Loading [MathJax]/extensions/TeX/mathchoice.js
Research article Special Issues

The inverses of tails of the generalized Riemann zeta function within the range of integers

  • In recent years, many mathematicians researched infinite reciprocal sums of various sequences and evaluated their value by the asymptotic formulas. We study the asymptotic formulas of the infinite reciprocal sums formed as (k=n1kr(k+t)s)1 for r,s,tN+, where the asymptotic formulas are polynomials.

    Citation: Zhenjiang Pan, Zhengang Wu. The inverses of tails of the generalized Riemann zeta function within the range of integers[J]. AIMS Mathematics, 2023, 8(12): 28558-28568. doi: 10.3934/math.20231461

    Related Papers:

    [1] Zhenjiang Pan, Zhengang Wu . The inverse of tails of Riemann zeta function, Hurwitz zeta function and Dirichlet L-function. AIMS Mathematics, 2024, 9(6): 16564-16585. doi: 10.3934/math.2024803
    [2] Robert Reynolds, Allan Stauffer . Extended Prudnikov sum. AIMS Mathematics, 2022, 7(10): 18576-18586. doi: 10.3934/math.20221021
    [3] Robert Reynolds . A short note on a extended finite secant series. AIMS Mathematics, 2023, 8(11): 26882-26895. doi: 10.3934/math.20231376
    [4] Gunduz Caginalp . A renormalization approach to the Riemann zeta function at — 1, 1 + 2 + 3 + …~  — 1/12.. AIMS Mathematics, 2018, 3(2): 316-321. doi: 10.3934/Math.2018.2.316
    [5] Ilija Tanackov, Željko Stević . Calculation of the value of the critical line using multiple zeta functions. AIMS Mathematics, 2023, 8(6): 13556-13571. doi: 10.3934/math.2023688
    [6] Robert Reynolds . Extended Moreno-García cosine products. AIMS Mathematics, 2023, 8(2): 3049-3063. doi: 10.3934/math.2023157
    [7] Kwang-Wu Chen, Fu-Yao Yang . Infinite series involving harmonic numbers and reciprocal of binomial coefficients. AIMS Mathematics, 2024, 9(7): 16885-16900. doi: 10.3934/math.2024820
    [8] Mohamed Akel, Muajebah Hidan, Salah Boulaaras, Mohamed Abdalla . On the solutions of certain fractional kinetic matrix equations involving Hadamard fractional integrals. AIMS Mathematics, 2022, 7(8): 15520-15531. doi: 10.3934/math.2022850
    [9] Jiaye Lin . Evaluations of some Euler-type series via powers of the arcsin function. AIMS Mathematics, 2025, 10(4): 8116-8130. doi: 10.3934/math.2025372
    [10] Robert Reynolds, Allan Stauffer . Definite integral of the logarithm hyperbolic secant function in terms of the Hurwitz zeta function. AIMS Mathematics, 2021, 6(2): 1324-1331. doi: 10.3934/math.2021082
  • In recent years, many mathematicians researched infinite reciprocal sums of various sequences and evaluated their value by the asymptotic formulas. We study the asymptotic formulas of the infinite reciprocal sums formed as (k=n1kr(k+t)s)1 for r,s,tN+, where the asymptotic formulas are polynomials.



    Throughout the years, many mathematicians have been working on partial infinite sums of reciprocal linear recurrence sequences.

    In 2011, Takao Komatsu [8] researched the nearest integer of the sum of reciprocal Fibonacci numbers and derived

    (k=n1Fk)1=FnFn1,(k=n(1)nFk)1=(1)n(Fn+Fn+1), (1.1)

    where denoted the nearest integer; in other words, x=x12.

    In 2020, Ho-Hyeong Lee and Jong-Do Park [9] gave the concept of asymptotic formulas, which were more accurate. The conclusions were as follows:

    (k=n1FkFk+2l)1Fn+l1Fn+l(F2l+(1)l)(1)n3,(k=n1FkFk+2l1)1F2n+l1(Fl1Fl+(1)l)(1)n3, (1.2)

    where anbn meant limn(anbn)=0. For more results related to the infinite reciprocal sums of linear recurrence sequences, see [1,13,15] and references therein.

    The zeta function ζ(z) is undoubtedly the most famous function in analytic number theory. Initially studied by Euler and achieved prominence with Riemann, it abstracted the attention of many mathematicians. Another well-known sequence harmonic number Hn is the sum of the first n terms of ζ(z) when z=1, and the generating function of harmonic numbers n=1Hnxn is an important tool to study the property of Hn. Kim [4,5,6,7] derived many worthy and interesting results associated with the zeta function, harmonic number and its generating function, which inspired us deeply.

    At the same time, many researchers began to study the tails of well-known functions such as the Riemann zeta function and the Hurwitz zeta function in [2,3,10,12,14].

    For example, Kim Donggyun and Song Kyunghwan [3] studied the inverses of tails of the Riemann zeta function. Derived for s on the critical strip 0<s<1,

    (k=n1ks)1{2(121s)(n12)s,ifnis even,2(121s)(n12)s,ifnis odd. (1.3)

    Ho-Hyeong Lee and Jong-Do Park [10] dealt with the inverses of tails of Hurwitz zeta function when s2, sN and 0a<1, and derived

    (k=n1(k+a)s)1  s1j=0Aj(n+a)j, (1.4)

    where As1=s1, Asl=sl1j=1xsjAsl+j, x^s_j = \binom{s-2+j}{j}B_j and B_j are Bernoulli numbers.

    In this paper, we extend their asymptotic formulas for the methods and results by considering the tails of \left(\sum^{\infty}_{k = n} \frac{1}{k(k+t)}\right)^{-1} , \left(\sum^{\infty}_{k = n} \frac{1}{[k(k+t)]^{2}} \right) ^{-1} , \left(\sum^{\infty}_{k = n} \frac{1}{k^r(k+t)^s}\right)^{-1} and further revealing the property of reciprocal sums of the various sequences.

    Before our conclusion, we define \binom{i}{-1} = 0 for all i \in \mathbb{N^+} , which will take effect in expressing the asymptotic formulas in Theorem 3.

    Theorem 1. For all m \in \mathbb{N} , we have

    \left( \sum\limits^{\infty}_{k = n} \frac{1}{k(k+t)} \right)^{-1}\sim n+\frac{t}{2}-\frac{1}{2}.

    Theorem 2. For all m\in \mathbb{N} , we have

    \left(\sum\limits^{\infty}_{k = n} \frac{1}{[k(k+t)]^2}\right)^{-1} \sim 3n^{3}+an^{2}+bn+c ,

    where

    \begin{aligned} & a = \frac{9}{2}t- \frac{9}{2}, \\&b = \frac{27}{20}t^2-\frac{9}{2}t+\frac{15}{4}, \\&c = -\frac{3}{40}t^{3}-\frac{27}{40}t^2+\frac{15}{8}t-\frac{9}{8}. \end{aligned}

    Theorem 3. If r+s-1 > 0 and r, s, t \in \mathbb{N} , then there exists the unique polynomial

    B(n,r,s,t) = b_{r+s-1}n^{r+s-1}+b_{r+s-2}n^{r+s-2}+ \cdots + b_{1}n+b_{0},

    subject to

    \left( \sum\limits^{\infty}_{k = n} \frac{1}{n^r(n+t)^s}\right)^{-1} \sim B(n,r,s,t),

    where

    \begin{aligned} b_{r+s-1} = &r+s-1, \\b_{r+s-2} = &\frac{(r+s-1)^2}{2(r+s)}[(2st-(r+s)], \\b_{r+s-3} = &\frac{(r+s-1)^2}{12(r+s)^2(r+s+1)}[6s(r^2s-r^2+2rs^2-2rs+s^3-s^2-2s)t^2 \\ &\ \ -6s(r+3r^2s-r^2+3rs^2-2rs-2r+s^3-s^2-2s)t \\ &\ \ +(2r^4+8r^3s-r^3+12r^2s^2-3r^2s-3r^2+8rs^3-3rs^2-6rs+2s^4-s^3-3s^2 )], \\ &\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \cdots \cdots \\ &\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \cdots \cdots \\b_{i-r-s+1} = & \frac{ \mathop{\sum\limits_{k_{1}+k_{2} = i}} \limits_{ i-r-s+1 \leq k_{1}\leq r+s-2 \atop_{r \leq k_{2}\leq r+s}} \binom{s}{k_2-r} t^{r+s-k_2} \mathop\sum\limits^{r+s-1}\limits_{j = k_{1}+1} b_{j}\binom{j}{k_{1}} } {3r+3s-i-3}-\frac{ \mathop{\sum\limits_{ k_{3}+k_{4} = i}} \limits_{ i-r-s+2 \leq k_{3},k_4 \leq r+s-1 } b_{k_{3}} \mathop\sum\limits^{r+s-1}\limits_{j = k_{4}}b_{j} \binom{j}{k_{4}} }{3r+3s-i-3}\end{aligned}
    \begin{aligned} &\ \ +\frac{ \sum^{r+s-1}\limits_{j = i-r-s+2} b_{j} \left[ \binom{j}{i-r-s}-(r+s-1)\binom{j}{i-r-s+1} \right] }{3r+3s-i-3},\\ &\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \cdots \cdots \\ &\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \cdots \cdots \\b_0 = &\frac{ \mathop{\sum\limits_{k_{1}+k_{2} = i}} \limits_{ 0 \leq k_{1}\leq r+s-2 \atop r \leq k_{2}\leq r+s } \binom{s}{k_2-s} t^{r+s-k_2} \mathop{\sum^{r+s-1}\limits_{j = k_{1}+1}} b_{j}\binom{j}{k_{1}} }{2(r+s-1)}-\frac{ \mathop{\sum\limits_{ k_{3}+k_{4} = i}} \limits_{ 1 \leq k_{3},k_4 \leq r+s-1 } b_{k_{3}} \mathop{\sum^{r+s-1}\limits_{j = k_{4}}}b_{j} \binom{j}{k_{4}} +(r+s-1)\mathop{\sum^{r+s-1}\limits_{j = 1}} b_{j} }{2(r+s-1)}. \end{aligned}

    Remark. From Theorem 3, we derive that coefficients b_{j} \ (0 \leq j \leq r+s-1) are determined by r, s and t . At the same time, if we calculate b_0 by using the representation of b_{i-r-s+1} , there will appear \binom{r+s-1}{-1}, \binom{r+s-2}{-1}, \cdots, \binom{1}{-1} . In order to make b_0 the representation of b_j , we give the definition \binom{i}{-1} = 0 for i \in \mathbb{N^+} in this paper. Undoubtedly, it satisfies \binom{n+1}{0} = \binom{n}{0}+\binom{n}{-1} for n \in \mathbb{N^+} .

    Corollary 1. If s = 1 and m = 0 , we have

    \begin{aligned} &\left( \sum^{\infty}_{k = n} \frac{1}{n^2} \right) ^{-1} \sim n- \frac{1}{2}. \end{aligned}

    Corollary 2. If s = 2 and t = 0 , we have

    \begin{aligned} &\left( \sum^{\infty}_{k = n} \frac{1}{n^4}\right) ^{-1} &\sim 3n^3-\frac{9}{2}n^2+ \frac{15}{4}n-\frac{9}{8} . \end{aligned}

    Corollary 3. If s = 2 , we have

    \begin{aligned} & \left( \sum^{\infty}_{k = n} \frac{1}{n^2(n+1)^2}\right) ^{-1} \sim 3n^3+\frac{3}{5}n , \\ &\left( \sum^{\infty}_{k = n} \frac{1}{n^2(n+2)^2}\right) ^{-1} \sim 3n^3+\frac{9}{2}n^2+\frac{3}{20}n-\frac{5}{8} , \\&\left( \sum^{\infty}_{k = n} \frac{1}{n^2(n+3)^2}\right) ^{-1} \sim 3n^3+9n^2+\frac{12}{5}n-\frac{18}{5}. \end{aligned}

    We need to solve several lemmas for the proof.

    Lemma 1. Let \{a_n\}^{\infty}_{n = 1} and \{b_n\}^{\infty}_{n = 1} be sequences of a positive real number with \underset{n\mapsto\infty}\lim a_n = \underset{n\mapsto\infty}\lim b_n = 0 . If a_{n} < b_{n}+a_{n+1} hold for any n\in N^{+} , then we have

    \ a_{n} < \sum\limits^{\infty}_{k = n} b_n \ \ \ \ \ for \; n\in N^+ .

    Proof. See Lemma 2.1 [11].

    Lemma 2. For all t\geq2 and t\in \mathbb{N} , we have

    \frac{1}{n+\frac{t}{2}-\frac{1}{2}} < \frac{1}{n(n+t)}+ \frac{1}{n+ \frac{t}{2}+ \frac{1}{2}} .

    Proof. It is equivalent with

    \begin{equation} \frac{1}{n+\frac{t}{2}-\frac{1}{2}}- \frac{1}{n(n+t)}- \frac{1}{n+ \frac{t}{2}+ \frac{1}{2}} < 0 . \end{equation} (3.1)
    \begin{aligned} {\rm{The\ left\ side}} & = \frac{n(n+t)-(n+ \frac{t}{2}-\frac{1}{2})(n+ \frac{t}{2}+\frac{1}{2})}{(n+ \frac{t}{2}- \frac{1}{2})(n+ \frac{t}{2}+ \frac{1}{2})n(n+t)} \\ & = \frac{ -\frac{t^2}{4}+ \frac{1}{4}}{ (n+ \frac{t}{2}- \frac{1}{2})(n+ \frac{t}{2}+ \frac{1}{2})n(n+t)} . \end{aligned}

    Hence, we have

    -\frac{t^2}{4}+ \frac{1}{4} < 0 \ \ \ \ \ {\mbox{for }}\; n > 2,

    so

    \frac{1}{n+\frac{t}{2}-\frac{1}{2}} < \frac{1}{n(n+t)}+ \frac{1}{n+ \frac{t}{2}+ \frac{1}{2}} \ \ \ \ \ {\mbox{ for }}\; n > 2.

    This completes the proof.

    Lemma 3. For all \varepsilon > 0 , there exists N_{0} > 2 , subject to

    \frac{1}{n+ \frac{t}{2}-\frac{1}{2}- \varepsilon} > \frac{1}{n+\frac{t}{2}+\frac{1}{2}-\varepsilon}+\frac{1}{n(n+t)} \ \ \ \ \ for\; n > N_0.

    Proof. It is equivalent with

    \begin{equation} \frac{1}{n+ \frac{t}{2}-\frac{1}{2}- \varepsilon} - \frac{1}{n+\frac{t}{2}+\frac{1}{2}-\varepsilon}-\frac{1}{n(n+t)} > 0 . \end{equation} (3.2)
    \begin{aligned} {\mbox{The left side}}& = \frac{n^2+tn-(n^2+tn+ \frac{t^2}{4})- \frac{1}{4}-2 \varepsilon(n+ \frac{t}{2})+\varepsilon^2} {(n+ \frac{t}{2}- \frac{1}{2}-\varepsilon)(n- \frac{t}{2}+ \frac{1}{2}-\varepsilon)n(n+t)} \\& = \frac{2\varepsilon n+t\varepsilon+ \frac{1}{4}- \frac{t^2}{4}-\varepsilon^2} {(n+ \frac{t}{2}- \frac{1}{2}-\varepsilon)(n- \frac{t}{2}+ \frac{1}{2}-\varepsilon)n(n+t)}. \end{aligned}

    We can restrict \varepsilon < 1 and fix t , then we have

    t\varepsilon+ \frac{1}{4}- \frac{t^2}{4}-\varepsilon^2 = O(1),

    so there exists N_{0} > 2 , subject to

    2\varepsilon n+ O({1}) > 0 \ \ \ \ \ {\mbox{for }}\; n > N_0,

    then

    \frac{1}{n+ \frac{t}{2}-\frac{1}{2}- \varepsilon} > \frac{1}{n+\frac{t}{2}+\frac{1}{2}-\varepsilon}+\frac{1}{n(n+t)},

    which proves (3.2) and completes the proof.

    Proof of Theorem 1.

    Case 1. When \ t\geq 2 .

    By Lemmas 1–3, we have for all \varepsilon > 0 , there exists N_{0} > 2 , subject to

    \begin{equation} n+\frac{t}{2}-\frac{1}{2}-\varepsilon < \left( \sum\limits^{\infty}_{k = n} \frac{1}{n(n+t)} \right) ^{-1} < n+\frac{t}{2}- \frac{1}{2} \ \ \ \ \ for\; n > N_0, \end{equation} (3.3)

    hence

    \left | \left( \sum\limits^{\infty}_{k = t} \frac{1}{k(k+t)} \right) ^{-1}-(n+ \frac{t}{2}- \frac{1}{2}) \right| < \varepsilon;

    in other words,

    \left( \sum\limits^{\infty}_{k = n} \frac{1}{k(k+t)} \right) ^{-1}\sim (n+ \frac{t}{2}- \frac{1}{2}).

    Case 2. When t = 1 ,

    \begin{aligned} \sum^{\infty}_{k = n} \frac{1}{k(k+1)} = &\frac{1}{n(n+1)}+ \frac{1}{(n+1)(n+2)}+\frac{1}{(n+2)(n+3)}+ \cdots \\ = &(\frac{1}{n}- \frac{1}{n+1})+(\frac{1}{n+1}- \frac{1}{n+2})+(\frac{1}{n+2}- \frac{1}{n+3})+\cdots \\ = &\frac{1}{n}, \end{aligned}

    hence

    \left( \sum\limits^{\infty}_{k = n} \frac{1}{k(k+1)} \right)^{-1}\sim n .

    Case 3. When t = 0 , the proof is similar with Case 1, and we can easily deduce the result.

    Lemma 4. Let f(n, t, \varepsilon) = 3n^3+an^2+bn+c and a, b, c are defined in Theorem 2. Then for all \varepsilon > 0 , there exists N_{1} > 0 , subject to

    \frac{1}{f(n,t,\varepsilon)} < \frac{1}{f(n+1,t,\varepsilon)}+ \frac{1}{n^2(n+t)^2} \ \ \ \ \ for \; n > N_{1}.

    Proof. It is equivalent with

    \begin{equation} \frac{1}{f(n,t,\varepsilon)} - \frac{1}{f(n+1,t,\varepsilon)}- \frac{1}{n^2(n+t)^2} < 0 \ \ \ \ \ {\mbox{ for } }\; n > N_{1}. \end{equation} (3.4)
    \begin{aligned} {\mbox{The left side}}& = \frac{ [f(n+1,t,\varepsilon)- f(n,t,\varepsilon)]n^2(n+t)^2- f(n,t,\varepsilon)f(n+1,t,\varepsilon) } { f(n,t,\varepsilon)f(n+1,t,\varepsilon)n^2(n+t)^2 } \\ & = \frac{ [9n^2+(2a+9)n+(a+b+3) ]n^2(n+t)^2 } {f(n,t,\varepsilon)f(n+1,t,\varepsilon)n^2(n+t)^2} \\ \ &\ \ \ \ -\frac{ (3n^3+an^2+bn+c) }{f(n,t,\varepsilon)f(n+1,t,\varepsilon)n^2(n+t)^2}[3n^3+(a+9)n^2+(2a+b+9)n +(a+b+c+3+\varepsilon)] \\ & = \frac{-6\varepsilon n^3+ A(t)O(n^2)}{ f(n,t,\varepsilon)f(n+1,t,\varepsilon)n^2(n+t)^2 }, \end{aligned}

    where A(t) is a function with variable t , then we fix t for all \varepsilon > 0 , and there exists N_{1} > 0 , subject to

    -6 \varepsilon n^3+A(t)O(n^2) = -6 \varepsilon n^3+O(n^2) < 0, \ \ \ \ \ {\mbox{ for}}\; n > N_{1} ,

    hence

    \frac{1}{f(n,t,\varepsilon)} - \frac{1}{f(n+1,t,\varepsilon)}- \frac{1}{n^2(n+t)^2} < 0 ,

    and this completes the proof.

    Lemma 5. Let g(n, t, \varepsilon) = 3n^3+an^2+bn+c-\varepsilon , then for all \varepsilon > 0 there exists N_{2} > 0 , subject to

    \frac{1}{g(n,t,\varepsilon)} > \frac{1}{ g(n+1,t,\varepsilon) }+ \frac{1}{n^2(n+t)^2} \ \ \ \ \ for \; n > N_{2} .

    Proof. The proof is similar with Lemma 4, and we can easily deduce the result.

    Proof of Theorem 2. By Lemmas 1, 4 and 5, we have for all \varepsilon > 0 . There exists N_{3} = max \{ N_{1}, N_{2} \} > 0 , subject to

    \begin{equation} \frac{1}{f(n,t,\varepsilon)} < \sum\limits^{\infty}_{k = n} \frac{1}{n^2(n+t)^2} < \frac{1}{g(n,t,\varepsilon)} \ \ \ \ \ {\mbox{ for}}\; n > N_{3}, \end{equation} (3.5)

    hence

    3n^3+an^2+bn+c-\varepsilon < \left( \sum\limits^{\infty}_{k = n} \frac{1}{n^2(n+t)^2} \right)^{-1} < 3n^3+an^2+bn+c+\varepsilon ,

    which is equivalent to

    \left(\sum\limits^{\infty}_{k = n} \frac{1}{n^2(n+t)^2}\right)^{-1} \sim 3n^3+an^2+bn+c .

    Proof of Theorem 3. According to the method of proving Theorem 2, it is enough to prove that there exists polynomial

    B(n) = b_{l}n^{l}+b_{l-1}n^{l-1}+ \cdots +b_{1}n+b_{0},

    subject to

    \begin{equation} \frac{1}{B(n)}-\frac{1}{B(n+1)}-\frac{1}{n^r(n+t)^{s}} = \frac{O(n^{l-1})}{B(n)B(n+1)n^{r}(n+t)^{s}} . \end{equation} (3.6)
    \begin{aligned} {\mbox{The left side }}& = \frac{B(n+1)-B(n)}{B(n)B(n+1)}-\frac{1}{n^r(n+t)^{s}} = \frac{[B(n+1)-B(n)]n^r(n+t)^{s}-B(n)B(n+1)}{B(n)B(n+1)n^{r}(n+t)^{s}}. \end{aligned}

    Let

    \begin{aligned} \\ C(n)& = B(n+1)-B(n), \\ D(n)& = n^{r}(n+t)^{s}, \\ E(n)& = B(n), \\ F(n)& = B(n+1). \end{aligned}

    Therefore, it is enough to prove

    \begin{equation} C(n)D(n)-E(n)F(n) = O(n^{l-1}), \end{equation} (3.7)

    hence we have the necessary condition (1):

    \alpha \left( C(n)D(n) \right) = \alpha \left( E(n)F(n) \right) ,

    the notation \alpha(f(x)) means the order of f(x) , then we have

    \begin{equation} l = r+s-1. \end{equation} (3.8)

    We note the number of coefficients is r+s , then we have

    \begin{aligned} C(n)D(n)& = \left( \sum^{r+s-1}_{i = 1} \left( b_{i} \sum^{i-1}_{j = 0} \binom{i}{j}n^{j}\right) \right) \left( n^{r} \left( \sum^{s}_{p = 0} \binom{s}{p} t^{s-p}n^{p} \right) \right) \\ & = \left(\sum^{r+s-2}_{i = 0}\left( \sum^{r+s-1}_{j = i+1} b_{j} \binom{j}{i} \right) n^{i} \right) \left( \sum^{r+s}_{p = r} \left( \binom{s}{p-r}t^{r+s-p} \right) n^{p} \right) \\& = \sum^{2r+2s-2}_{i = r} \left( \sum\limits_{ k_{1}+k_{2} = i, \atop 0 \leq k_{1} \leq r+s-2 , r \leq k_{2} \leq r+s } \binom{s}{k_2-r} t^{r+s-k_2} \sum^{r+s-1}_{j = k_{1}+1} b_{j}\binom{j}{k_{1}} \right ) n^{i} \\& = \sum^{2r+2s-2}_{i = r} \sum\limits_{ k_{1}+k_{2} = i, \atop 0 \leq k_{1} \leq r+s-2 , r \leq k_{2} \leq r+s } \binom{s}{k_2-r} t^{r+s-k_2} \sum^{r+s-1}_{j = k_{1}+1} b_{j}\binom{j}{k_{1}} n^{i} \end{aligned}

    and

    \begin{aligned} E(n)F(n)& = \left( \sum^{r+s-1}_{i = 0} b_{i}n^{i} \right) \left( \sum^{r+s-1}_{q = 0} b_{q} \left( \sum^{q}_{j = 0} \binom{q}{j} n^{j} \right) \right) = \left( \sum^{r+s-1}_{i = 0} b_{i}n^{i} \right) \left( \sum^{r+s-1}_{q = 0} \left( \sum^{r+s-1}_{j = q} b_{j}\binom{j}{q} \right) n^q \right)\\& = \sum^{2r+2s-2}_{i = 0} \left( \sum\limits_{ k_{3}+k_{4} = i, \atop 0 \leq k_{3},k_{4} \leq r+s-1 } b_{k_{3}} \sum^{r+s-1}_{j = k_{4}}b_{j} \binom{j}{k_{4}} \right) n^{i} = \sum^{2r+2s-2}_{i = 0} \sum\limits_{ k_{3}+k_{4} = i, \atop 0 \leq k_{3},k_{4} \leq r+s-1 } b_{k_{3}} \sum^{r+s-1}_{j = k_{4}}b_{j} \binom{j}{k_{4}} n^{i}. \end{aligned}

    We get the necessary condition (2): If r+s-1 \leq i \leq 2r+2s-2 , the coefficients of C(n)D(n) and E(n)F(n) are equal, which is equivalent to the system of equations as follows:

    \begin{equation} \begin{aligned} \sum\limits_{ k_{1}+k_{2} = i, \atop 0 \leq k_{1} \leq r+s-2 , r \leq k_{2} \leq r+s } \binom{s}{k_2-r} t^{r+s-k_2} \sum^{r+s-1}_{j = k_{1}+1} b_{j}\binom{j}{k_{1}} = \sum\limits_{ k_{3}+k_{4} = i,\atop 0 \leq k_{3},k_{4} \leq r+s-1 } b_{k_{3}} \sum^{r+s-1}_{j = k_{4}}b_{j} \binom{j}{k_{4}} , \end{aligned} \end{equation} (3.9)

    where i = 2r+2s-2, \ 2r+2s-3, \ \cdots, \ r+s\ and\ r+s-1 .

    We rewrite the system of (3.9) as

    \begin{equation} \left\{ \begin{aligned} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (r+s-1) b_{r+s-1} & = b^2_{ r+s-1 } , \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \mathop{[} (r+s-2)-2 b_{r+s-1} \mathop{]} b_{r+s-2} & = f_1( b_{r+s-1}) ,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \mathop{[} (r+s-3)-2 b_{r+s-1} \mathop{]} b_{r+s-3} & = f_2( b_{r+s-1} , b_{r+s-2} ) ,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ &\cdots \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ &\cdots \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -2 b_{r+s-1} b_{ 0} & = f_{s+r}( b_{r+s-1} , b_{r+s-2}, \cdots, b_{ 1 } ) . \end{aligned} \right. \end{equation} (3.10)

    Clearly the first equation of (3.10) has two solutions, b_{r+s-1} = 0 and b_{r+s-1} = r+s-1, and combined with (3.8) l = r+s-1 , we have

    \begin{equation} b_{r+s-1} = r+s-1. \end{equation} (3.11)

    Substitute (3.11) into the second equation of (3.10). We have the coefficient in the left side \mathop{[} (r+s -2) -2 b_{r+s-1} \mathop{]} as not equal to zero, and the right side f_1(b_{r+s-1}) as a constant, then the second equation of (3.10) has unique solution.

    Repeat the above process for every equation of (3.10). The coefficient in the left side is never equal to zero, and the right side is always a constant, which implies the system of equations has a unique solution, denoted it by ( b_{2s-1}, \ b_{2s-2}, \ b_{2s-3}, \ \cdots\, \ b_1, \ b_0 ) with

    \begin{aligned} b_{r+s-1}& = r+s-1, \\b_{r+s-2}& = \frac{(r+s-1)^2}{2(r+s)}[(2st-(r+s)], \\b_{r+s-3}& = \frac{(r+s-1)^2}{12(r+s)^2(r+s+1)}[6s(r^2s-r^2+2rs^2-2rs+s^3-s^2-2s)t^2 \\ &\ \ \ \ -6s(r+3r^2s-r^2+3rs^2-2rs-2r+s^3-s^2-2s)t \\ &\ \ \ \ +(2r^4+8r^3s-r^3+12r^2s^2-3r^2s-3r^2+8rs^3-3rs^2-6rs+2s^4-s^3-3s^2 )], \\ &\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \cdots \cdots \\ &\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \cdots \cdots\end{aligned}
    \begin{aligned} b_{i-r-s+1} & = \frac{ \mathop{\sum\limits_{k_{1}+k_{2} = i}} \limits_{ i-r-s+1 \leq k_{1}\leq r+s-2 \atop_{r \leq k_{2}\leq r+s}} \binom{s}{k_2-r} t^{r+s-k_2} \mathop\sum\limits^{r+s-1}\limits_{j = k_{1}+1} b_{j}\binom{j}{k_{1}} } {3r+3s-i-3}-\frac{ \mathop{\sum\limits_{ k_{3}+k_{4} = i}} \limits_{ i-r-s+2 \leq k_{3},k_4 \leq r+s-1 } b_{k_{3}} \mathop\sum\limits^{r+s-1}\limits_{j = k_{4}}b_{j} \binom{j}{k_{4}} }{3r+3s-i-3} \\ &\ \ \ \ +\frac{ \sum\limits^{r+s-1}\limits_{j = i-r-s+2} b_{j} \left[ \binom{j}{i-r-s}-(r+s-1)\binom{j}{i-r-s+1} \right] }{3r+3s-i-3}, \\ &\ \ \ \ \ \ \ \ \ \ \cdots \cdots \\ &\ \ \ \ \ \ \ \ \ \ \cdots \cdots \\b_0& = \frac{ \mathop{\sum\limits_{k_{1}+k_{2} = i}} \limits_{ 0 \leq k_{1}\leq r+s-2 \atop r \leq k_{2}\leq r+s } \binom{s}{k_2-s} t^{r+s-k_2} \mathop{\sum\limits^{r+s-1}\limits_{j = k_{1}+1}} b_{j}\binom{j}{k_{1}} }{2(r+s-1)}-\frac{ \mathop{\sum\limits_{ k_{3}+k_{4} = i}} \limits_{ 1 \leq k_{3},k_4 \leq r+s-1 } b_{k_{3}} \mathop{\sum\limits^{r+s-1}\limits_{j = k_{4}}}b_{j} \binom{j}{k_{4}} +(r+s-1)\mathop{\sum\limits^{r+s-1}\limits_{j = 1}} b_{j} }{2(r+s-1)}, \end{aligned}

    where we define \binom{j}{-1} = 0 for all j \in \mathbb{N^+}.

    It is clear that the coefficient b_{i} is determined by r, s and t , and the solution is corresponded to a polynomial with (r+s-1)-order denoted by B(n, r, s, t) . We can easily prove B(n, r, s, t) satisfies (3.6) , and then we have

    \left( \sum\limits^{\infty}_{k = n} \frac{1}{n^r(n+t)^s} \right)^{-1} \sim B(n,r,s,t) .

