4896/abc6d9
    [50] A. Hyder, M. A. Barakat, Novel improved fractional operators and their scientific applications, Adv. Differ. Equ., 2021 (2021), 389. https://doi.org/10.1186/s13662-021-03547-x doi: 10.1186/s13662-021-03547-x
    [51] A. Hyder, M. A. Barakat, A. Fathallah, C. Cesarano, Further integral inequalities through some generalized fractional integral operators, Fractal Fract., 5 (2021), 282. https://doi.org/10.3390/fractalfract5040282 doi: 10.3390/fractalfract5040282
    [52] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016
    [53] M. Ghalambaz, A. J. Chamkha, D. Wen, Natural convective flow and heat transfer of Nano-Encapsulated Phase Change Materials (NEPCMs) in a cavity, Int. J. Heat Mass Tran., 138 (2019), 738–749. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.037 doi: 10.1016/j.ijheatmasstransfer.2019.04.037
    [54] I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, San Diego: Academic Press, 1999.
    [55] Ş. Toprakseven, Numerical solutions of conformable fractional differential equations by Taylor and finite difference methods, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23 (2019), 850–863. https://doi.org/10.19113/sdufenbed.579361 doi: 10.19113/sdufenbed.579361
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1140) PDF downloads(55) Cited by(1)

Figures and Tables

Figures(15)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog