In this paper, by the Stampacchia method, we consider the boundedness of positive solutions to the following mixed local and nonlocal quasilinear elliptic operator
{−Δpu+(−Δ)spu=f(x)uγ,x∈Ω,u=0,x∈RN∖Ω,
where s∈(0,1), 1<p<N, f∈Lm(Ω) with m>Npp(s+p−1)−γ(N−sp), 0⩽γ<p∗s−1, p∗s=NpN−sp is the critical Sobolev exponent.
Citation: Xicuo Zha, Shuibo Huang, Qiaoyu Tian. Uniform boundedness results of solutions to mixed local and nonlocal elliptic operator[J]. AIMS Mathematics, 2023, 8(9): 20665-20678. doi: 10.3934/math.20231053
[1] | CaiDan LaMao, Shuibo Huang, Qiaoyu Tian, Canyun Huang . Regularity results of solutions to elliptic equations involving mixed local and nonlocal operators. AIMS Mathematics, 2022, 7(3): 4199-4210. doi: 10.3934/math.2022233 |
[2] | Xiangrui Li, Shuibo Huang, Meirong Wu, Canyun Huang . Existence of solutions to elliptic equation with mixed local and nonlocal operators. AIMS Mathematics, 2022, 7(7): 13313-13324. doi: 10.3934/math.2022735 |
[3] | Labudan Suonan, Yonglin Xu . Existence of solutions to mixed local and nonlocal anisotropic quasilinear singular elliptic equations. AIMS Mathematics, 2023, 8(10): 24862-24887. doi: 10.3934/math.20231268 |
[4] | Federico Cluni, Vittorio Gusella, Dimitri Mugnai, Edoardo Proietti Lippi, Patrizia Pucci . Modal characteristics and evolutive response of a bar in peridynamics involving a mixed operator. AIMS Mathematics, 2025, 10(4): 9435-9461. doi: 10.3934/math.2025436 |
[5] | Naveed Iqbal, Azmat Ullah Khan Niazi, Ikram Ullah Khan, Rasool Shah, Thongchai Botmart . Cauchy problem for non-autonomous fractional evolution equations with nonlocal conditions of order (1,2). AIMS Mathematics, 2022, 7(5): 8891-8913. doi: 10.3934/math.2022496 |
[6] | Bashir Ahmad, Manal Alnahdi, Sotiris K. Ntouyas, Ahmed Alsaedi . On a mixed nonlinear boundary value problem with the right Caputo fractional derivative and multipoint closed boundary conditions. AIMS Mathematics, 2023, 8(5): 11709-11726. doi: 10.3934/math.2023593 |
[7] | Jiaqing Hu, Xian Xu, Qiangqiang Yang . Bifurcation results of positive solutions for an elliptic equation with nonlocal terms. AIMS Mathematics, 2021, 6(9): 9547-9567. doi: 10.3934/math.2021555 |
[8] | Fang-Fang Liao, Shapour Heidarkhani, Shahin Moradi . Multiple solutions for nonlocal elliptic problems driven by p(x)-biharmonic operator. AIMS Mathematics, 2021, 6(4): 4156-4172. doi: 10.3934/math.2021246 |
[9] | Mengyu Wang, Xinmin Qu, Huiqin Lu . Ground state sign-changing solutions for fractional Laplacian equations with critical nonlinearity. AIMS Mathematics, 2021, 6(5): 5028-5039. doi: 10.3934/math.2021297 |
[10] | Zh. Myrzakulova, Z. Zakariyeva, K. Suleimenov, U. Uralbekova, K. Yesmakhanova . Explicit solutions of nonlocal reverse-time Hirota-Maxwell-Bloch system. AIMS Mathematics, 2024, 9(12): 35004-35015. doi: 10.3934/math.20241666 |
In this paper, by the Stampacchia method, we consider the boundedness of positive solutions to the following mixed local and nonlocal quasilinear elliptic operator
{−Δpu+(−Δ)spu=f(x)uγ,x∈Ω,u=0,x∈RN∖Ω,
where s∈(0,1), 1<p<N, f∈Lm(Ω) with m>Npp(s+p−1)−γ(N−sp), 0⩽γ<p∗s−1, p∗s=NpN−sp is the critical Sobolev exponent.
The main goal of this paper is consider the boundedness result of solutions to the following mixed local and nonlocal quasilinear elliptic problem
{−Δpu+(−Δ)spu=f(x)uγ,x∈Ω,u>0,x∈Ω,u=0,x∈RN∖Ω, | (1.1) |
where Ω⊂RN is a bounded Lipschitz domain, 1<p<N, s∈(0,1), 0⩽γ<p∗s−1, p∗s:=NpN−sp is the critical fractional Sobolev exponent. Δp=div(|∇u|p−2∇u) is the classical p-Laplacian, (−Δ)sp is the fractional p-Laplacian defined as, up to a multiplicative constant,
(−Δ)spu(x)=P.V.∫RN|u(x)−u(y)|p−2(u(x)−u(y))|x−y|N+psdy, |
P.V. stands for the Cauchy principal value. For the nonlocal case,
{(−Δ)su=f(x),x∈Ω,u>0,x∈Ω,u=0,x∈RN∖Ω. | (1.2) |
Leonori et al. [19, Theorem 13] proved the boundedness of energy solutions to problem (1.2) if f∈Lm(Ω) with m>N2s by two different methods: the Moser method and Stampacchia method. Dipierro et al.[11, Theorem 2.3] established an L∞ estimate for the solutions to the following problem with some general kind of growth assumptions:
(−Δ)su=f(x,u),x∈RN, | (1.3) |
where
|f(x,t)|⩽K∑i=1fi(x)|t|γi,γ1,⋯,γK∈[0,2∗s−1),f1,…,fK∈Lmi(RN,[0,+∞)),mi∈(m_i,+∞], |
and
m_i:={2∗s2∗s−2,γi∈[0,1],2∗s2∗s−1−γi,γi∈(1,2∗s−1). | (1.4) |
Servadei and Valdinoci [23, Proposition 9] used the argument a fractional version of the classical De Giorgi-Stampacchia iteration method, proved the boundedness of weak solutions to fractional boundary value problem
{(−Δ)su=f,x∈Ω,u=g,x∈RN∖Ω. |
Biroud [7, Theorem 2.9] obtained the boundedness of unique solutions to problem
{(−Δ)spu=f,x∈Ω,u>0,x∈Ω,u=0,x∈RN∖Ω, |
if f∈Lm(Ω) for some m⩾1, m>Nps. Moreover, there exists a constant C:=C(N,m,s)>0 such that,
‖w‖Lm∗∗s(Ω)⩽C‖f‖Lm(Ω), |
if
pN(p−1)N+ps=(p∗s)′⩽m<Nps, |
where
m∗∗s=(p−1)mNN−pms. |
Problems driven by mixed local and nonlocal have raised a certain interest in the last few years. When p=2, problem (1.1) reduced to
{−Δu+(−Δ)su=f(x)uγ,x∈Ω,u>0,x∈Ω,u=0,x∈RN∖Ω. | (1.5) |
Biagi et al. [3, Theorem 4.7] obtained the boundedness of solutions to problem (1.5) with γ=0 if f∈Lm(Ω) with m>N2. This results was improved by LaMao [17, Theorem 1.1] for m>Ns+1. Su et al. [24, Theorem 1.1] showed the L∞ boundedness of any weak solution (either not changing sign or sign-changing) to mixed local-nonlocal semilinear elliptic equations by the Moser iteration method. Arora and Rǎdulescu [2, Theorem 2.3], Huang and Hajaiej [16, Theorem 1.14] established the boundedness of solutions to problem (1.5) with γ<0.
Garain and Ukhlov [15, Theorem 2.16] obtained the boundedness of solutions to problem (1.1) with γ=0 and f∈Lm(Ω), where m>Np. Biagi et al. [5, Theorem 4.1 and Remark 4.2] obtained the boundedness of weak solutions to problem (1.1) provided the nonlinear term satisfies some suitable growth assumptions. Filippis and Mingione [12, Proposition 2.1] obtained the boundedness of the minimizers of the following functionals
F(w):=∫Ω[F(Dw)−fw]dx+∫RN∫RNΦ(w(x)−w(y))K(x,y)dxdy, | (1.6) |
provided
{q>Np,ifp⩽N,q=1,ifp>N, |
where the integrand F: RN→R is assumed to be C2(RN∖{0})∩C1(RN)-regular and to satisfy the following standard p-growth and coercivity assumptions
{Λ−1(|z|2+μ2)p/2⩽F(z)⩽Λ(|z|2+μ2)p/2,|∂zF(z)|+(|z|2+μ2)1/2|∂zzF(z)|⩽Λ(|z|2+μ2)(p−1)/2,Λ−1(|z|2+μ2)(p−2)/2|ξ|2⩽∂zzF(z)ξ⋅ξ, |
for all z∈RN∖{0}, ξ∈RN, where μ∈[0,1] and Λ⩾1 are fixed constants. The function Φ: R→R is assumed to satisfy
{Φ(⋅)∈C1(R), t↦Φ(t)is convex,Λ−1|t|γ⩽Φ(t)⩽Λ|t|γ,Λ−1|t|γ⩽Φ′(t)t⩽Λ|t|γ, |
for all t∈R. The kernel K: RN×RN→R satisfies
kΛ|x−y|N+sγ⩽K(x,y)⩽Λk|x−y|N+sγ,wherek∈(0,1] |
for all x,y∈RN,x≠y and p⩾sγ. Some other related results about mixed local and nonlocal elliptic operator see [4,6,8,9,10,13,14,18] and references therein.
Motivated by the results of the above cited papers, especially [11,17], the main purpose of this paper is to establishes the boundedness of solutions to problem (1.1).
Theorem 1.1. Assume that u∈Xp(Ω) is a weak solution to problem (1.1) (the definition of Xp(Ω) see (2.1) below). Then, u∈L∞(RN) provided 0⩽γ<p∗s−1 and f∈Lm(Ω) with m>m∗p, where
m∗p=p∗sp∗p∗sp∗−p∗s(p−1)−p∗(1+γ)=Npp(s+p−1)−γ(N−sp). | (1.7) |
Remark 1.2. According to Theorem 1.1, we know that, the weak solutions to problem (1.1) with γ=0 are bounded provided f∈Lm(Ω) with m>Np−1+s. This generalizes [17, Theorem 1.1] to mixed local and nonlocal elliptic operator −Δp+(−Δ)sp.
Corollary 1.3. Let u∈Xp(Ω) be a weak solution to problem
{−Δpu+(−Δ)spu=f(x,u(x)),x∈Ω,u>0,x∈Ω,u=0,x∈RN∖Ω, |
where |f(x,u(x))|⩽∑Ki=1fi(x)|u|γi, γi∈[0,p∗s−1), fi∈Lmi(Ω) with mi>m∗pi,i=1,2,⋯,K, where
m∗pi=p∗sp∗p∗sp∗−p∗s(p−1)−p∗(1+γi)=Npp(s+p−1)−γi(N−sp). | (1.8) |
Then, u∈L∞(Ω).
Remark 1.4. When p=2, (1.8) reduces to
m∗2i=2∗s2∗2∗s2∗−2∗s−2∗(1+γi)=2N2(s+1)−γi(N−2s). | (1.9) |
Obviously, m∗2i>m_i, where m_i is defined by (1.4). Therefore, Theorem 1.1 extends the corresponding results of [11, Theorem 2.3].
Corollary 1.5. Let u∈Xp(Ω) be a weak solution to
{−Δpu+(−Δ)spu=|x|α|u|γ,x∈Ω,u>0,x∈Ω,u=0,x∈RN∖Ω, | (1.10) |
where γ∈[0,p∗s−1) and
α>−Np∗sp∗−p∗s(p−1)−p∗(1+γ)p∗sp∗=−p(s+p−1)−γ(N−sp)p=γ(Np−s)−(s+p−1). |
Then, u∈L∞(RN).
Remark 1.6. Salort and Vecchi [22, Corollary 2.5] showed that the weak solution u to problem (1.10) belongs to L∞ if
α>max{0,γ(Np−1)−p}. |
By Corollary 1.5, we find u∈L∞(Ω) holds also for some α<0.
This paper is organized as follows: In Section 2, we give some preliminary lemmas. Finally, we prove Theorem 1.1 in Section 3.
In this section, we collect some notation and preliminary results which will be used in the rest of the paper. Firstly, we introduce the proper function spaces for problem (1.1).
For p∈(1,+∞). Let Ω⊂RN be a connected and bounded open set with C1-smooth boundary. Define
Xp={u∈W1,p(RN):u=0a.e. onRN∖Ω}, | (2.1) |
which is Banach space equipped with the norm
‖u‖Xp=(∫Ω|∇u|pdx)1p. |
Give a fractional parameter s∈(0,1) and p>1, the mixed local–nonlocal elliptic operator
Lu=−Δpu+(−Δ)spu |
is well define between Xp and its dual space X∗p and the following representation formula holds:
⟨Lu,v⟩=∫Ω|∇u|p−2∇u⋅∇vdx+∬ |
where
\begin{align*} \mathcal{D}(\Omega) = \mathbb{R}^{N} \times\mathbb{R}^{N}\setminus(\mathcal{C} \Omega\times\mathcal{C}\Omega),\; \; \mathcal{C} \Omega = \mathbb{R}^{N}\setminus\Omega. \end{align*} |
Definition 2.1. We say that u\in \mathbb{X}_{p} is a weak solution to problem (1.1) if
\begin{align*} \langle\mathcal{L}u, v\rangle = \int_{\Omega}f(x)|u|^{\gamma}v dx \end{align*} |
for all v\in \mathbb{X}_{p} .
Lemma 2.2. [21, Lemma 4.1] Let \psi : \mathbb{R^{+}}\rightarrow \mathbb{R} be a non-increasing function such that
\begin{align*} \psi(h)\leqslant\frac{M\psi(k)^{\delta}}{(h-k)^{\gamma}},\; \; \; \; \; \forall h > k > 0, \end{align*} |
where M > 0 , \delta > 1 and \gamma > 0 . Then \psi(d) = 0 , where
d^{\gamma} = M\psi(0)^{\delta-1}2^{\frac{\delta\gamma}{\delta-1}}. |
Lemma 2.3. [1, Lemma 2.5] For any a, b\in\mathbb{R} and k\geqslant0 , p\geqslant1 , define
\begin{align*} T_{k}(a) = \left\{\begin{array}{cc} a,&\mathit{{\text{if}}}\; \; \; |a|\leqslant k,\\ k\frac{a}{|a|},&\mathit{{\text{if}}}\; \; \; |a| > k, \end{array}\right. \end{align*} |
and
\begin{align*} G_{k}(a) = a-T_{k}(a). \end{align*} |
We have the algebraic inequalities
\begin{align*} |a-b|^{p-2}(a-b)\left(G_{k}(a)-G_{k}(b)\right)\geqslant \left|G_{k}(a)-G_{k}(b)\right|^{p}. \end{align*} |
Lemma 2.4. [20, Theorem 6.5] Let s\in(0, 1) , p\in[1, +\infty) be such that ps < N . Then there exists a positive constant C = C(N, p, s) such that, for any measurable and compactly supported function u : \mathbb{R}^{N}\to\mathbb{R} ,
\begin{align*} \|u\|^p_{L^{p^{*}_{s}}(\mathbb{R}^{N})}\leqslant C \iint_{\mathbb{R}^{2N}}\frac{|u(x)-u(y)|^{p}}{|x-y|^{N+ps}}dxdy. \end{align*} |
In this section, we give the proof of Theorem 1.1 by two methods
Proof of Theorem 1.1: the first method. Note that in this paper, we consider the positive solutions to problem (1.1). Therefore we can decompose \mathbb{R}^N as \mathbb{R}^N = A_{k}\cup A^{c}_{k} , where
\begin{align} &A_{k} = \{x\in \mathbb{R}^N:u(x)\geqslant k\},\\ &A^{c}_{k} = \{x\in \mathbb{R}^N:0 < u(x) < k\}. \end{align} | (3.1) |
Clearly, G_k(u(x)) = u(x)-k for x\in A_{k} and G_k(u(x)) = 0 for x\in A^{c}_{k} .
For any k > 0 , taking G_{k}(u) as test function in the definition of weak solution to problem (1.1), we have
\begin{align} &\int_{\Omega}|\nabla u(x)|^{p-2}\nabla u(x)\cdot\nabla G_k(u(x))dx +\iint_{\mathcal{D}(\Omega)}\frac{|u(x)-u(y)|^{p-2}[u(x)-u(y)][G_{k}(u(x))-G_{k}(u(y))]} {|x-y|^{N+ps}}dxdy\\ & = \int_{\Omega}f(x)G_{k}(u(x))u^{\gamma}dx, \end{align} | (3.2) |
where \mathcal{D}(\Omega) = \mathbb{R}^{N}\times\mathbb{R}^{N} \setminus(\mathcal{C}\Omega\times\mathcal{C}\Omega) .
Obviously,
\begin{align*} \int_{\Omega}|\nabla u(x)|^{p-2}\nabla u(x)\cdot\nabla G_k(u(x))dx\geqslant 0, \end{align*} |
which, together with (3.2), implies that
\begin{align} \iint_{\mathcal{D}(\Omega)}\frac{|u(x)-u(y)|^{p-2}[u(x)-u(y)][G_{k}(u(x))-G_{k}(u(y))]} {|x-y|^{N+ps}}dxdy\ \leqslant\int_{\Omega}f(x)G_{k}(u(x))u^{\gamma}dx. \end{align} | (3.3) |
According to Lemma 2.3, we have
\begin{align} |u(x)-u(y)|^{p-2}(u(x)-u(y))\left[G_{k}(u(x)) -G_{k}(u(y))\right] \geqslant\left|G_{k}(u(x))-G_{k}(u(y))\right|^{p},\ \ (x,y)\in \mathcal{D}(\Omega), \end{align} | (3.4) |
which, together with (3.3), imply that
\begin{align} \iint_{\mathcal{D}(\Omega)}\frac{|G_{k}(u(x)) -G_{k}(u(y))|^{p}}{|x-y|^{N+ps}}dxdy \leqslant \int_{\Omega}f(x)G_{k}(u(x))u^{\gamma}dx. \end{align} | (3.5) |
This fact, combined with Sobolev theorem (see Lemma 2.4) and Hölder inequality, leads to
\begin{align} \left\|G_{k}(u)\right\|^{p}_{L^{p^{*}_{s}}(\Omega)} \leqslant &C\iint_{D(\Omega)}\frac{|G_{k}(u(x))-G_{k} (u(y))|^{p}}{|x-y|^{N+ps}}dxdy\\ \leqslant&C\int_{\Omega} f(x)G_{k}(u(x))u^{\gamma}dx\\ \leqslant&C\|f\|_{L^m(\Omega)}\left\|G_{k}(u)\right\|_{L^{p^{*}_{s}}(\Omega)} \|u\|_{L^{p^{*}_{s}}(\Omega)}^{\gamma} |A_{k}|^{1-\frac{1}{m}-\frac{1+\gamma}{p^{*}_{s}}}, \end{align} | (3.6) |
where p^{*}_{s} = \frac{Np}{N-sp} . Here we have used the fact that G_{k}(u(x)) = 0 for x\in A_{k}^{c} , A_{k} and A_{k}^{c} are given by (3.1). Therefore,
\begin{align} \left\|G_{k}(u)\right\|_{L^{p^{*}_{s}}(\Omega)} \leqslant\mathcal{S}\|f\|_{L^m(\Omega)}^{\frac{1}{p-1}} \|u\|_{L^{p^{*}_{s}}}^{\frac{\gamma} {p-1}}|A_{k}|^{\frac{1-\frac{1}{m}-\frac{1+\gamma} {p^{*}_{s}}}{p-1}}. \end{align} | (3.7) |
Using u(x) = T_{k}(u(x))+G_{k}(u(x)) , we get
\begin{align} \begin{array}{ll} |u(x)-u(y)|^{p-2}(u(x)-u(y))\left(G_{k}(u(x))-G_{k}(u(y))\right)\\ = \left\{\begin{array}{ll} |u(x)-u(y)|^{p}, &(x,y)\in A_{k}\times A_{k}, \\ (u(x)-u(y))^{p-1}G_{k}(u(x)), &(x,y)\in A_{k}\times A^c_{k},\\ (u(y)-u(x))^{p-1}G_{k}(u(y)), &(x,y)\in A^c_{k}\times A_{k},\\ 0, &(x,y)\in A^c_{k}\times A^c_{k}, \end{array}\right. \geqslant 0. \end{array} \end{align} | (3.8) |
On the other hand, by \nabla u(x) = \nabla G_k(u(x)) for x\in A_{k} and \nabla u(x) = 0 for x\in A^c_{k} , we find
\begin{align} \int_{\Omega}\nabla u^{p-2} \nabla u \cdot\nabla G_k(u) dx = \int_{A_{k}}|\nabla G_k(u)|^p dx. \end{align} | (3.9) |
This fact, together with (3.2) and (3.8), lead to
\begin{align} \int_{A_{k}}|\nabla G_k(u)|^p dx\leqslant\int_{\Omega}f(x)G_{k}(u(x))u^{\gamma}dx. \end{align} | (3.10) |
Thus, taking into account (3.7) and (3.10), we obtain
\begin{align} \left\|G_{k}(u)\right\|^{p}_{L^{p^{*}}(A_{k})} \leqslant&\int_{A_{k}}|\nabla G_{k}(u)|^{p}dx\\ \leqslant&\int_{A_{k}}f(x)G_{k}(u(x))u^{\gamma}dx\\ \leqslant&\|f\|_{L^m(\Omega)}\left\|G_{k}(u) \right\|_{L^{p^{*}_{s}}(A_{k})}\|u\|_{L^{p_{s}^{*}}(\Omega)}^{\gamma} |A_{k}|^{1-\frac{1}{m}-\frac{1+\gamma}{p^{*}_{s}}}\\ \leqslant&\mathcal{S}\|f\|_{L^m(\Omega)}^{\frac{p}{p-1}} \|u\|_{L^{p^{*}_{s}}(\Omega)}^{\frac{p\gamma}{p-1}} |A_{k}|^{\frac{p\left(1-\frac{1}{m}-\frac{1+\gamma}{p^{*}_{s}}\right)}{p-1}}. \end{align} | (3.11) |
For every h > k we know that A_{h}\subset A_{k} and |G_{k}(u(x))|\chi_{A_{h}(x)}\geqslant(h-k) in \Omega . Therefore
\begin{align} (h-k)|A_{h}|^\frac{1}{p^{*}} \leqslant&\left(\int\limits_{A_{h}} |G_{k}(u)|^{p^{*}}\right)^{\frac{1}{{p^{*}}}}\\ \leqslant&\|f\|_{L^m(A_k)}^{\frac{1}{p-1}} \|u\|_{L^{p^{*}_{s}}(A_k)}^{\frac{\gamma}{(p-1)}} |A_{k}|^{\frac{1-\frac{1}{m}-\frac{1+\gamma}{p^{*}_{s}}}{p-1}}. \end{align} | (3.12) |
Therefore
\begin{align} |A_{h}|\leqslant\frac{ \|f\|_{L^m(A_k)}^{\frac{p^{*}}{p-1}} \|u\|_{L^{p^{*}_{s}}(A_k)}^{\frac{p^{*}\gamma}{(p-1)}} |A_{k}|^{\frac{p^{*}\left(1-\frac{1}{m}-\frac{1+\gamma} {p^{*}_{s}}\right)}{p-1}}} {(h-k)^{p^{*}}}. \end{align} | (3.13) |
Note that
\begin{align} \frac{p^{*}\left(1-\frac{1}{m}-\frac{1+\gamma} {p^{*}_{s}}\right)}{p-1} > 1, \end{align} | (3.14) |
if
\begin{align*} m > &\frac{p_{s}^{*}p^{*}}{p^{*}_{s}p^{*}- p_{s}^{*}(p-1)-p^{*}(1+\gamma)}\\ = &\frac{Np}{p(s+p-1)-\gamma(N-sp)}. \end{align*} |
Finally, by Lemma 2.2 with the choice \psi(u) = |A_u| , hence there exists k_0 such that \psi(k)\equiv0 for any k\geqslant k_0 . Therefore {\text{esssup}}_{\Omega} u\leqslant k_0 .
Proof of Theorem 1.1: the second method. In order to prove the desired bounded of u , we use a similarly argument of Stampacchia. We can certainly assume that u does not vanish identical else there is nothing to prove.
Now, let f\in L^{m}(\Omega) and \delta > 0 be a positive constant which be conveniently choose later. Define
\begin{align} \tilde{u}(x) = K\delta^{\frac{1}{p-1}}u(x), \end{align} | (3.15) |
where
\begin{align*} K = \frac{1}{\|u\|_{L^{p_{s}^{*}}\left(\Omega\right)} +\|f\|_{L^{m}\left(\Omega\right)}+\|u\|_{L^{p^{*}}\left(\Omega\right)}}. \end{align*} |
According to (1.1) and (3.15), we know that \tilde{u}(x) satisfies
\begin{align} \left\{\begin{array}{rl} -\Delta_{p}\tilde{u}+(-\Delta)_{p}^s\tilde{u} = \tilde{f}(x)\tilde{u}^{\gamma},&x\in\Omega,\\ \tilde{u} = 0,\; \; \; \; \; \; \; \; &x\in\mathbb{R}^{N}\backslash\Omega,\\ \end{array} \right. \end{align} | (3.16) |
and
\begin{align} \|\tilde{u}\|_{L^{p^{*}_{s}}(\Omega)}\leqslant\delta^{\frac{1}{p-1}},\quad \|\tilde{u}\|_{L^{p^{*}}(\Omega)}\leqslant\delta^{\frac{1}{p-1}}, \end{align} | (3.17) |
where
\begin{align} \tilde{f}(x) = K^{p-1-\gamma}\delta^{1-\frac{\gamma}{p-1}} f(x). \end{align} | (3.18) |
For every k\in\mathbb{N} , define B_{k} = 1-2^{-k} and
\begin{align*} w_{k}(x): = \left(\tilde{u}(x)-B_{k}\right)^{+} = \max\{0,\tilde{u}(x)-B_{k}\}, \quad x\in \mathbb{R}^{N},\ U_{k} = \left\|w_{k}\right\|_{L^{p^{*}_{s}}\left(\Omega\right)}^{p^{*}_{s}}. \end{align*} |
It is easy to see that w_{k}\in X^{*}_{\beta} and
\begin{align} w_{k+1}(x) \leqslant w_{k}(x),\; {\text{a.e.}}\; \; x\in \mathbb{R}^{N}. \end{align} | (3.19) |
Moreover,
\begin{align*} w_{k}(x) = \left(\tilde{u}(x)-B_{k}\right)^{+} = \left(\tilde{u}(x)-B_{k+1}+\frac{1}{2^{k+1}}\right)^{+} = \left(w_{k+1}+\frac{1}{2^{k+1}}\right)^{+}. \end{align*} |
By the definition of w_{k} , we find that
\begin{align} \left\{w_{k} > 0\right\}\subseteq\left\{w_{k-1} > \frac{1}{2^{k}}\right\} \end{align} | (3.20) |
and
\begin{align} 0 < \tilde{u}(x) < 2^{k+1}w_{k}(x),\ \forall x\in\left\{w_{k+1} > 0\right\}. \end{align} | (3.21) |
Obviously, (3.21) implies that
\begin{align} \delta^{\frac{1}{p-1}}u < K^{-1} 2^{k+1} w_{k},\ \forall x\in\left\{w_{k+1} > 0\right\}. \end{align} | (3.22) |
Taking w_{k} as a test function in (3.16), we obtain that
\begin{align} \int_{{\Omega}\cap\{\tilde{u} > B_{k}\}}|\nabla\tilde{u}|^{p-2}\nabla\tilde{u}\cdot \nabla w_{k} dx &+\iint_{\mathbb{R}^{2N}} \frac{|\tilde{u}(x)-\tilde{u}(y)|^{p-2} (\tilde{u}(x)-\tilde{u}(y))\left(w_{k}(x)-w_{k}(y)\right)} {|x-y|^{N+ps}}dxdy\\ & = \int_{{\Omega}\cap\{\tilde{u} > B_{k}\}}w_{k}(x) \tilde{f}(x)\tilde{u}^{\gamma}dx\\ & = K^{p-1} \delta\int_{{\Omega} \cap\{\tilde{u} > B_{k}\}}w_{k}(x)f(x)u^{\gamma}dx. \end{align} | (3.23) |
Note that, for
x\in{\Omega}\cap\{\tilde{u} > B_{k}\},\quad \tilde{u}(x) = w_{k}(x)+B_{k} |
and
|\nabla\tilde{u}|^{p-2}\nabla\tilde{u}\cdot \nabla w_{k} = \left|\nabla w_{k}\right|^{p}\geqslant0, |
it is easily seen that
\begin{align} \left|w_{k}(x)-w_{k}(y)\right|^{2} = &\left|\left(\tilde{u}(x)-B_{k}\right)^{+}- \left(\tilde{u}(y)-B_{k}\right)^{+})\right|^{2}\\ \leqslant&\left(\tilde{u}(x)-B_{k}\right)^{+}- \left(\tilde{u}(y)-B_{k}\right)^{+})(\tilde{u}(x)-\tilde{u}(y))\\ = &\left(w_{k}(x)-w_{k}(y)\right)(\tilde{u}(x)-\tilde{u}(y)). \end{align} | (3.24) |
This fact, together with (3.23), implies that
\begin{align} \left[w_{k}\right]_{s,p}^{p}& = \iint_{\mathbb{R}^{2N}} \frac{\left|w_{k}(x)-w_{k}(y)\right|^{p}}{|x-y|^{N+sp}}dxdy\\ &\leqslant\iint_{\mathbb{R}^{2N}}\frac{|\tilde{u}(x) -\tilde{u}(y)|^{p-2}(\tilde{u}(x)-\tilde{u}(y)) \left(w_{k}(x)-w_{k}(y)\right)}{|x-y|^{N+ps}}dxdy\\ &\leqslant K^{p-1} \delta\int_{{\Omega}\cap\{\tilde{u} > B_{k}\}}w_{k}fu^{\gamma}dx. \end{align} | (3.25) |
For the right hand of (3.25), using the Hölder inequality with exponents
\begin{align*} \left(m, \ \ p^{*}_{s}, \ \ \frac{p^{*}_{s}}{\gamma}, \ \ \frac{1}{\xi}\right), \end{align*} |
where
\begin{align*} \xi = 1-\frac{1}{m}-\frac{1+\gamma}{p^{*}_{s}}\in(0,1), \end{align*} |
we get
\begin{align} \int_{{\Omega}\cap\{\tilde{u} > B_{k}\}} fw_{k}u^{\gamma}dx \leqslant&\left[\int_{{\Omega}\cap\{\tilde{u} > B_{k}\}} f^{m}dx\right]^{\frac{1}{m}}\left[\int_{{\Omega}\cap\{\tilde{u} > B_{k}\}} w_{k}^{p^{*}_{s}}dx\right]^{\frac{1}{p^{*}_{s}}} \left[\int_{{\Omega}\cap\{\tilde{u} > B_{k}\}}|u|^{p^{*}_{s}}dx \right]^{\frac{\gamma}{p^{*}_{s}}} \left[\int_{{\Omega}\cap\{\tilde{u} > B_{k}\}}1d x\right]^{\xi}\\ \leqslant&\left\|f\right\|_{L^{m}\left(\Omega\right)} \|u\|_{L^{p^{*}_{s}} \left(\Omega\right)}^{\gamma}U_{k}^{\frac{1}{p^{*}_{s}}} \left|\left\{w_{k} > 0\right\}\right|^{\xi}. \end{align} | (3.26) |
By Lemma 2.4, (3.25) and (3.26), we get
\begin{align*} U_{k}^{\frac{p}{p^{*}_{s}}} &\leqslant\left[w_{k}\right]_{s,p}^{p}\leqslant K^{p-1} \delta\left\|f\right\|_{L^{m}\left(\Omega\right)} \|u\|_{L^{p^{*}_{s}} \left(\Omega\right)}^{\gamma}U_{k}^{\frac{1}{p^{*}_{s}}} \left|\left\{w_{k} > 0\right\}\right|^{\xi}, \end{align*} |
that is
\begin{align} U_{k} &\leqslant \widetilde{K} \left|\left\{w_{k} > 0\right\}\right|^{\frac{p^{*}_{s}\xi}{p-1}}, \end{align} | (3.27) |
where
\begin{align*} \widetilde{K}& = \left(K^{p-1}\delta\left\|f\right\|_{L^{m}\left(\Omega\right)} \|u\|_{L^{p^{*}_{s}} \left(\Omega\right)}^{\gamma}\right) ^{\frac{p^{*}_{s}}{p-1}}. \end{align*} |
On the other hand,
\begin{align} \int_{\Omega}|\nabla\tilde{u}(x)|^{p-2}\langle\nabla\tilde{u}(x), \nabla w_{k}(x)\rangle dx = &\int_{\Omega\cap\left\{\tilde{u} > B_{k}\right\}} |\nabla\tilde{u}(x)|^{p-2}\langle\nabla\tilde{u}(x), \nabla w_{k}(x)\rangle dx\\ +&\int_{\Omega\cap\left\{\tilde{u} < B_{k}\right\}} |\nabla\tilde{u}(x)|^{p-2}\langle\nabla\tilde{u}(x), \nabla w_{k}(x)\rangle dx\\ = &\int_{\Omega\cap\left\{\tilde{u} > B_{k}\right\}}\left|\nabla w_{k}(x)\right|^{p}dx, \end{align} | (3.28) |
here we used the fact that \nabla w_{k}(x) = 0 for any x\in\Omega\cap\left\{\tilde{u} < B_{k}\right\} .
Define
\begin{align*} V_{k-1} = \left\|w_{k-1}\right\|_{L^{p^{*}}\left(\Omega\right)}^{p^{*}}. \end{align*} |
By (3.20), we have
\begin{align*} V_{k-1} & = \left\|w_{k-1}\right\|_{L^{p^{*}}\left(\Omega\right)}^{p^{*}}\nonumber\\ &\geqslant\int_{\left\{w_{k-1} > \frac{1}{2^{k}}\right\}}w_{k-1}^{p^{*}}dx\nonumber\\ &\geqslant\frac{1}{2^{k p^{*}}}\left|\left\{w_{k-1} > \frac{1}{2^{k}}\right\}\right|\nonumber\\ &\geqslant\frac{1}{2^{k p^{*}}}\left|\left\{w_{k} > 0\right\}\right|, \end{align*} |
which leads to
\begin{align} \left|\left\{w_{k} > 0\right\}\right|^{\xi} \leqslant\left(2^{kp^{*}}V_{k-1}\right)^{\xi} \leqslant 2^{kp^{*}\xi} V_{k-1}^{\xi}. \end{align} | (3.29) |
Using the Sobolev inequality and (3.23), we find
\begin{align*} V_{k}^{\frac{p}{p^{*}}}&\leqslant C\int_{\Omega} \left|\nabla w_{k}\right|^{p}dx\\ &\leqslant CK^{p-1}\delta\int_{{\Omega}\cap\{w_{k} > 0\}} w_{k}fu^{\gamma}dx\nonumber\\ &\leqslant CK^{p-1}\delta\left\|f\right\|_{L^{m}\left(\Omega\right)} \|u\|_{L^{p^{*}_{s}} \left(\Omega\right)}^{\gamma}U_{k}^{\frac{1}{p^{*}_{s}}} \left|\left\{w_{k} > 0\right\}\right|^{\xi}\nonumber\\ & = \widetilde{T}U_{k}^{\frac{1}{p^{*}_{s}}} \left|\left\{w_{k} > 0\right\}\right|^{\xi}, \end{align*} |
where
\begin{align*} \widetilde{T} = CK^{p-1}\delta\left\|f\right\|_{L^{m}\left(\Omega\right)} \|u\|_{L^{p^{*}} \left(\Omega\right)}^{\gamma}. \end{align*} |
According to (3.27) and (3.29), we get
\begin{align} V_{k}^{\frac{p}{p^{*}}}&\leqslant \widetilde{T}U_{k}^{\frac{1}{p^{*}_{s}}} \left|\left\{w_{k} > 0\right\}\right|^{\xi}\\ &\leqslant \widetilde{T}\widetilde{K}^{\frac{1}{p^{*}_{s}}} \left(\left|\left\{w_{k} > 0\right\} \right|^{\frac{p^{*}_{s}\xi} {p-1}}\right)^{\frac{1}{p^{*}_{s}}} \left|\left\{w_{k} > 0\right\}\right|^{\xi}\\ &\leqslant \widetilde{T}\widetilde{K}^{\frac{1}{p^{*}_{s}}} 2^{kp^{*}(\frac{\xi} {p-1}+\xi)}V_{k-1}^{\frac{\xi} {p-1}+\xi}\\ & = \widetilde{H}V_{k-1}^{\frac{p\xi} {p-1}}, \end{align} | (3.30) |
Notice that m > m^*_{p} implies that
\begin{align} \frac{p}{p^{*}} < \frac{p\xi} {p-1}, \end{align} | (3.31) |
where m^*_{p} is defined as (1.7) and
\begin{align*} \widetilde{H} = \widetilde{T}\widetilde{K}^{\frac{1}{p^{*}_{s}}} 2^{kp^{*}(\frac{\xi} {p-1}+\xi)}. \end{align*} |
We observe that
\begin{align} V_{0} \leqslant\delta^{\frac{p^{*}}{p-1}}. \end{align} | (3.32) |
As a result, according to (3.32) and keeping in mind that \delta > 0 can be taken sufficiently small, we conclude that
\begin{align*} \lim\limits_{k\rightarrow +\infty}V_{k} = 0. \end{align*} |
Moreover, since 0\leqslant w_{k}\leqslant|\tilde{u}|\in L^{p^{*}} \left(\Omega\right) for any k\in\mathbb{N} and \lim_{k\rightarrow \infty}w_{k} = (\tilde{u}-1)^{+} a.e. in \mathbb{R}^{N} , by the dominated convergence theorem we get
\begin{align*} \lim\limits_{k\rightarrow \infty}V_{k} = \left\|(\tilde{u}-1)^{+} \right\|_{L^{p^{*}}\left(\Omega\right)}^{p^{*}} = 0 \end{align*} |
and therefore \tilde{u}\leqslant1 . a.e in \mathbb{R}^{N} . As a consequence, recalling (3.15), we conclude that
\begin{align*} u(x)\leqslant\frac{\|u\|_{L^{p^{*}_{s}}(\Omega)} +\|f\|_{L^{m}(\Omega)}+\|u\|_{L^{p^{*}}(\Omega)}}{\delta} \end{align*} |
with \delta\in(0, 1) .
The proof of Theorem 1.1 is now complete.
In this paper, we study the boundedness of positive solutions of the mixed local and nonlocal elliptic equation (Theorem1.1). To obtain this results, two different methods are used. The first one based on choosing appropriate test functions and the second one using an argument of Stampacchia. This results generalizes and complements the existing results.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This works was partially supported by Fundamental Research Funds for the Central Universities (No. 31920220067), Innovation Team Project of Northwest Minzu University (No. 1110130131) and First-Rate Discipline of Northwest Minzu University(No. 2019XJYLZY-02).
The authors declare no competing interests.\newpage
[1] |
B. Abdellaoui, A. Attar, R. Bentifour, On the fractional p-Laplacian equations with weight and general datum, Adv. Nonlinear Anal., 8 (2016), 144–174. https://doi.org/10.1515/anona-2016-0072 doi: 10.1515/anona-2016-0072
![]() |
[2] | R. Arora, V. D. Rǎdulescu, Combined effects in mixed local-nonlocal stationary problems, arXiv, 2021. https://doi.org/10.48550/arXiv.2111.06701 |
[3] |
S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, Mixed local and nonlocal elliptic operators: regularity and maximum principles, Commun. Partial Differ. Equations, 47 (2022), 585–629. https://doi.org/10.1080/03605302.2021.1998908 doi: 10.1080/03605302.2021.1998908
![]() |
[4] |
S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, A Faber-Krahn inequality for mixed local and nonlocal operators, J. Anal. Math., 2023. https://doi.org/10.1007/s11854-023-0272-5 doi: 10.1007/s11854-023-0272-5
![]() |
[5] |
S. Biagi, D. Mugnai, E. Vecchi, A Brezis-Oswald approach for mixed local and nonlocal operators, Commun. Contemp. Math., 2022. https://doi.org/10.1142/S0219199722500572 doi: 10.1142/S0219199722500572
![]() |
[6] |
S. Biagi, E. Vecchi, S. Dipierro, E. Valdinoci, Semilinear elliptic equations involving mixed local and nonlocal operators, Proc. R. Soc. Edinburgh Sect. A, 151 (2021), 1611–1641. https://doi.org/10.1017/prm.2020.75 doi: 10.1017/prm.2020.75
![]() |
[7] |
K. Biroud, Mixed local and nonlocal equation with singular nonlinearity having variable exponent, J. Pseudo Differ. Oper. Appl., 14 (2023), 13. https://doi.org/10.1007/s11868-023-00509-7 doi: 10.1007/s11868-023-00509-7
![]() |
[8] |
A. Biswas, M. Modasiya, A. Sen, Boundary regularity of mixed local-nonlocal operators and its application, Ann. Mat. Pura Appl., 202 (2023), 679–710. https://doi.org/10.1007/s10231-022-01256-0 doi: 10.1007/s10231-022-01256-0
![]() |
[9] |
S. S. Byun, D. Kumar, H. S. Lee, Global gradient estimates for the mixed local and nonlocal problems with measurable nonlinearities, arXiv, 2303. https://doi.org/10.48550/arXiv.2303.17259 doi: 10.48550/arXiv.2303.17259
![]() |
[10] |
S. Dipierro, E. P. Lippi, E. Valdinoci, Linear theory for a mixed operator with Neumann conditions, Asymptotic Anal., 128 (2022), 571–594. https://doi.org/10.3233/ASY-211718 doi: 10.3233/ASY-211718
![]() |
[11] |
S. Dipierro, M. Medina, I. Peral, E. Valdinoci, Bifurcation results for a fractional elliptic equation with critical exponent in \mathbb{R}^{N}, Manuscripta Math., 153 (2017), 183–230. https://doi.org/10.1007/s00229-016-0878-3 doi: 10.1007/s00229-016-0878-3
![]() |
[12] |
C. D. Filippis, G. Mingione, Gradient regularity in mixed local and nonlocal problems, Math. Ann., 2022. https://doi.org/10.1007/s00208-022-02512-7 doi: 10.1007/s00208-022-02512-7
![]() |
[13] |
P. Garain, J. Kinnunen, On the regularity theory for mixed local and nonlocal quasilinear elliptic equations, Trans. Amer. Math. Soc., 375 (2022), 5393–5423. https://doi.org/10.1090/tran/8621 doi: 10.1090/tran/8621
![]() |
[14] |
P. Garain, E. Lindgren, Higher Hölder regularity for mixed local and nonlocal degenerate elliptic equations, Calculus Var. Partial Differ. Equations, 62 (2023), 67. https://doi.org/10.1007/s00526-022-02401-6 doi: 10.1007/s00526-022-02401-6
![]() |
[15] |
P. Garain, A. Ukhlov, Mixed local and nonlocal Sobolev inequalities with extremal and associated quasilinear singular elliptic problems, Nonlinear Anal., 223 (2022), 113022. https://doi.org/10.1016/j.na.2022.113022 doi: 10.1016/j.na.2022.113022
![]() |
[16] |
S. Huang, H. Hajaiej, Lazer-McKenna type problem involving mixed local and nonlocal elliptic operators, Res. Gate, 2023. https://doi.org/10.13140/RG.2.2.13140.68481 doi: 10.13140/RG.2.2.13140.68481
![]() |
[17] |
C. LaMao, S. Huang, Q. Tian, C. Huang, Regularity results of solutions to elliptic equations involving mixed local and nonlocal operators, AIMS Math., 7 (2022), 4199–4210. https://doi.org/10.3934/math.2022233 doi: 10.3934/math.2022233
![]() |
[18] |
X. Li, S. Huang, M. Wu, C. Huang, Existence of solutions to elliptic equation with mixed local and nonlocal operators, AIMS Math., 7 (2022), 13313–13324. https://doi.org/10.3934/math.2022735 doi: 10.3934/math.2022735
![]() |
[19] |
T. Leonori, I. Peral, A. Primo, F. Soria, Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations, Discrete Contin. Dyn. Syst., 35 (2015), 6031–6068. https://doi.org/10.3934/dcds.2015.35.6031 doi: 10.3934/dcds.2015.35.6031
![]() |
[20] |
E. D. Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. https://doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004
![]() |
[21] |
G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier, 15 (1965), 189–257. https://doi.org/10.5802/aif.204 doi: 10.5802/aif.204
![]() |
[22] |
A. Salort, E. Vecchi, On the mixed local-nonlocal Hénon equation, Differ. Integr. Equations, 35 (2022), 795–818. https://doi.org/10.57262/die035-1112-795 doi: 10.57262/die035-1112-795
![]() |
[23] |
R. Servadei, E. Valdinoci, Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat., 58 (2014), 133–154. https://doi.org/10.5565/PUBLMAT-58114-06 doi: 10.5565/PUBLMAT-58114-06
![]() |
[24] |
X. Su, E. Valdinoci, Y. Wei, J. Zhang, Regularity results for solutions of mixed local and nonlocal elliptic equations, Math. Z., 302 (2022), 1855–1878. https://doi.org/10.1007/s00209-022-03132-2 doi: 10.1007/s00209-022-03132-2
![]() |
1. | Labudan Suonan, Yonglin Xu, Existence of solutions to mixed local and nonlocal anisotropic quasilinear singular elliptic equations, 2023, 8, 2473-6988, 24862, 10.3934/math.20231268 |