    In this paper we discussed the reciprocal sums of the generalized Riemann zeta function within the range of integers, and we also considered other functions within the range of integers.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors express their gratitude to the referee for very helpful and detailed comments. Supported by the National Natural Science Foundation of China (Grant No. 11701448).

    The authors declare no conflict of interest.



    [1] G. Choi, Y. Choo, On the reciprocal sums of products of Fibonacci and Lucas number, Filomat, 32 (2018), 2911–2920. http://dx.doi.org/10.2298/FIL1808911C doi: 10.2298/FIL1808911C
    [2] W. Hwang, K. Song, A reciprocal sum related to the Riemann zeta function at s = 6, arXiv: 1709.07994.
    [3] D. Kim, K. Song, The inverses of tails of the Riemann zeta function, J. Inequal. Appl., 2018 (2018), 157. http://dx.doi.org/10.1186/s13660-018-1743-6 doi: 10.1186/s13660-018-1743-6
    [4] D. Kim, H. Kim, T. Kim, Some identities on generalized harmonic numbers and generalized harmonic functions, Demonstr. Math., 56 (2023), 20220229. http://dx.doi.org/10.1515/dema-2022-0229 doi: 10.1515/dema-2022-0229
    [5] T. Kim, D. Kim, H. Lee, J. Kwon, On some summation formulas, Demonstr. Math., 55 (2022), 1–7. http://dx.doi.org/10.1515/dema-2022-0003 doi: 10.1515/dema-2022-0003
    [6] T. Kim, Euler numbers and polynomials associated with Zeta function, Abstr. Appl. Anal., 2008 (2008), 581582. http://dx.doi.org/10.1155/2008/581582 doi: 10.1155/2008/581582
    [7] T. Kim, Degenerate Euler zeta function, Russ. J. Math. Phys., 22 (2015), 469–472. http://dx.doi.org/10.1134/S1061920815040068 doi: 10.1134/S1061920815040068
    [8] T. Komatsu, On the nearest integer of the sum of reciprocal Fibonacci numbers, Aportaciones Matematicas Investigacion, 20 (2011), 171–184.
    [9] H. Lee, J. Park, Asymptotic behavior of reciprocal sum of two products of Fibonacci numbers, J. Inequal. Appl., 2020 (2020), 91. http://dx.doi.org/10.1186/s13660-020-02359-z doi: 10.1186/s13660-020-02359-z
    [10] H. Lee, J. Park, Asymptotic behavior of the inverse of tails of Hurwitz zeta function, J. Korean Math. Soc., 57 (2020), 1535–1549. http://dx.doi.org/10.4134/JKMS.j190789 doi: 10.4134/JKMS.j190789
    [11] H. Lee, J. Park, The limit of reciprocal sum of some subsequential Fibonacci number, AIMS Mathematics, 11 (2021), 12379–12394. http://dx.doi.org/10.3934/math.2021716 doi: 10.3934/math.2021716
    [12] X. Lin, Some identities related to Riemann zeta-function, J. Inequal. Appl., 2016 (2016), 32. http://dx.doi.org/10.1186/s13660-016-0980-9 doi: 10.1186/s13660-016-0980-9
    [13] D. Marques, P. Trojovsky, The proof of a formula concerning the asymptotic behavior of the reciprocal sum of the square of multiple-angle Fibonacci numbers, J. Inequal. Appl., 2022 (2022), 21. http://dx.doi.org/10.1186/s13660-022-02755-7 doi: 10.1186/s13660-022-02755-7
    [14] H. Xu, Some computational formulas related the Riemann zeta-function tails, J. Inequal. Appl., 2016 (2016), 132. http://dx.doi.org/10.1186/s13660-016-1068-2 doi: 10.1186/s13660-016-1068-2
    [15] Z. Xu, T. Wang, The infinite sum of the cubes of reciprocal Pell numbers, Adv. Differ. Equ., 2013 (2013), 184. http://dx.doi.org/10.1186/1687-1847-2013-184 doi: 10.1186/1687-1847-2013-184
  • This article has been cited by:

    1. Hongjian Li, Kaili Yang, Pingzhi Yuan, The asymptotic behavior of the reciprocal sum of generalized Fibonacci numbers, 2025, 33, 2688-1594, 409, 10.3934/era.2025020
    2. Hongjian Li, Kaili Yang, Pingzhi Yuan, The asymptotic behavior of the reciprocal sum of generalized Fibonacci numbers, 2025, 33, 2688-1594, 409, 10.3934/mbe.2025020
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1457) PDF downloads(76) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog