Research article Special Issues

Stieltjes integral boundary value problem involving a nonlinear multi-term Caputo-type sequential fractional integro-differential equation

  • In this article, we analyze the existence and uniqueness of mild solution to the Stieltjes integral boundary value problem involving a nonlinear multi-term, Caputo-type sequential fractional integro-differential equation. Krasnoselskii's fixed-point theorem and the Banach contraction principle are utilized to obtain the existence and uniqueness of the mild solution of the aforementioned problem. Furthermore, the Hyers-Ulam stability is obtained with the help of established methods. Our proposed model contains both the integer order and fractional order derivatives. As a result, the exponential function appears in the solution of the model, which is a fundamental and naturally important function for integer order differential equations and its many properties. Finally, two examples are provided to illustrate the key findings.

    Citation: Jiqiang Zhang, Siraj Ul Haq, Akbar Zada, Ioan-Lucian Popa. Stieltjes integral boundary value problem involving a nonlinear multi-term Caputo-type sequential fractional integro-differential equation[J]. AIMS Mathematics, 2023, 8(12): 28413-28434. doi: 10.3934/math.20231454

    Related Papers:

    [1] Bashir Ahmad, Ahmed Alsaedi, Ymnah Alruwaily, Sotiris K. Ntouyas . Nonlinear multi-term fractional differential equations with Riemann-Stieltjes integro-multipoint boundary conditions. AIMS Mathematics, 2020, 5(2): 1446-1461. doi: 10.3934/math.2020099
    [2] Zaid Laadjal, Fahd Jarad . Existence, uniqueness and stability of solutions for generalized proportional fractional hybrid integro-differential equations with Dirichlet boundary conditions. AIMS Mathematics, 2023, 8(1): 1172-1194. doi: 10.3934/math.2023059
    [3] Weerawat Sudsutad, Chatthai Thaiprayoon, Sotiris K. Ntouyas . Existence and stability results for ψ-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(4): 4119-4141. doi: 10.3934/math.2021244
    [4] Ugyen Samdrup Tshering, Ekkarath Thailert, Sotiris K. Ntouyas . Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions. AIMS Mathematics, 2024, 9(9): 25849-25878. doi: 10.3934/math.20241263
    [5] Subramanian Muthaiah, Dumitru Baleanu, Nandha Gopal Thangaraj . Existence and Hyers-Ulam type stability results for nonlinear coupled system of Caputo-Hadamard type fractional differential equations. AIMS Mathematics, 2021, 6(1): 168-194. doi: 10.3934/math.2021012
    [6] Qun Dai, Shidong Liu . Stability of the mixed Caputo fractional integro-differential equation by means of weighted space method. AIMS Mathematics, 2022, 7(2): 2498-2511. doi: 10.3934/math.2022140
    [7] Songkran Pleumpreedaporn, Chanidaporn Pleumpreedaporn, Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Jehad Alzabut . On a novel impulsive boundary value pantograph problem under Caputo proportional fractional derivative operator with respect to another function. AIMS Mathematics, 2022, 7(5): 7817-7846. doi: 10.3934/math.2022438
    [8] Fan Wan, Xiping Liu, Mei Jia . Ulam-Hyers stability for conformable fractional integro-differential impulsive equations with the antiperiodic boundary conditions. AIMS Mathematics, 2022, 7(4): 6066-6083. doi: 10.3934/math.2022338
    [9] Naimi Abdellouahab, Keltum Bouhali, Loay Alkhalifa, Khaled Zennir . Existence and stability analysis of a problem of the Caputo fractional derivative with mixed conditions. AIMS Mathematics, 2025, 10(3): 6805-6826. doi: 10.3934/math.2025312
    [10] Najla Alghamdi, Bashir Ahmad, Esraa Abed Alharbi, Wafa Shammakh . Investigation of multi-term delay fractional differential equations with integro-multipoint boundary conditions. AIMS Mathematics, 2024, 9(5): 12964-12981. doi: 10.3934/math.2024632
  • In this article, we analyze the existence and uniqueness of mild solution to the Stieltjes integral boundary value problem involving a nonlinear multi-term, Caputo-type sequential fractional integro-differential equation. Krasnoselskii's fixed-point theorem and the Banach contraction principle are utilized to obtain the existence and uniqueness of the mild solution of the aforementioned problem. Furthermore, the Hyers-Ulam stability is obtained with the help of established methods. Our proposed model contains both the integer order and fractional order derivatives. As a result, the exponential function appears in the solution of the model, which is a fundamental and naturally important function for integer order differential equations and its many properties. Finally, two examples are provided to illustrate the key findings.



    In the previous few decades, fractional differential equations have become of great interest for researchers due to its high accuracy and usability in numerous subjects of science and technology. A lot of physical and natural phenomena can be modeled through fractional differential equations, which provides better results compared to integer order differential equations. Due to this, fractional differential equations are counted as a special tool for modeling. Fractional differential equations arise in many engineering and scientific disciplines as the mathematical modeling of systems and processes in the fields of physics, electrochemistry, aerodynamics, viscoelasticity, polymer rheology, economics, biology, electrodynamics of complex medium, etc. For details, see [2,6,7,8,9,12,14,15,16,17,19,20,22,24,28,29,31,37,39].

    Additionally, fractional differential equations serve as an excellent tool for the description of the hereditary properties of various materials and processes. Consequently, the subject of the aforementioned equations is gaining great importance and attention from the researchers. Additionally, researchers are attracted to the enriched material on theoretical aspects and analytic/numerical methods for solving fractional order models. Furthermore, the mathematical models involving fractional order derivatives are more realistic and practical compared to the classical models. In the most recent years, many researchers have focused on the existence of solutions for fractional differential equations, for instance, see [3,4,10] and the references therein.

    In 1940, while interacting with the mathematical community at the University of Wisconsin, Ulam expressed his concern regarding the stability of group homomorphisms [25]. The broader form of his views about the stability of functional equations is, "Impose constraints which converges the solutions of an inequality to the exact solutions of the corresponding equations". In 1941, by considering Banach spaces, Hyers gave half an answer to Ulam's question about the stability of functional equations [18]. Due to this contribution of Hyers, Ulam's problem was refereed to as Hyers-Ulam stability of functional equations. For the first time, Hyers-Ulam stability of linear differential equations were introduced by Obloza [21]. Along with generalization, the work of Obloza has been enhanced with different features by using new approaches as time progressed. For more details regarding Ulam's stability with different approaches, we recommend [27,33,34,35,36].

    In [32], the authors studied a new class of impulsive implicit sequential fractional differential equations of the following form:

    {cDβ(D+λ)u(x):=f(x,u(x),cDβu(x)),x(xk,wk], k=0,1,,m, β(0,1],u(x):=Gk(x,u(x)),x(wk1,xk],  k=1,2,,m,u(0):=0, u(wk):=0,k=0,1,2,,m, (1.1)

    where cDβ denotes the Caputo fractional derivative of order β, D denotes an ordinary derivative, with the lower limit 0, 0=x0<w0<x1<w1<<xm<wm=T, and T is a pre-fixed number and βR+. The function f:[0,T]×R×RR is continuous and Gk:[wk1,xk]×RR is also continuous for all k=1,2,,m,

    Binlin et al. [38] studied the existence and uniqueness (EU) of the solution, as well as the stability in the form of Ulam's problem, for the following FDEs with Stieltjes integral condition:

    {CDα(D+λ)x(ξ)=ϕ(ξ),ξ[0,1]x(0)=0,CDβ00,ξx(1)=pi=110Dβi0,ξξ(s)dxi(s).

    Bashir et al. [5] studied the EU of the solution of the nonelinear multi-term fractional integro-DE with anti-periodic conditions:

    {(λC1Dvx(ξ)+λC2Dϱx(ξ))=f(ξ,x(ξ))+Iωg(ξ,x(ξ)),ξ[0,τ]x(0)=x(τ),x(0)=x(τ),

    where, λ1, λ2 R, λ10,v[1,2), ϱ(1,v), ω>0,f,g:[0,1]×RR are appropriate functions.

    In this article, we analyze the multi-term, nonlinear, sequential fractional differential equation with Stieltjes integral conditions of the following form:

    {(λC1Dv+λC2Dϱ)(D+λ3)x(ξ)=f(ξ,x(ξ))+Iωg(ξ,x(ξ)),ξ[0,1]x(0)=0,x(0)=0,CDβ00,ξx(1)=pi=110Dβi0,ξx(s)dxi(s), (1.2)

    where, v(1,2],ϱ(1,v),λ1,λ2,R,λ3R+,λ10,pN,βiR for all i=0,1,,p,0β1β2βp<v, β0[1,v),f,g:[0,1]×RR are appropriate functions, and the integrals presented in Boundary Condions (BCs) are Riemann-Stieltjes integrals with xi(i=1,2,,p) functions of a bounded variation. In addition to general FDEs, the multi–point boundary conditions are more valuable than the classical initial/boundary conditions, because these conditions describe the characteristics of chemical, physical or others processes happening inside the domain.

    Here, we present necessary preliminaries so that the paper will be self contained.

    Let C=C([0,1],R) be the Banach space of all continuous functions endowed with the norm denoted by ..

    Definition 2.1. [1] The fractional integral of order v from 0 to ξ for the function x is defined by the following:

    Iv0,ξx(ξ)=1Γ(v)ξ0(ξs)v1x(s)ds,ξ>0, v>0

    where Γ(.) is the Gamma function.

    Definition 2.2. [1] The Caputo derivative of fractional order v from 0 to ξ for a function x can be defined as follows:

    CDv0,ξx(ξ)=1Γ(nv)ξ0(ξs)nv1xn(s)ds,wheren=v+1.

    Lemma 2.1. [1] The FDE CDv0,ξx(ξ)=0 with v>0, involving Caputo differential operator CDv0,ξ has a solution in the following form:

    x(ξ)=c0+c1ξ+c2ξ2++cm1ξm1,

    where ckR,k=0, 1,,m1=:¯0,m1 and m=v+1.

    Lemma 2.2. [1] For each v>0, we have the following:

    Iv0,ξ(CDv0,ξx(ξ))=c0+c1ξ+c2ξ2++cm1ξm1,

    where ckR, k=¯0,m1 and m=v+1.

    Lemma 2.3. [38] If (v)>0 and λ>0, then

    CDv+eλξ=λveλξ and CDveλξ=λveλξ.

    Theorem 2.1. (Krasnoselskii's fixed point theorem [11]) If K is a closed, convex, non-empty subset of a Banach space M such that P and Q map K into M and,

    (ⅰ) Px+QyK(x,yK),

    (ⅱ) P is compact and continuous,

    (ⅲ) Q is a contraction mapping,

    then y in K such that, Py+Qy=y.

    Theorem 2.2. (Banach fixed point theorem) Every contraction mapping δ from B to B has a fixed point (unique), where B is a non-empty closed set in a Banach space X.

    Definition 2.3. Consider a Cauchy problem ddtx(t)=f(t) with x(t0)=x0, then, a continuous function u is called its mild solution if

    u(t)=x(t0)+tt0f(s)ds.

    Lemma 2.4. Suppose that f,gC([0,1]×R,R), then, the mild solution of (1.2) has the following form:

    x(ξ)=λ2λ1ξ0eλ3(ξs)Ivϱ1x(s)dsλ1λ3λ1ξ0eλ3(ξs)Ivϱx(s)ds+1λ1ξ0eλ3(ξs)Ivf(s,x(s))ds+1λ1ξ0eλ3(ξs)Iv+ωg(s,x(s))ds+1λ1λ23Δ[λ2λ1pi=110ξ0eλ3(ξs)Ivϱβi1x(s)dsdxi(s)+λ2λ3λ1pi=110ξ0eλ3(ξs)Ivβiϱx(s)dsdxi(s)1λ1pi=110ξ0eλ3(ξs)Ivβif(s,x(s))dsdxi(s)1λ1pi=110ξ0eλ3(ξs)Ivβi+ωg(s,x(s))dsdxi(s)][λ3ξ1+eλ3ξ]+λ1λ3(1eλ3ξ)+1λ1λ23Δ[λ2λ110eλ3(1s)Ivβ0ϱ1x(s)dsλ2λ3λ110eλ3(1s)Ivβ0ϱx(s)ds+1λ110eλ3(1s)Ivβ0f(s,x(s))ds+1λ110eλ3(1s)Ivβ0+ωg(s,x(s))ds][λ3ξ1+eλ3ξ]+λ21λ33Δ[(λ3)β0eλ3pi=110(λ3)βieλ3ξdxi(s)][λ3ξ1+eλ3ξ],where,=λ2Ivϱ1x(0)+λ2Ivϱx(0)Ivf(0,x(0))Iv+ωg(0,x(0)).Δ=1λ1λ23[pi=110(λ3)βieλ3ξ(λ3)β0eλ3]0. (2.1)

    Proof. Consider problem (1.2) and apply the fractional integral of order v to obtain the following:

    (λ1+λ2Ivϱ)(D+λ3)x(ξ)=Ivf(ξ,x(ξ))+Iv+ωg(ξ,x(ξ))+C0+C1ξ.

    This implies the following:

    λ1Dx(ξ)+λ1λ3x(ξ)+λ2Ivϱ1x(ξ)+λ2λ3Ivϱx(ξ)=Ivf(ξ,x(ξ))+Iv+ωg(ξ,x(ξ))+C0+C1ξ.

    Equivalently, we obtain te following:

    Dx(ξ)+λ3x(ξ)=λ2λ1Ivϱ1x(ξ)λ2λ3λ1Ivϱx(ξ)+1λ1Ivf(ξ,x(ξ))+1λ1Iv+ωg(ξ,x(ξ))+1λ1C0+1λ1C1ξ.

    Now, multiplying by the integrating factor eλ3ξ and then integrating from 0 to ξ, we obtain the following:

    x(ξ)=λ2λ1ξ0eλ3(ξs)Ivϱ1x(s)dsλ2λ3λ1ξ0eλ3(ξs)Ivϱx(s)ds+1λ1ξ0eλ3(ξs)Ivf(s,x(s))ds+1λ1ξ0eλ3(ξs)Iv+ωg(s,x(s))ds+c0λ1ξ0eλ3(ξs)ds+c1λ1ξ0seλ3(ξs)ds+c2eλ3ξ. (2.2)

    Therefore,

    ξ0eλ3(ξs)ds=1λ3(1eλ3ξ)  and,ξ0seλ3(ξs)ds=1λ23[λ3ξ1+eλ3ξ].

    Consequently, Eq (2.2) becomes the following:

    x(ξ)=λ2λ1ξ0eλ3(ξs)Ivϱ1x(s)dsλ2λ3λ1ξ0eλ3(ξs)Ivϱx(s)ds+1λ1ξ0eλ3(ξs)Ivf(s,x(s))ds+1λ1ξ0eλ3(ξs)Iv+ωg(s,x(s))ds+c0λ1λ3[1eλ3ξ]+c1λ1λ23[λ3ξ1+eλ3ξ]+c2eλ3ξ. (2.3)

    Now, the boundary condition x(0)=0 implies that c2=0. Thus, (2.3) implies the following:

    x(ξ)=λ2λ1ξ0eλ3(ξs)Ivϱ1x(s)dsλ2λ3λ1ξ0eλ3(ξs)Ivϱx(s)ds+1λ1ξ0eλ3(ξs)Ivf(s,x(s))ds+1λ1ξ0eλ3(ξs)Iv+ωg(s,x(s))ds+c0λ1λ3[1eλ3ξ]+c1λ1λ23[λ3ξ1+eλ3ξ]. (2.4)

    Differentiating Eq (2.4) w.r.t ξ and then applying the boundary condition, we obtain the following:

    c0=λ2Ivϱ1x(0)+λ2λ3Ivϱx(0)Ivf(0,x(0))Iv+ωg(0,x(0)).

    Now, let β0[1,v), then, from [38], we obtain the following:

    CDβ0x(1)=λ2λ110eλ3(1s)Ivϱβ01x(s)dsλ2λ3λ110eλ3(1s)Ivϱβ0x(s)ds+1λ110eλ3(1s)Ivβ0f(s,x(s))ds+1λ110eλ3(1s)Iv+ωβ0g(s,x(s))ds+c0λ1λ3(λ3)β0eλ3+c1λ1λ23(λ3)β0eλ3. (2.5)

    Similarly, for 1β1β2βp<v, we obtain the following:

    CDβix(ξ)=λ2λ1ξ0eλ3(ξs)Ivϱβi1x(s)dsλ2λ3λ1ξ0eλ3(ξs)Ivϱβix(s)ds+1λ1ξ0eλ3(ξs)Ivβif(s,x(s))ds+1λ1ξ0eλ3(ξs)Iv+ωβig(s,x(s))ds+c0λ1λ3(λ3)βieλ3ξ+c1λ1λ23(λ3)βieλ3ξ. (2.6)

    Additionally,

    pi=110Dβix(ξ)dxi(s)=λ2λ1pi=110ξ0eλ3(ξs)Ivϱβi1x(s)dsdxi(s)+c0λ1λ3pi=110(λ3)βieλ3ξdxi(s)λ2λ3λ1pi=110ξ0eλ3(ξs)Ivϱβix(s)dsdxi(s)+1λ1pi=110ξ0eλ3(ξs)Ivβif(s,x(s))dsdxi(s)+1λ1pi=110ξ0eλ3(ξs)Iv+ωβig(s,x(s))dsdxi(s)+c1λ1λ23pi=110(λ3)βieλ3ξdxi(s). (2.7)

    From Eqs (2.5) and (2.7), we have the following:

    c1=λ2λ1Δ10e(1s)Ivϱβ01x(s)dsλ2λ3λ1Δ10e(1s)Ivϱβ0x(s)ds+1λ1Δ10e(1s)Ivβ0f(s,x(s))ds
    +1λ1Δ10e(1s)Ivβ0+ωg(s,x(s))ds+λ1λ3Δ[(λ3)β0eλ3pi=110(λ3)βieλ3ξdxi(s)]
    +λ2λ1Δpi=110ξ0eλ3(ξs)Ivϱβi1x(s)dsdxi(s)+λ2λ3λ1Δpi=110ξ0eλ3(ξs)Ivϱβix(s)dsdxi(s)
    1λ1Δpi=110ξ0eλ3(ξs)Ivβ0f(s,x(s))dsdxi(s)1λ1Δpi=110ξ0eλ3(ξs)Ivβ0+ωg(s,x(s))dsdxi(s).

    Now, Eq (2.4) becomes the following:

    x(ξ)=λ2λ1ξ0eλ3(ξs)Ivϱ1x(s)dsλ1λ3λ1ξ0eλ3(ξs)Ivϱx(s)ds+1λ1ξ0Iveλ3(ξs)f(s,x(s))ds+1λ1ξ0eλ3(ξs)Iv+ωg(s,x(s))ds+1λ1λ23Δ[λ2λ1pi=110ξ0eλ3(ξs)Ivϱβi1x(s)dsdxi(s)+λ2λ3λ1pi=110ξ0eλ3(ξs)Ivβi1x(s)dsdxi(s)1λ1pi=110ξ0eλ3(ξs)Ivβ0f(s,x(s))dsdxi(s)1λ1pi=110ξ0eλ3(ξs)Ivβ0+ωg(s,x(s))dsdxi(s)][λ3ξ1+eλ3ξ]+λ1λ3(1eλ3ξ)+1λ1λ23Δ[λ2λ110eλ3(1s)Ivβ0ϱ1x(s)dsλ2λ3λ110eλ3(1s)Ivβ0ϱx(s)ds+1λ110eλ3(1s)Ivβ0f(s,x(s))ds+1λ110eλ3(1s)Ivβ0+ωg(s,x(s))ds][λ3ξ1eλ3ξ]+λ21λ33Δ[(λ3)β0eλ3pi=110(λ3)βieλ3ξDxi(s)][λ3ξ1eλ3ξ],

    which is the required proof.

    Remark 2.1. According to Lemma 2, and the Counter-Example 1 in [13], Example 3.1 from [23] and Fact 2, from [23], the existence of continuous (even Holderian) solutions of the fractional-type integral forms is not sufficient to ensure the existence of solutions to the corresponding Caputo-type fractional differential problems. For this reason, we only obtain the mild solution.

    Throughout the paper, in the case of the Stieltjes integral, we consider the same monotonic functions, which are functions of t and also functions of bounded variation.

    The given problem can be converted into a fixed point problem as follows: δ(x)=x, where δ:CC is defined by

    δx(ξ)=λ2λ1ξ0eλ3(ξs)Ivϱ1x(s)dsλ1λ3λ1ξ0eλ3(ξs)Ivϱx(s)ds+1λ1ξ0eλ3(ξs)Ivf(s,x(s))ds+1λ1ξ0eλ3(ξs)Iv+ωg(s,x(s))ds+1λ1λ23Δ[λ2λ1pi=110ξ0eλ3(ξs)Ivϱβi1x(s)dsdxi(s)+λ2λ3λ1pi=110ξ0eλ3(ξs)Ivβi1x(s)dsdxi(s)1λ1pi=110ξ0eλ3(ξs)Ivβif(s,x(s))dsdxi(s)1λ1pi=110ξ0eλ3(ξs)Ivβi+ωg(s,x(s))dsdxi(s)][λ3ξ1+eλ3ξ]+λ1λ3(1eλ3ξ)+1λ1λ23Δ[λ2λ110eλ3(1s)Ivβ0ϱ1x(s)dsλ2λ3λ110eλ3(1s)Ivβ0ϱx(s)ds+1λ110eλ3(1s)Ivβ0f(s,x(s))ds+1λ110eλ3(1s)Ivβ0+ωg(s,x(s))ds][λ3ξ1+eλ3ξ]+λ21λ33Δ[(λ3)β0eλ3pi=110(λ3)βieλ3ξdxi(s)][λ3ξ1+eλ3ξ]. (3.1)

    Theorem 3.1. H1: Suppose f,gC([0,1],R)R and

    |f(ξ,0)|N1<  and  |g(ξ,0)|N2<,

    where N=max{N1,N2}, and

    |f(ξ,x)f(ξ,y)|L1|xy|,   |g(ξ,x)g(ξ,y)|L2|xy|,

    with L1,L2>0  ξ[0,1] and x, yR.

    H2: L=max{L1,L2} and Ω1+L Ω2<1, where

    Ω1=|λ2||λ1|λ3Γ(vϱ)(1eλ3)+|λ2λ3||λ1|λ3Γ(vϱ+1)(1eλ3)+1|Δλ1λ23|[|λ2||λ1|λ3pi=1(1eλ3ρ)ρvϱβi1iΓ(vβiϱ)+
    |λ2λ3||λ1|λ3pi=1(1eλ3ρ)ρvϱβiiΓ(vβiϱ+1)][λ31+eλ3]+1|Δλ1λ23|[|λ2||λ1|λ3Γ(vϱβ0)(1eλ3)+
    |λ2λ3||λ1|λ3Γ(vϱβ0+1)(1eλ3)][λ31+eλ3].
    Ω2=(1eλ3)|λ1|λ3(1Γ(v+1)+1Γ(v+1+ω))+(1eλ3)|Δλ1λ23|λ3[1Γ(vβ0+1)+1Γ(vβ0+1+ω)][λ31+eλ3]+
    1|Δλ1λ23|[1|λ1|λ3pi=1(1eλ3ρ)ρvβiiΓ(vβi+1)+1|λ1|λ3pi=1(1eλ3ρ)ρvβi+ωiΓ(vβi+1+ω)][λ31+eλ3].
    Ω3=||(1eλ3)|λ1λ3|+|||Δλ21λ33|[(λ3)β0eλ3+pi=1(λ3)βieλ3ρi][λ31+eλ3].

    Then, Eq (1.2) has a unique mild solution in C.

    Proof. Considering a closed ball Br={xC:xr}, we show that δBrBr, where δ is defined by Eq (3.1) and r(NΩ2+Ω3)(1Ω1LΩ2)1. For any xBr, it follows from condition (H1) that

    |f(ξ,x)|L1x+N1L1r+N1   and   g(ξ,x)L2r+N2.

    Now, as δ(x)=supξ[0,1]|δx(ξ)|, the following holds true:

    δ(x)=supξ[0,1]|λ2λ1ξ0eλ3(ξs)Ivϱ1x(s)dsλ1λ3λ1ξ0eλ3(ξs)Ivϱx(s)ds+1λ1ξ0eλ3(ξs)Ivf(s,x(s))ds+1λ1ξ0eλ3(ξs)Iv+ωg(s,x(s))ds+1λ1λ23Δ[λ2λ1pi=110ξ0eλ3(ξs)Ivϱβi1x(s)dsdxi(s)+λ2λ3λ1pi=110ξ0eλ3(ξs)Ivβiϱx(s)dsdxi(s)1λ1pi=110ξ0eλ3(ξs)Ivβif(s,x(s))dsdxi(s)1λ1pi=110ξ0eλ3(ξs)Ivβi+ωg(s,x(s))dsdxi(s)][λ3ξ1+eλ3ξ]+λ1λ3(1eλ3ξ)+1λ1λ23Δ[λ2λ110eλ3(1s)Ivβ0ϱ1x(s)dsλ2λ3λ110eλ3(1s)Ivβ0ϱx(s)ds+1λ110eλ3(1s)Ivβ0f(s,x(s))ds+1λ110eλ3(1s)Ivβ0+ωg(s,x(s))ds][λ3ξ1+eλ3ξ]+λ21λ33Δ[(λ3)β0eλ3pi=110(λ3)βieλ3ξdxi(s)][λ3ξ1+eλ3ξ]|.

    Now, using the mean value Theorem [30] for Stieltjes integral with χ[0,1] and xi(1)=i>0 and from (H1), we obtain the following:

    δ(x)r|λ2||λ1|λ3Γ(vϱ)(1eλ3)+r|λ2λ3||λ1|λ3Γ(vϱ+1)(1eλ3)+(L1r+N1)(1eλ3)|λ1|λ3Γ(v+1)+(L2r+N2)(1eλ3)|λ1|λ3Γ(v+1+ω)+|||λ1λ2|(1eλ3)+1|Δλ1λ23|[r|λ2||λ1|pi=1(1eλ3χ)χvϱβi1iΓ(vβiϱ)+r|λ2λ3||λ1|λ3pi=1(1eλ3χ)χvϱβiiΓ(vβiϱ+1)+(L1r+N1)|λ1|λ3pi=1(1eλ3χ)χvβiiΓ(vβi+1)+(L2r+N2)|λ1|λ3pi=1(1eλ3χ)χvβi+ωiΓ(vβi+1+ω)][λ31+eλ3]+1|Δλ1λ23|[r|λ2||λ1|λ3Γ(vβ0ϱ)(1eλ3)+r|λ2λ3||λ1|λ3Γ(vϱβ0+1)(1eλ3)+(L1r+N1)|λ1|λ3Γ(vβ0+1)(1eλ3)+(L2r+N2)|λ1|λ3Γ(vβ0+ω+1)(1eλ3)][λ31+eλ3]+|||λ21λ33Δ||[(λ3)β0eλ3pi=1(λ3)βieλ3χi]|[λ31+eλ3]
    r[|λ2||λ1|λ3Γ(vϱ)(1eλ3)+|λ2λ3||λ1|λ3Γ(vϱ+1)(1eλ3)+1|Δλ1λ23|[|λ2||λ1|λ3Γ(vβ0ϱ)(1eλ3)
    +|λ2λ3||λ1|λ3Γ(vϱβ0+1)(1eλ3)][λ31+eλ3]+1|Δλ1λ23|[|λ2||λ1|pi=1(1eλ3χ)χvϱβi1iΓ(vβiϱ)
    +|λ2λ3||λ1|λ3pi=1(1eλ3χ)χvϱβiiΓ(vβiϱ+1)][λ31+eλ3]+(Lr+N)[(1eλ3)|λ1|λ3Γ(v+1)+(1eλ3)|λ1|λ3Γ(v+1+ω)
    +1|Δλ1λ23|[1|λ1|λ3pi=1(1eλ3χ)χvβiiΓ(vβi+1)+1|λ1|λ3pi=1(1eλ3χ)χvβi+ωiΓ(vβi+1+ω)][λ31+eλ3]]
    +1|Δλ1λ23|[1|λ1|λ3Γ(vβ0+1)(1eλ3)+1|λ1|λ3Γ(vβ0+ω+1)(1eλ3)][λ31+eλ3]]
    +|||λ21λ33Δ||[(λ3)β0eλ3pi=1(λ3)βieλ3χi]|[λ31+eλ3]+|||λ1λ2|(1eλ3).

    This implies the following:

    δ(x)rΩ1+(Lr+N)Ω2+Ω3r.

    Next, to prove the contraction, consider the following:

    δxδy=supξ[0,1]|δx(ξ)δy(ξ)|=supξ[0,1]|λ2λ1ξ0eλ3(ξs)Ivϱ1(x(s)y(s))dsλ1λ3λ1ξ0eλ3(ξs)Ivϱ(x(s)y(s))ds+1λ1ξ0eλ3(ξs)Iv(f(s,x(s))f(s,y(s))ds+1λ1ξ0eλ3(ξs)Iv+ω(g(s,x(s))g(s,y(s))ds+1λ1λ23Δ[λ2λ1pi=110ξ0eλ3(ξs)Ivϱβi1(x(s)y(s))dsdxi(s)+λ2λ3λ1pi=110ξ0eλ3(ξs)Ivβiϱ(x(s)y(s))dsdxi(s)1λ1pi=110ξ0eλ3(ξs)Ivβ0(f(s,x(s))f(s,y(s)))dsdxi(s)1λ1pi=110ξ0eλ3(ξs)Ivβ0+ω(g(s,x(s))g(s,y(s))dsdxi(s)][λ3ξ1+eλ3ξ]+1λ1λ23Δ[λ2λ110eλ3(1s)Ivβ0ϱ1(x(s)y(s))dsλ2λ3λ110eλ3(1s)Ivβ0ϱ(x(s)y(s))ds+1λ110eλ3Ivβ0(f(s,x(s))f(s,y(s)))ds+1λ110eλ3(1s)Ivβ0+ω(g(s,x(s))g(s,y(s))ds][λ3ξ1+eλ3ξ]|.

    Now, using the mean value theorem for the Stieltjes integral with χ[0,1] and xi(1)=i>0 and from (H1), we obtain the following:

    δxδy|λ2||λ1|λ3Γ(vϱ)(1eλ3)xy+|λ2λ3||λ1|λ3Γ(vϱ+1)(1eλ3)xy+L1(1eλ3)|λ1|λ3Γ(v+1)xy+L2(1eλ3)|λ1|λ3Γ(v+1+ω)xy+xy|Δλ1λ23|[|λ2||λ1|pi=1(1eλ3χ)χvϱβi1iΓ(vβiϱ)+|λ2λ3||λ1|λ3pi=1(1eλ3χ)χvϱβiiΓ(vβiϱ+1)+L1|λ1|λ3pi=1(1eλ3χ)χvβiiΓ(vβi+1)+L2|λ1|λ3pi=1(1eλ3χ)χvβi+ωiΓ(vβi+1+ω)][λ31+eλ3]+xy|Δλ1λ23|[|λ2||λ1|λ3Γ(vβ0ϱ)(1eλ3)+|λ2λ3||λ1|λ3Γ(vϱβ0+1)(1eλ3)+L1|λ1|λ3Γ(vβ0+1)(1eλ3)+L2|λ1|λ3Γ(vβ0+ω+1)(1eλ3)][λ31+eλ3].xy[|λ2||λ1|λ3Γ(vϱ)(1eλ3)+|λ2λ3||λ1|λ3Γ(vϱ+1)(1eλ3)+1|Δλ1λ23|[|λ2||λ1|pi=1(1eλ3χ)χvϱβi1iΓ(vβiϱ)+|λ2λ3||λ1|λ3pi=1(1eλ3χ)χvϱβiiΓ(vβiϱ+1)][λ31+eλ3]+1|Δλ1λ23|[|λ2||λ1|λ3Γ(vβ0ϱ)(1eλ3)+|λ2λ3||λ1|λ3Γ(vϱβ0+1)(1eλ3)][λ31+eλ3]]+Lxy[(1eλ3)|λ1|λ3Γ(v+1)+(1eλ3)|λ1|λ3Γ(v+1+ω)+1|Δλ1λ23|[1|λ1|λ3pi=1(1eλ3χ)χvβiiΓ(vβi+1)+1|λ1|λ3pi=1(1eλ3χ)χvβi+ωiΓ(vβi+1+ω)][λ31+eλ3]+1|Δλ1λ23|[1|λ1|λ3Γ(vβ0+1)(1eλ3)+1|λ1|λ3Γ(vβ0+ω+1)(1eλ3)][λ31+eλ3]]xy[Ω1+LΩ2]. (3.2)

    Thus,

    δxδy [Ω1+LΩ2]|xy.

    From (H2), we know that (Ω1+LΩ2) < 1, which demonstrates that the operator δ is contractive. Therefore, according to the Banach contraction principle, there exists a fixed point, which is the mild solution of the problem (1.2).

    Theorem 3.2. Suppose that (H1) and the following condition are satisfied.

    (H3): μ1, μ2 C([0,1],R+) such that |f(ξ,x)|μ1(ξ) and |g(ξ,x)|μ2, Ω1<1, then, at least one mild solution of problem (1.2) in C.

    Proof. Suppose Kξ = {xC:xξ} be a closed subset of Br and define δ1 and δ2 on KξC as follows:

    δ1x(ξ)=1λ1ξ0eλ3(ξs)Ivf(s,x(s))ds+1λ1ξ0eλ3(ξs)Iv+ωg(s,x(s))ds+λ1λ3(1eλ3ξ)1λ1λ23Δ[1λ1pi=110ξ0eλ3(ξs)Ivβif(s,x(s))dsdxi(s)+1λ1pi=110ξ0eλ3(ξs)Ivβi+ωg(s,x(s))dsdxi(s)]×[λ3ξ1+eλ3ξ]+λ21λ33Δ[(λ3)β0eλ3pi=110(λ3)βieλ3ξdxi(s)][λ3ξ1+eλ3ξ]+1λ1λ23Δ[1λ110eλ3(1s)Ivβ0f(s,x(s))ds+1λ110eλ3(1s)Ivβ0+ωg(s,x(s))ds][λ3ξ1+eλ3ξ], (3.3)

    and

    δ2x(ξ)=λ2λ1ξ0eλ3(ξs)Ivϱ1x(s)dsλ1λ3λ1ξ0eλ3(ξs)Ivϱx(s)ds+1λ1λ23Δ[λ2λ1pi=110ξ0eλ3(ξs)Ivϱβi1x(s)dsdxi(s)+λ2λ3λ1pi=110ξ0eλ3(ξs)Ivϱβix(s)dsdxi(s)][λ3ξ1+eλ3ξ]+1λ1λ23Δ[λ2λ110eλ3(1s)Ivβ0ϱ1x(s)dsλ2λ3λ110eλ3(1s)Ivβ0ϱx(s)ds][λ3ξ1+eλ3ξ]. (3.4)

    Clearly, δ=δ1+δ2. Now, we verify the hypothesis of Krasnoselskii's fixed point theorem for x,yKξ with ξ(μΩ2+Ω3)(1Ω)1. Presently,

    δ1x(ξ)+δ2y(ξ)=supξ[0,1]|δ1x(ξ)+δ2y(ξ)|=supξ[0,1]|1λ1ξ0eλ3(ξs)Ivf(s,x(s))ds+1λ1ξ0eλ3(ξs)Iv+ωg(s,x(s))ds+λ1λ3(1eλ3ξ)1λ1λ23Δ[1λ1pi=110ξ0eλ3(ξs)Ivβif(s,x(s))dsdxi(s)+1λ1pi=110ξ0eλ3(ξs)Ivβi+ωg(s,x(s))dsdxi(s)][λ3ξ1+eλ3ξ]+1λ1λ23Δ[1λ110eλ3(1s)Ivβ0f(s,x(s))ds+1λ10eλ3(1s)Ivβ0+ωg(s,x(s))ds][λ3ξ1+eλ3ξ]+λ21λ33Δ[(λ3)β0eλ3pi=110(λ3)βieλ3ξdxi(s)][λ3ξ1+eλ3ξ]λ2λ1ξ0eλ3(ξs)Ivϱ1x(s)dsλ1λ3λ1ξ0eλ3(ξs)Ivϱx(s)ds+1λ1λ23Δ[λ2λ1pi=110ξ0eλ3(ξs)Ivϱβi1x(s)dsdxi(s)+λ2λ3λ1pi=110ξ0eλ3(ξs)Ivβi1x(s)dsdxi(s)]×[λ3ξ1+eλ3ξ]+1λ1λ23Δ[λ2λ110eλ3(1s)Ivβ0ϱ1x(s)dsλ2λ3λ110eλ3(1s)Ivβ0ϱx(s)ds][λ3ξ1+eλ3ξ]|
    (1eλ3)|λ1|λ3Γ(v+1)μ1+(1eλ3)|λ1|λ3Γ(v+1+ω)μ2+|||λ1λ2|(1eλ3)+1|Δλ1λ23|[μ1|λ1|λ3pi=1(1eλ3χ)χvβiiΓ(vβi+1)+μ2|λ1|λ3pi=1(1eλ3χ)χvβi+ωiΓ(vβi+1+ω)][λ31+eλ3]+1|Δλ1λ23|[μ1|λ1|λ3Γ(vβ0+1)(1eλ3)+μ2|λ1|λ3Γ(vβ0+ω+1)(1eλ3)][λ31+eλ3]+|||λ21λ33Δ|[(λ3)β0eλ3pi=1(λ3)βieλ3χi][λ31+eλ3]|λ2||λ1|λ3Γ(vϱ)(1eλ3)ξ+|λ2λ3||λ1|λ3Γ(vϱ+1)(1eλ3)ξ+1|Δλ1λ23|[ξ|λ2||λ1|λ3pi=1(1eλ3χ)χvϱβi1iΓ(vβiϱ)+ξ|λ2λ3||λ1|λ3pi=1(1eλ3χ)χvϱβiiΓ(vβiϱ+1)][λ31+eλ3]+1|Δλ1λ23|[ξ|λ2||λ1|λ3Γ(vβ0ϱ)(1eλ3)+ξ|λ2λ3||λ1|λ3Γ(vϱβ0+1)(1eλ3)][λ31+eλ3].μΩ2+Ω3+ξΩ1ξ.

    Thus, δ1x+δ2yKξ.

    () Next, we show that δ1 is continuous and compact. Since f and g are continuous thus δ1 is also continuous. Additionally, δ1 is uniformly bounded, i.e.,

    δ1xμΩ2+Ω3.

    For compactness, assume that

    sup(ξ,x)[0,1]×Kξ|f(ξ,x)|=f1,      sup(ξ,x)[0,1]×Kξ|g(ξ,x)|=g1

    and

    [λ3ξ1+eλ3ξ]=max{[λ3ξ11+eλ3ξ1],[λ3ξ21+eλ3ξ2]}.

    Then, for ξ1<ξ2, we have the following:

    |δ1x(ξ2)δ1x(ξ1)|=|[1λ1ξ20eλ3(ξ2s)Ivf(s,x(s))ds+1λ1ξ20eλ3(ξ2s)Iv+ωg(s,x(s))ds+λ1λ3(1eλ3ξ2)1λ1λ23Δ[1λ1pi=110ξ20eλ3(ξ2s)Ivβif(s,x(s))dsdxi(s)+1λ1pi=110ξ20eλ3(ξ2s)Ivβi+ωg(s,x(s))dsdxi(s)]×[λ3ξ21+eλ3ξ2]+1λ1λ23Δ[1λ110eλ3(1s)Ivβ0f(s,x(s))ds+1λ10eλ3(1s)Ivβ0+ωg(s,x(s))ds]×[λ3ξ21+eλ3ξ2]+λ21λ33Δ[(λ3)β0eλ3pi=110(λ3)βieλ3ξ2dxi(s)][λ3ξ21+eλ3ξ2]][1λ1ξ10eλ3(ξ1s)Ivf(s,x(s))ds+1λ1ξ10eλ3(ξ1s)Iv+ωg(s,x(s))ds+λ1λ3(1eλ3ξ1)1λ1λ23Δ[1λ1pi=110ξ10eλ3(ξ1s)Ivβif(s,x(s))dsdxi(s)1λ1pi=110ξ10eλ3(ξ1s)Ivβi+ωg(s,x(s))dsdxi(s)]×[λ3ξ11+eλ3ξ1]+1λ1λ23Δ[1λ110eλ3(1s)Ivβ0f(s,x(s))ds+1λ10eλ3(1s)Ivβ0+ωg(s,x(s))ds]×[λ3ξ11+eλ3ξ1]+λ21λ33Δ[(λ3)β0eλ3pi=110(λ3)βieλ3ξ1dxi(s)][λ3ξ11+eλ3ξ1]]|.
    |f1λ1Γ(v+1)(ξ10(ξv2eλ3(ξ2s)ξv1eλ3(ξ1s))ds+ξ2ξ1ξv2eλ3(ξ2s)ds)+g1λ1Γ(v+1+ω)(ξ10(ξv+ω2eλ3(ξ2s)ξv+ω1eλ3(ξ1s))ds+ξ2ξ1ξv+ω2eλ3(ξ2s)ds)f1Δλ1λ23[1λ1pi=11Γ(vβi+1)10(ξ10(ξvβi2eλ3(ξ2s)ξvβi1eλ3(ξ1s))ds+ξ2ξ1ξvβi2eλ3(ξ2s)ds)dxi(s)]×[λ3ξ1+eλ3ξ]g1Δλ1λ23[1λ1pi=11Γ(vβi+1+ω)10(ξ10(ξvβi+ω2eλ3(ξ2s)ξvβi+ω1eλ3(ξ1s))ds+ξ2ξ1ξvβi+ω2eλ3(ξ2s)ds)dxi(s)][λ3ξ1+eλ3ξ]+λ1λ3(eλ3ξ1eλ3ξ2)+λ21λ33Δ[pi=110(λ3)βieλ3ξ1dxi(s)pi=110(λ3)βieλ3ξ2dxi(s)][λ3ξ1+eλ3ξ]]|.
    |f1||λ1Γ(v+1)|λ3(ξv2(eλ3(ξ2ξ1)eλ3ξ2)ξv1(1eλ3ξ1)+ξv2(1eλ3(ξ2ξ1)))|g1||λ1Γ(v+1+ω)|λ3(ξv+ω2(eλ3(ξ2ξ1)eλ3(ξ2))ξv+ω1(1eλ3ξ1)+ξv+ω2(1eλ3(ξ2ξ1)))|f1||Δλ1λ23|[1|λ1|λ3pi=11Γ(vβi+1)((χvβi2(eλ3(χ2χ1)eλ3χ2)χvβi1(1eλ3χ1)+χvβi2(1eλ3(χ2χ1)))i]×[λ3ξ1+eλ3ξ]+|g1||Δλ1λ23|[1|λ1|λ3pi=11Γ(vβi+1+ω)((χvβi+ω2(eλ3(χ2χ1)eλ3χ2)χvβi+ω1(1eλ3χ1)+χvβi+ω2(1eλ3(χ2χ1)))i][λ3ξ1+eλ3ξ]+|||λ21λ33Δ|λ3[pi=1|(λ3)βi(eλ3χ1eλ3χ2)|i][λ3ξ1+eλ3ξ].+|||λ1λ3|(eλ3ξ1eλ3ξ2),

    where χ1,χ2[0,1]. If ξ1ξ2, then χ1χ2 and the right side approaches to 0 independent of x Kξ. Thus, δ1 is equicontinuous. Therefore, by the Arzela-Ascoli theorem, δ1 is relatively compact.

    (ⅲ) As Ω1<1, therefore, δ2 is contraction. Thus, there is at least one mild solution to the problem in C.

    Let ϵ>0, f,g([0,1]×R,R), and assume the following inequality:

    |(λ1Dv+λ2Dϱ)(D+λ3)u(ξ)f(ξ,u(ξ))Iωg(ξ,u(ξ))|ϵξ[0,1]. (4.1)

    Definition 4.1. (1.2) is said to be Hyers-Ulam stable if there is a constant k0R+ such that for each ϵ>0 and each red mild solution uC of (4.1), there is a mild solution xC of (1.2) with,

    |u(ξ)x(ξ)|k0ϵξ[0,1].

    Remark 4.1. A function uC is a mild solution of (4.1) if there is ψC depending on u, such that:

    (ⅰ) (λ1Dv+λ2Dϱ)(D+λ3)u(ξ)=f(ξ,u(ξ))+Iωg(ξ,u(ξ))+ψ(ξ) ξ[0,1].

    (ⅱ) |ψ(ξ)|ϵξ[0,1].

    Lemma 4.1. If uC is a mild solution of the Inequality (4.1), then u is also a mild solution of the following inequality:

    |u(ξ)x(ξ)|k0ϵ.

    where,

    k0=[1|λ1|λ3Γ(v+1)(1eλ3ξ)+1|λ1λ23Δ|[1|λ1|λ3pi=1(1eλ3χ)χvβiiΓ(vβi+1)][λ31+eλ3]+1|λ1λ23Δ|((1eλ3)|λ1|λ3Γ(vβ0+1))[λ31+eλ3]].

    Proof. If u is the mild solution of Inequality (4.1), then u will also be the mild solution of the following:

    (λ1Dv+λ2Dϱ)(D+λ3)u(ξ)=f(ξ,u(ξ))+Iωg(t,u(ξ))+ψ(ξ),t[0,1]x(0)=0,  x(0)=0,  CDβ00,ξu(1)=pi=110Dβiu(ξ)dui(s). (4.2)

    The mild solution of (4.2) is given by the following:

    u(ξ)=λ2λ1ξ0eλ3(ξs)Ivϱ1u(s)dsλ1λ3λ1ξ0eλ3(ξs)Ivϱu(s)ds+1λ1ξ0Iveλ3(ξs)f(s,u(s))ds+1λ1ξ0eλ3(ξs)Iv+ωg(s,u(s))ds+1λ1λ23Δ[λ2λ1pi=110ξ0eλ3(ξs)Ivϱβi1u(s)dsdui(s)+λ2λ3λ1pi=110ξ0eλ3(ξs)Ivβi1u(s)dsdui(s)1λ1pi=110ξ0eλ3(ξs)Ivβif(s,u(s))dsdui(s)1λ1pi=110ξ0eλ3(ξs)Ivβi+ωg(s,u(s))dsdui(s)][λ31+eλ3ξ]+λ1λ3(1eλ3ξ)+1λ1λ23Δ[λ2λ110eλ3(1s)Ivβ0ϱ1u(s)dsλ2λ3λ110eλ3(1s)Ivβ0ϱu(s)ds+1λ110eλ3(1s)Ivβ0f(s,u(s))ds+1λ10eλ3(1s)Ivβ0+ωg(s,u(s))ds][λ3ξ1+eλ3ξ]+λ21λ33Δ[(λ3)β0eλ3pi=110(λ3)βieλ3ξdui(ξ)][λ3ξ1+eλ3ξ]+1λ1ξ0eλ3(ξs)Ivψ(s))ds1λ1λ23Δ[1λ1pi=110ξ0eλ3(ξs)Ivβiψ(s)dsdui(s)][λ3ξ1+eλ3ξ]+1λ1λ23Δ[1λ110eλ3(1s)Ivβ0ψ(s)ds][λ3ξ1+eλ3ξ]. (4.3)

    Let the terms free of ψ be denoted by x(ξ); then,

    |u(ξ)x(ξ)|1|λ1|ξ0eλ3(ξs)Iv|ψ(s))|ds+1|λ1λ23Δ|[1λ1pi=110ξ0eλ3(ξs)Ivβi|ψ(s)|dsdui(s)][λ3ξ1eλ3ξ]+1|λ1λ23Δ|[1λ110eλ3(1s)Ivβ0|ψ(s)|ds][λ3ξ1eλ3ξ].ϵ[1|λ1|λ3Γ(v+1)(1eλ3)+1|λ1λ23Δ|[1|λ1|λ3pi=1(1eλ3χ)χvβiiΓ(vβi+1)][λ31+eλ3]+1|λ1λ23Δ|((1eλ3)|λ1|λ3Γ(vβ0+1))[λ31+eλ3]].

    Assume that,

    k0=[1|λ1|λ3Γ(v+1)(1eλ3)+1|λ1λ23Δ|[1|λ1|λ3pi=1(1eλ3χ)χvβiiΓ(vβi+1)][λ31+eλ3]+1|λ1λ23Δ|((1eλ3)|λ1|λ3Γ(vβ0+1))[λ31+eλ3]].

    In view of (ⅱ) of Remark 3.2, we have the following:

    |u(ξ)x(ξ)|k0ϵ,

    which is the desired result.

    In this section, we solve some examples using the obtained theorems.

    Example 5.1.

    {(6CD1.35+4CD1.1)(D+1)=e2ξ|x(ξ)|(t+5)2(1+|x(ξ)|)+I2sinξ|x(ξ)|(49+t),ξ[0.1],x(0)=0x(0)=0CDβ00,ξx(1)=2i=110Dβix(s)dxi(s), (5.1)

    where,

    p=2,v=1.35,ξ=1.1,ω=2,λ1=6,λ2=4,λ3=1,χ=0.1,β0=1.12,β1=1.2,β2=1.32,1=10,2=15.

    Since,

    f(ξ,x(ξ))=e2ξ|x(ξ)|(t+5)2(1+|x(ξ)|)andg(ξ,x(ξ))=sinξ|x(ξ)|(49+t).

    From assumptions (H1) and (H2), we have the following:

    |f(ξ,x(ξ))f(ξ,y(ξ))|e2ξ|xy|(t+5)2125|xy|,|g(ξ,x(ξ))g(ξ,y(ξ))|sinξ|xy|(49+t)17|xy|,

    where, L1=125, L2=17 and L=max{L1,L2}=17. Calculating Ω1 and Ω2 from the given data, we obtain Ω1=0.93461 and Ω2=0.136698. Additionally, Ω1+LΩ20.95414<1. Hence, the given problem (5.1) has a unique mild solution in C for ξ[0,1].

    Example 5.2.

    {(5CD1.75CD1.6)(D+2)x(ξ)=ξ2ξ3+17x(ξ)+I2cosξet+15x(ξ),ξ[0,1],x(0)=0x(0)=0,CDβ00,ξx(1)=2i=110Dβix(s)dxi(s), (5.2)

    where,

    λ1=5,λ2=1,λ3=2,χ=0.5,p=2,1=30,2=15,v=1.75,ξ=1.6,β0=1.24,β1=1.28,β2=1.32.

    Therefore,

    f(ξ,x(ξ))=ξ2ξ3+17x(ξ)and   g(ξ,x(ξ))=cosξet+15x(ξ).

    From assumption (H1) and (H2), we have

    |f(ξ,x(ξ))f(ξ,y(ξ))|ξ2ξ3+17|xy|117|xy|,|g(ξ,x(ξ))g(ξ,y(ξ))|cosξet+15|xy|116|xy|,

    where, L1=117, L2=116 and L=max{L1,L2}=116. Calculating Ω1 and Ω2 from the given data, we obtain Ω1=0.2188677, Ω2=0.324496. Additionally, Ω1+LΩ20.239415<1. Hence, the given problem (5.2) has a unique mild solution in C for t[0,1].

    The paper established sufficient conditions that showed the existence, uniqueness and Ulam's stability for the mild solutions of Problem (1.2). The conditions were obtained from the view of fixed point theorems. Furthermore, we demonstrated the obtained results using two examples. The multi-point boundary conditions can be used to describe the characteristics of chemical, physical or others processes occouring inside the domain. Thus, the obtained results can be fruitful in the mentioned processes. The Hyers-Ulam stability means that for any approximation in a specific region we will obtain an exact mild solution. Therefore, the obtained results of the Hyers-Ulam stability can be utilized in a numerical analysis and approximation theory of the related mentioned processes.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This research is supported by the Anhui Provincial Natural Science Foundation Project (KJ2021A1175) and Funding project for cultivating top-notch talents in universities (gxgnfx2022096).

    The authors declare no conflicts of interest.



    [1] S. Abbas, M. Benchohra, G. M. N'Guerekata, Topics in fractional differential equations, New York: Springer, 2012. https://doi.org/10.1007/978-1-4614-4036-9
    [2] B. Ahmad, A. Alsaedi, S. K. Ntouyas, J. Tariboon, Hadamard-type fractional differential equations, inclusions and inequalities, Springer, 2017. https://doi.org/10.1007/978-3-319-52141-1
    [3] B. Ahmad, J. J. Nieto, Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions, Bound. Value Probl., 2009 (2009), 708576. https://doi.org/10.1155/2009/708576 doi: 10.1155/2009/708576
    [4] B. Ahmad, J. J. Nieto, Existence of solutions for nonlocal boundary value problems of higher-order nonlinear fractional differential equations, Abstr. Appl. Anal., 2009 (2009), 494720. https://doi.org/10.1155/2009/494720 doi: 10.1155/2009/494720
    [5] B. Ahmad, R. P. Agarwal, M. Alblewi, A. Alsaedi, On Nonlinear multi-term fractional integro-differential equations with Anti-periodic boundary conditions, Prog. Fract. Differ. Appl., 8 (2022), 349–356. https://doi.org/10.18576/pfda/080301 doi: 10.18576/pfda/080301
    [6] M. Alqhtani, K. M. Owolabi, K. M. Saad, E. Pindza, Spatiotemporal chaos in spatially extended fractional dynamical systems, Commun. Nonlinear Sci., 119 (2023), 107118. https://doi.org/10.1016/j.cnsns.2023.107118 doi: 10.1016/j.cnsns.2023.107118
    [7] M. Alqhtani, K. M. Saad, Numerical solutions of space-fractional diffusion equations via the exponential decay kernel, AIMS Math., 7 (2022), 6535–6549. https://doi.org/10.3934/math.2022364 doi: 10.3934/math.2022364
    [8] D. Baleanu, J. A. T. Machado, A. C. J. Luo, Fractional dynamics and control, New York: Springer, 2011. https://doi.org/10.1007/978-1-4614-0457-6
    [9] M. Benchora, S. Hamani, J. Henderson, Functional differential inclusions with integral boundary conditions, Electron. J. Qual. Theory Differ. Equ., 15 (2007), 1–13. https://doi.org/10.14232/ejqtde.2007.1.15 doi: 10.14232/ejqtde.2007.1.15
    [10] M. Benchohra, S. Hamani, S. K. Ntouyas, Boundary value problems for differential equations with fractional order and nonlocal conditions, Nonlinear Anal. Theor., 71 (2009), 2391–2396. https://doi.org/10.1016/j.na.2009.01.073 doi: 10.1016/j.na.2009.01.073
    [11] T. A. Burton, T. Furumochi, Krasnoselskii's fixed point theorem and stability, Nonlinear Anal. Theor., 49 (2002), 445–454. https://doi.org/10.1016/S0362-546X(01)00111-0 doi: 10.1016/S0362-546X(01)00111-0
    [12] A. Carpinteri, F. Mainardi, Fractals and fractional calculus in continuum mechanics, Springer, 1997. https://doi.org/10.1007/978-3-7091-2664-6
    [13] M. Cichon, H. A. H. Salem, On the lack of equivalence between differential and integral forms of the Caputo-type fractional problems, J. Pseudo-Differ. Oper. Appl., 11 (2020), 1869–1895. https://doi.org/10.1007/s11868-020-00345-z doi: 10.1007/s11868-020-00345-z
    [14] K. Diethelm, The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type, Berlin: Springer, 2010. https://doi.org/10.1007/978-3-642-14574-2
    [15] H. Fallahgoul, S. Focardi, F. Fabozzi, Fractional calculus and fractional processes with applications to financial economics: Theory and application, Academic Press, 2016.
    [16] J. Graef, L. Kong, M. Wang, Existence and uniqueness of solutions for a fractional boundary value problem on a graph, Fract. Calc. Appl. Anal., 17 (2014), 499–510. https://doi.org/10.2478/s13540-014-0182-4 doi: 10.2478/s13540-014-0182-4
    [17] J. Henderson, R. Luca, Nonexistence of positive solutions for a system of coupled fractional boundary value problems, Boundary Value Probl., 2015 (2015), 138. https://doi.org/10.1186/s13661-015-0403-8 doi: 10.1186/s13661-015-0403-8
    [18] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci., 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222 doi: 10.1073/pnas.27.4.222
    [19] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
    [20] R. Magin, Fractional calculus in Bioengineering Begell House Publishers, 2006.
    [21] M. Obloza, Hyers stability of the linear differential equation, 1993.
    [22] H. A. H. Salem, M.Cichon, W. Shammakh, Generalized fractional calculus in Banach spaces and applications to existence results for boundary value problems, Bound. Value Probl., 2023 (2023), 57. https://doi.org/10.1186/s13661-023-01745-y doi: 10.1186/s13661-023-01745-y
    [23] H. A. H. Salem, M. Cichon, Analysis of tempered fractional calculus in H¨older and Orlicz spaces, Symmetry, 14 (2022), 1581. https://doi.org/10.3390/sym14081581 doi: 10.3390/sym14081581
    [24] H. M. Srivastava, K. M. Saad, W. M. Hamanah, Certain new models of the multi-space fractal-fractional Kuramoto-Sivashinsky and Korteweg-de Vries equations, Mathematics, 10 (2022), 1089. https://doi.org/10.3390/math10071089 doi: 10.3390/math10071089
    [25] S. M. Ulam, A collection of mathematical problems, 1960.
    [26] J. Vanterler da C. Sousa, E. Capelas de Oliveira, On the ψ-Hilfer fractional derivatives, Commun. Nonlinear Sci., 60 (2018), 72–91. https://doi.org/10.1016/j.cnsns.2018.01.005 doi: 10.1016/j.cnsns.2018.01.005
    [27] J. Vanterler da C. Sousa, D. Santos de Oliveira, E. Capelas de Oliveira, On the existence and stability for non-instantaneous impulsive fractional integrodifferential equation, Math. Method. Appl. Sci., 42 (2019), 1249–1261. https://doi.org/10.1002/mma.5430 doi: 10.1002/mma.5430
    [28] L. Vangipuram, L. Srinivasa, D. J. Vasundhara, Theory of fractional dynamic systems, 2009.
    [29] G. Wang, S. Liu, L. Zhang, Eigenvalue problem for nonlinear fractional differential equations with integral boundary conditions, Abstr. Appl. Anal., 2014 (2014), 916260. https://doi.org/10.1155/2014/916260 doi: 10.1155/2014/916260
    [30] R. L. Wheeden, Measure and Integral: An Introduction to Real Analysis, CRC Press, 2015.
    [31] A. Zada, M. Alam, U. Riaz, Analysis of q-fractional implicit boundary value problems having Stieltjes integral conditions, Math. Method. Appl. Sci., 44 (2021), 4381–4413. https://doi.org/10.1002/mma.7038 doi: 10.1002/mma.7038
    [32] A. Zada, S. Ali, T. Li, Analysis of a new class of impulsive implicit sequential fractional differential equations, Int. J. Nonlinear Sci. Num., 21 (2020), 571–587. https://doi.org/10.1515/ijnsns-2019-0030 doi: 10.1515/ijnsns-2019-0030
    [33] A. Zada, S. Ali, Stability of integral Caputo-type boundary value problem with noninstantaneous impulses, Int. J. Appl. Comput. Math., 5 (2019), 55. https://doi.org/10.1007/s40819-019-0640-0 doi: 10.1007/s40819-019-0640-0
    [34] A. Zada, W. Ali, C. Park, Ulam's type stability of higher order nonlinear delay differential equations via integral inequality of Gr¨onwall-Bellman-Bihari's type, Appl. Math. Comput., 350 (2019), 60–65. https://doi.org/10.1016/j.amc.2019.01.014 doi: 10.1016/j.amc.2019.01.014
    [35] A. Zada, S. O. Shah, Hyers-Ulam stability of first-order non-linear delay differential equations with fractional integrable impulses, Hacet. J. Math. Stat., 47 (2018), 1196–1205.
    [36] A. Zada, S. Shaleena, T. Li, Stability analysis of higher order nonlinear differential equations in β-normed spaces, Math. Method. Appl. Sci., 42 (2019), 1151–1166. https://doi.org/10.1002/mma.5419 doi: 10.1002/mma.5419
    [37] L. Zhang, B. Ahmadr, G. Wang, Successive iterations for positive extremal solutions of nonlinear fractional differential equations on a half-line, B. Aust. Math. Soc., 91 (2015), 116–128. https://doi.org/10.1017/S0004972714000550 doi: 10.1017/S0004972714000550
    [38] B. Zhang, R. Majeed, M. Alam, On fractional Langevin equations with stieltjes integral conditions, Mathematics, 10 (2022), 3877. https://doi.org/10.3390/math10203877 doi: 10.3390/math10203877
    [39] G. M. Zaslavsky, Hamiltonian chaos and fractional dynamics, Oxford University Press, 2005.
  • This article has been cited by:

    1. Salah Boulaaras, Sabarinathan Sriramulu, Selvam Arunachalam, Ali Allahem, Asma Alharbi, Taha Radwan, Chaos and stability analysis of the nonlinear fractional-order autonomous system, 2025, 118, 11100168, 278, 10.1016/j.aej.2025.01.060
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1488) PDF downloads(100) Cited by(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog