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Abstract: In this paper, by the Stampacchia method, we consider the boundedness of positive
solutions to the following mixed local and nonlocal quasilinear elliptic operator{

−∆pu + (−∆)s
pu = f (x)uγ, x ∈ Ω,
u = 0, x ∈ RN \Ω,

where s ∈ (0, 1), 1 < p < N, f ∈ Lm(Ω) with m > N p
p(s+p−1)−γ(N−sp) , 0 ⩽ γ < p∗s − 1, p∗s =

N p
N−sp is the

critical Sobolev exponent.
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1. Introduction

The main goal of this paper is consider the boundedness result of solutions to the following mixed
local and nonlocal quasilinear elliptic problem

−∆pu + (−∆)s
pu = f (x)uγ, x ∈ Ω,
u > 0, x ∈ Ω,
u = 0, x ∈ RN\Ω,

(1.1)

where Ω ⊂ RN is a bounded Lipschitz domain, 1 < p < N, s ∈ (0, 1), 0 ⩽ γ < p∗s − 1, p∗s := N p
N−sp is

the critical fractional Sobolev exponent. ∆p = div(|∇u|p−2∇u) is the classical p-Laplacian, (−∆)s
p is the

fractional p-Laplacian defined as, up to a multiplicative constant,

(−∆)s
pu(x) = P.V.

∫
RN

|u(x) − u(y)|p−2(u(x) − u(y))
|x − y|N+ps dy,
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P.V. stands for the Cauchy principal value. For the nonlocal case,
(−∆)su = f (x), x ∈ Ω,

u > 0, x ∈ Ω,
u = 0, x ∈ RN\Ω.

(1.2)

Leonori et al. [19, Theorem 13] proved the boundedness of energy solutions to problem (1.2) if
f ∈ Lm(Ω) with m > N

2s by two different methods: the Moser method and Stampacchia method.
Dipierro et al. [11, Theorem 2.3] established an L∞ estimate for the solutions to the following problem
with some general kind of growth assumptions:

(−∆)su = f (x, u), x ∈ RN , (1.3)

where

| f (x, t)| ⩽
K∑

i=1

fi(x)|t|γi , γ1, · · · , γK ∈
[
0, 2∗s − 1

)
,

f1, . . . , fK ∈ Lmi
(
RN , [0,+∞)

)
, mi ∈

(
mi,+∞

]
,

and

mi :=

 2∗s
2∗s−2 , γi ∈ [0, 1],

2∗s
2∗s−1−γi

, γi ∈
(
1, 2∗s − 1

)
.

(1.4)

Servadei and Valdinoci [23, Proposition 9] used the argument a fractional version of the classical De
Giorgi-Stampacchia iteration method, proved the boundedness of weak solutions to fractional
boundary value problem {

(−∆)su = f , x ∈ Ω,
u = g, x ∈ RN\Ω.

Biroud [7, Theorem 2.9] obtained the boundedness of unique solutions to problem
(−∆)s

pu = f , x ∈ Ω,
u > 0, x ∈ Ω,
u = 0, x ∈ RN\Ω,

if f ∈ Lm(Ω) for some m ⩾ 1, m > N
ps . Moreover, there exists a constant C := C(N,m, s) > 0 such that,

∥w∥Lm∗∗s (Ω) ⩽ C∥ f ∥Lm(Ω),

if
pN

(p − 1)N + ps
= (p∗s)

′ ⩽ m <
N
ps
,

where
m∗∗s =

(p − 1)mN
N − pms

.
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Problems driven by mixed local and nonlocal have raised a certain interest in the last few years.
When p = 2, problem (1.1) reduced to

−∆u + (−∆)su = f (x)uγ, x ∈ Ω,
u > 0, x ∈ Ω,
u = 0, x ∈ RN\Ω.

(1.5)

Biagi et al. [3, Theorem 4.7] obtained the boundedness of solutions to problem (1.5) with γ = 0 if
f ∈ Lm(Ω) with m > N

2 . This results was improved by LaMao [17, Theorem 1.1] for m > N
s+1 .

Su et al. [24, Theorem 1.1] showed the L∞ boundedness of any weak solution (either not changing
sign or sign-changing) to mixed local-nonlocal semilinear elliptic equations by the Moser iteration
method. Arora and Rădulescu [2, Theorem 2.3], Huang and Hajaiej [16, Theorem 1.14] established
the boundedness of solutions to problem (1.5) with γ < 0.

Garain and Ukhlov [15, Theorem 2.16] obtained the boundedness of solutions to problem (1.1)
with γ = 0 and f ∈ Lm(Ω), where m > N

p . Biagi et al. [5, Theorem 4.1 and Remark 4.2] obtained the
boundedness of weak solutions to problem (1.1) provided the nonlinear term satisfies some suitable
growth assumptions. Filippis and Mingione [12, Proposition 2.1] obtained the boundedness of the
minimizers of the following functionals

F (w) :=
∫
Ω

[F(Dw) − f w]dx +
∫
RN

∫
RN
Φ(w(x) − w(y))K(x, y)dx dy, (1.6)

provided q > N
p , if p ⩽ N,

q = 1, if p > N,

where the integrand F: RN → R is assumed to be C2
(
RN\{0}

)
∩ C1

(
RN

)
-regular and to satisfy the

following standard p-growth and coercivity assumptions
Λ−1

(
|z|2 + µ2

)p/2
⩽ F(z) ⩽ Λ

(
|z|2 + µ2

)p/2
,

|∂zF(z)| +
(
|z|2 + µ2

)1/2
|∂zzF(z)| ⩽ Λ

(
|z|2 + µ2

)(p−1)/2
,

Λ−1
(
|z|2 + µ2

)(p−2)/2
|ξ|2 ⩽ ∂zzF(z)ξ · ξ,

for all z ∈ RN\{0}, ξ ∈ RN , where µ ∈ [0, 1] and Λ ⩾ 1 are fixed constants. The function Φ: R → R is
assumed to satisfy {

Φ(·) ∈ C1(R), t 7→ Φ(t)is convex,
Λ−1|t|γ ⩽ Φ(t) ⩽ Λ|t|γ, Λ−1|t|γ ⩽ Φ′(t)t ⩽ Λ|t|γ,

for all t ∈ R. The kernel K: RN × RN → R satisfies
k

Λ|x − y|N+sγ ⩽ K(x, y) ⩽
Λk

|x − y|N+sγ , where k ∈ (0, 1]

for all x, y ∈ RN , x , y and p ⩾ sγ. Some other related results about mixed local and nonlocal elliptic
operator see [4, 6, 8–10, 13, 14, 18] and references therein.

Motivated by the results of the above cited papers, especially [11, 17], the main purpose of this
paper is to establishes the boundedness of solutions to problem (1.1).
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Theorem 1.1. Assume that u ∈ Xp(Ω) is a weak solution to problem (1.1) (the definition of Xp(Ω)
see (2.1) below). Then, u ∈ L∞(RN) provided 0 ⩽ γ < p∗s − 1 and f ∈ Lm(Ω) with m > m∗p, where

m∗p =
p∗s p∗

p∗s p∗ − p∗s(p − 1) − p∗(1 + γ)

=
N p

p(s + p − 1) − γ(N − sp)
. (1.7)

Remark 1.2. According to Theorem 1.1, we know that, the weak solutions to problem (1.1) with γ = 0
are bounded provided f ∈ Lm(Ω) with m > N

p−1+s . This generalizes [17, Theorem 1.1] to mixed local
and nonlocal elliptic operator −∆p + (−∆)s

p.

Corollary 1.3. Let u ∈ Xp(Ω) be a weak solution to problem
−∆pu + (−∆)s

pu = f (x, u(x)), x ∈ Ω,
u > 0, x ∈ Ω,
u = 0, x ∈ RN\Ω,

where | f (x, u(x))| ⩽
∑K

i=1 fi(x)|u|γi , γi ∈
[
0, p∗s − 1

)
, fi ∈ Lmi(Ω) with mi > m∗pi, i = 1, 2, · · · ,K, where

m∗pi =
p∗s p∗

p∗s p∗ − p∗s(p − 1) − p∗(1 + γi)

=
N p

p(s + p − 1) − γi(N − sp)
. (1.8)

Then, u ∈ L∞(Ω).

Remark 1.4. When p = 2, (1.8) reduces to

m∗2i =
2∗s2

∗

2∗s2∗ − 2∗s − 2∗(1 + γi)

=
2N

2(s + 1) − γi(N − 2s)
. (1.9)

Obviously, m∗2i > mi, where mi is defined by (1.4). Therefore, Theorem 1.1 extends the corresponding
results of [11, Theorem 2.3].

Corollary 1.5. Let u ∈ Xp(Ω) be a weak solution to
−∆pu + (−∆)s

pu = |x|α|u|γ, x ∈ Ω,
u > 0, x ∈ Ω,
u = 0, x ∈ RN\Ω,

(1.10)

where γ ∈
[
0, p∗s − 1

)
and

α > −
N p∗s p∗ − p∗s(p − 1) − p∗(1 + γ)

p∗s p∗

= −
p(s + p − 1) − γ(N − sp)

p

=γ

(
N
p
− s

)
− (s + p − 1).

Then, u ∈ L∞(RN).
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Remark 1.6. Salort and Vecchi [22, Corollary 2.5] showed that the weak solution u to problem (1.10)
belongs to L∞ if

α > max
{

0, γ
(

N
p
− 1

)
− p

}
.

By Corollary 1.5, we find u ∈ L∞(Ω) holds also for some α < 0.
This paper is organized as follows: In Section 2, we give some preliminary lemmas. Finally, we

prove Theorem 1.1 in Section 3.

2. Preparations

In this section, we collect some notation and preliminary results which will be used in the rest of
the paper. Firstly, we introduce the proper function spaces for problem (1.1).

For p ∈ (1,+∞). Let Ω ⊂ RN be a connected and bounded open set with C1-smooth boundary.
Define

Xp = {u ∈ W1,p(RN) : u = 0 a.e. on RN \Ω}, (2.1)

which is Banach space equipped with the norm

∥u∥Xp =

(∫
Ω

|∇u|pdx
) 1

p

.

Give a fractional parameter s ∈ (0, 1) and p > 1, the mixed local–nonlocal elliptic operator

Lu = −∆pu + (−∆)s
pu

is well define between Xp and its dual space X∗p and the following representation formula holds:

⟨Lu, v⟩ =
∫
Ω

|∇u|p−2∇u · ∇vdx

+

"
D(Ω)

|u(x) − u(y)|p−2(u(x) − u(y))(v(x) − v(y))
|x − y|N+sp dxdy, v ∈ Xp,

where

D(Ω) = RN × RN \ (CΩ × CΩ), CΩ = RN \Ω.

Definition 2.1. We say that u ∈ Xp is a weak solution to problem (1.1) if

⟨Lu, v⟩ =
∫
Ω

f (x)|u|γvdx

for all v ∈ Xp.

Lemma 2.2. [21, Lemma 4.1] Let ψ: R+ → R be a non-increasing function such that

ψ(h) ⩽
Mψ(k)δ

(h − k)γ
, ∀h > k > 0,

where M > 0, δ > 1 and γ > 0. Then ψ(d) = 0, where

dγ = Mψ(0)δ−12
δγ
δ−1 .
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Lemma 2.3. [1, Lemma 2.5] For any a, b ∈ R and k ⩾ 0, p ⩾ 1, define

Tk(a) =
{

a, if |a| ⩽ k,
k a
|a| , if |a| > k,

and

Gk(a) = a − Tk(a).

We have the algebraic inequalities

|a − b|p−2(a − b) (Gk(a) −Gk(b)) ⩾ |Gk(a) −Gk(b)|p .

Lemma 2.4. [20, Theorem 6.5] Let s ∈ (0, 1), p ∈ [1,+∞) be such that ps < N. Then there exists a
positive constant C = C(N, p, s) such that, for any measurable and compactly supported function u:
RN → R,

∥u∥p
Lp∗s (RN )

⩽ C
"
R2N

|u(x) − u(y)|p

|x − y|N+ps dxdy.

3. Proof of Theorem 1.1

In this section, we give the proof of Theorem 1.1 by two methods

Proof of Theorem 1.1: the first method. Note that in this paper, we consider the positive solutions to
problem (1.1). Therefore we can decompose RN as RN = Ak ∪ Ac

k, where

Ak = {x ∈ RN : u(x) ⩾ k},

Ac
k = {x ∈ R

N : 0 < u(x) < k}. (3.1)

Clearly, Gk(u(x)) = u(x) − k for x ∈ Ak and Gk(u(x)) = 0 for x ∈ Ac
k.

For any k > 0, taking Gk(u) as test function in the definition of weak solution to problem (1.1), we
have∫

Ω

|∇u(x)|p−2∇u(x) · ∇Gk(u(x))dx +
"
D(Ω)

|u(x) − u(y)|p−2[u(x) − u(y)][Gk(u(x)) −Gk(u(y))]
|x − y|N+ps dxdy

=

∫
Ω

f (x)Gk(u(x))uγdx, (3.2)

whereD(Ω) = RN × RN \ (CΩ × CΩ).
Obviously, ∫

Ω

|∇u(x)|p−2∇u(x) · ∇Gk(u(x))dx ⩾ 0,

which, together with (3.2), implies that"
D(Ω)

|u(x) − u(y)|p−2[u(x) − u(y)][Gk(u(x)) −Gk(u(y))]
|x − y|N+ps dxdy ⩽

∫
Ω

f (x)Gk(u(x))uγdx. (3.3)
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According to Lemma 2.3, we have

|u(x) − u(y)|p−2(u(x) − u(y))
[
Gk(u(x)) −Gk(u(y))

]
⩾ |Gk(u(x)) −Gk(u(y))|p , (x, y) ∈ D(Ω), (3.4)

which, together with (3.3), imply that"
D(Ω)

|Gk(u(x)) −Gk(u(y))|p

|x − y|N+ps dxdy ⩽
∫
Ω

f (x)Gk(u(x))uγdx. (3.5)

This fact, combined with Sobolev theorem (see Lemma 2.4) and Hölder inequality, leads to

∥Gk(u)∥p
Lp∗s (Ω)

⩽C
"

D(Ω)

|Gk(u(x)) −Gk(u(y))|p

|x − y|N+ps dxdy

⩽C
∫
Ω

f (x)Gk(u(x))uγdx

⩽C∥ f ∥Lm(Ω) ∥Gk(u)∥Lp∗s (Ω) ∥u∥
γ

Lp∗s (Ω)
|Ak|

1− 1
m−

1+γ
p∗s , (3.6)

where p∗s =
N p

N−sp . Here we have used the fact that Gk(u(x)) = 0 for x ∈ Ac
k, Ak and Ac

k are given by (3.1).
Therefore,

∥Gk(u)∥Lp∗s (Ω) ⩽ S∥ f ∥
1

p−1

Lm(Ω)∥u∥
γ

p−1

Lp∗s
|Ak|

1− 1
m −

1+γ
p∗s

p−1 . (3.7)

Using u(x) = Tk(u(x)) +Gk(u(x)), we get

|u(x) − u(y)|p−2(u(x) − u(y)) (Gk(u(x)) −Gk(u(y)))

=


|u(x) − u(y)|p, (x, y) ∈ Ak × Ak,

(u(x) − u(y))p−1Gk(u(x)), (x, y) ∈ Ak × Ac
k,

(u(y) − u(x))p−1Gk(u(y)), (x, y) ∈ Ac
k × Ak,

0, (x, y) ∈ Ac
k × Ac

k,

⩾ 0.
(3.8)

On the other hand, by ∇u(x) = ∇Gk(u(x)) for x ∈ Ak and ∇u(x) = 0 for x ∈ Ac
k, we find∫

Ω

∇up−2∇u · ∇Gk(u)dx =
∫

Ak

|∇Gk(u)|pdx. (3.9)

This fact, together with (3.2) and (3.8), lead to∫
Ak

|∇Gk(u)|pdx ⩽
∫
Ω

f (x)Gk(u(x))uγdx. (3.10)

Thus, taking into account (3.7) and (3.10), we obtain

∥Gk(u)∥p
Lp∗ (Ak)

⩽

∫
Ak

|∇Gk(u)|pdx

⩽

∫
Ak

f (x)Gk(u(x))uγdx
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⩽∥ f ∥Lm(Ω) ∥Gk(u)∥Lp∗s (Ak) ∥u∥
γ

Lp∗s (Ω)
|Ak|

1− 1
m−

1+γ
p∗s

⩽S∥ f ∥
p

p−1

Lm(Ω)∥u∥
pγ

p−1

Lp∗s (Ω)
|Ak|

p
(
1− 1

m −
1+γ
p∗s

)
p−1 . (3.11)

For every h > k we know that Ah ⊂ Ak and |Gk(u(x))|χAh(x) ⩾ (h − k) in Ω. Therefore

(h − k)|Ah|
1
p∗ ⩽


∫
Ah

|Gk(u)|p
∗


1
p∗

⩽∥ f ∥
1

p−1

Lm(Ak)∥u∥
γ

(p−1)

Lp∗s (Ak)
|Ak|

1− 1
m −

1+γ
p∗s

p−1 . (3.12)

Therefore

|Ah| ⩽
∥ f ∥

p∗
p−1

Lm(Ak)∥u∥
p∗γ

(p−1)

Lp∗s (Ak)
|Ak|

p∗
(
1− 1

m −
1+γ
p∗s

)
p−1

(h − k)p∗ . (3.13)

Note that

p∗
(
1 − 1

m −
1+γ
p∗s

)
p − 1

> 1, (3.14)

if

m >
p∗s p∗

p∗s p∗ − p∗s(p − 1) − p∗(1 + γ)

=
N p

p(s + p − 1) − γ(N − sp)
.

Finally, by Lemma 2.2 with the choice ψ(u) = |Au|, hence there exists k0 such that ψ(k) ≡ 0 for any
k ⩾ k0. Therefore esssupΩu ⩽ k0. □

Proof of Theorem 1.1: the second method. In order to prove the desired bounded of u, we use a
similarly argument of Stampacchia. We can certainly assume that u does not vanish identical else
there is nothing to prove.

Now, let f ∈ Lm(Ω) and δ > 0 be a positive constant which be conveniently choose later. Define

ũ(x) = Kδ
1

p−1 u(x), (3.15)

where

K =
1

∥u∥Lp∗s (Ω) + ∥ f ∥Lm(Ω) + ∥u∥Lp∗ (Ω)
.

According to (1.1) and (3.15), we know that ũ(x) satisfies{
−∆pũ + (−∆)s

pũ = f̃ (x)ũγ, x ∈ Ω,
ũ = 0, x ∈ RN\Ω,

(3.16)
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and

∥ũ∥Lp∗s (Ω) ⩽ δ
1

p−1 , ∥ũ∥Lp∗ (Ω) ⩽ δ
1

p−1 , (3.17)

where

f̃ (x) = K p−1−γδ1− γ
p−1 f (x). (3.18)

For every k ∈ N, define Bk = 1 − 2−k and

wk(x) := (ũ(x) − Bk)+ = max{0, ũ(x) − Bk}, x ∈ RN , Uk = ∥wk∥
p∗s
Lp∗s (Ω)

.

It is easy to see that wk ∈ X∗β and

wk+1(x) ⩽ wk(x), a.e. x ∈ RN . (3.19)

Moreover,

wk(x) = (ũ(x) − Bk)+ =
(
ũ(x) − Bk+1 +

1
2k+1

)+
=

(
wk+1 +

1
2k+1

)+
.

By the definition of wk, we find that

{wk > 0} ⊆
{

wk−1 >
1
2k

}
(3.20)

and
0 < ũ(x) < 2k+1wk(x), ∀x ∈ {wk+1 > 0} . (3.21)

Obviously, (3.21) implies that

δ
1

p−1 u < K−12k+1wk, ∀x ∈ {wk+1 > 0} . (3.22)

Taking wk as a test function in (3.16), we obtain that∫
Ω∩{ũ>Bk}

|∇ũ|p−2∇ũ · ∇wkdx +
"
R2N

|ũ(x) − ũ(y)|p−2(ũ(x) − ũ(y)) (wk(x) − wk(y))
|x − y|N+ps dxdy

=

∫
Ω∩{ũ>Bk}

wk(x) f̃ (x)ũγdx

= K p−1δ

∫
Ω∩{ũ>Bk}

wk(x) f (x)uγdx. (3.23)

Note that, for
x ∈ Ω ∩ {ũ > Bk}, ũ(x) = wk(x) + Bk

and
|∇ũ|p−2∇ũ · ∇wk = |∇wk|

p ⩾ 0,

it is easily seen that

|wk(x) − wk(y)|2 =
∣∣∣(ũ(x) − Bk)+ − (ũ(y) − Bk)+)

∣∣∣2
⩽ (ũ(x) − Bk)+ − (ũ(y) − Bk)+)(ũ(x) − ũ(y))
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= (wk(x) − wk(y)) (ũ(x) − ũ(y)). (3.24)

This fact, together with (3.23), implies that

[wk]p
s,p =

"
R2N

|wk(x) − wk(y)|p

|x − y|N+sp dxdy

⩽

"
R2N

|ũ(x) − ũ(y)|p−2(ũ(x) − ũ(y)) (wk(x) − wk(y))
|x − y|N+ps dxdy

⩽ K p−1δ

∫
Ω∩{ũ>Bk}

wk f uγdx. (3.25)

For the right hand of (3.25), using the Hölder inequality with exponents(
m, p∗s,

p∗s
γ
,

1
ξ

)
,

where

ξ = 1 −
1
m
−

1 + γ
p∗s
∈ (0, 1),

we get∫
Ω∩{ũ>Bk}

f wkuγdx ⩽
[∫
Ω∩{ũ>Bk}

f mdx
] 1

m
[∫
Ω∩{ũ>Bk}

wp∗s
k dx

] 1
p∗s

[∫
Ω∩{ũ>Bk}

|u|p
∗
s dx

] γ

p∗s
[∫
Ω∩{ũ>Bk}

1dx
]ξ

⩽ ∥ f ∥Lm(Ω) ∥u∥
γ

Lp∗s (Ω)
U

1
p∗s

k |{wk > 0}|ξ . (3.26)

By Lemma 2.4, (3.25) and (3.26), we get

U
p

p∗s
k ⩽ [wk]p

s,p ⩽ K p−1δ ∥ f ∥Lm(Ω) ∥u∥
γ

Lp∗s (Ω)
U

1
p∗s

k |{wk > 0}|ξ ,

that is

Uk ⩽ K̃ |{wk > 0}|
p∗sξ
p−1 , (3.27)

where

K̃ =
(
K p−1δ ∥ f ∥Lm(Ω) ∥u∥

γ

Lp∗s (Ω)

) p∗s
p−1
.

On the other hand,∫
Ω

|∇ũ(x)|p−2 ⟨∇ũ(x),∇wk(x)⟩ dx =
∫
Ω∩{ũ>Bk}

|∇ũ(x)|p−2 ⟨∇ũ(x),∇wk(x)⟩ dx

+

∫
Ω∩{ũ<Bk}

|∇ũ(x)|p−2 ⟨∇ũ(x),∇wk(x)⟩ dx

=

∫
Ω∩{ũ>Bk}

|∇wk(x)|p dx, (3.28)
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here we used the fact that ∇wk(x) = 0 for any x ∈ Ω ∩ {ũ < Bk}.
Define

Vk−1 = ∥wk−1∥
p∗

Lp∗ (Ω)
.

By (3.20), we have

Vk−1 = ∥wk−1∥
p∗

Lp∗ (Ω)

⩾

∫
{
wk−1>

1
2k

} wp∗

k−1dx

⩾
1

2kp∗

∣∣∣∣∣∣
{

wk−1 >
1
2k

}∣∣∣∣∣∣
⩾

1
2kp∗ |{wk > 0}| ,

which leads to

|{wk > 0}|ξ ⩽
(
2kp∗Vk−1

)ξ
⩽ 2kp∗ξVξ

k−1. (3.29)

Using the Sobolev inequality and (3.23), we find

V
p

p∗

k ⩽ C
∫
Ω

|∇wk|
p dx

⩽ CK p−1δ

∫
Ω∩{wk>0}

wk f uγdx

⩽ CK p−1δ ∥ f ∥Lm(Ω) ∥u∥
γ

Lp∗s (Ω)
U

1
p∗s

k |{wk > 0}|ξ

= T̃U
1
p∗s

k |{wk > 0}|ξ ,

where
T̃ = CK p−1δ ∥ f ∥Lm(Ω) ∥u∥

γ

Lp∗ (Ω)
.

According to (3.27) and (3.29), we get

V
p

p∗

k ⩽ T̃U
1
p∗s

k |{wk > 0}|ξ

⩽ T̃ K̃
1
p∗s

(
|{wk > 0}|

p∗sξ
p−1

) 1
p∗s
|{wk > 0}|ξ

⩽ T̃ K̃
1
p∗s 2kp∗( ξ

p−1+ξ)V
ξ

p−1+ξ

k−1

= H̃V
pξ

p−1

k−1 , (3.30)

Notice that m > m∗p implies that

p
p∗
<

pξ
p − 1

, (3.31)
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where m∗p is defined as (1.7) and

H̃ = T̃ K̃
1
p∗s 2kp∗( ξ

p−1+ξ).

We observe that
V0 ⩽ δ

p∗
p−1 . (3.32)

As a result, according to (3.32) and keeping in mind that δ > 0 can be taken sufficiently small, we
conclude that

lim
k→+∞

Vk = 0.

Moreover, since 0 ⩽ wk ⩽ |ũ| ∈ Lp∗ (Ω) for any k ∈ N and limk→∞ wk = (ũ − 1)+ a.e. in RN , by the
dominated convergence theorem we get

lim
k→∞

Vk =
∥∥∥(ũ − 1)+

∥∥∥p∗

Lp∗ (Ω) = 0

and therefore ũ ⩽ 1. a.e in RN . As a consequence, recalling (3.15), we conclude that

u(x) ⩽
∥u∥Lp∗s (Ω) + ∥ f ∥Lm(Ω) + ∥u∥Lp∗ (Ω)

δ

with δ ∈ (0, 1).
The proof of Theorem 1.1 is now complete. □

4. Conclusions

In this paper , we study the boundedness of positive solutions of the mixed local and nonlocal
elliptic equation (Theorem1.1). To obtain this results, two different methods are used. The first one
based on choosing appropriate test functions and the second one using an argument of Stampacchia.
This results generalizes and complements the existing results.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This works was partially supported by Fundamental Research Funds for the Central Universities
(No. 31920220067), Innovation Team Project of Northwest Minzu University (No. 1110130131) and
First-Rate Discipline of Northwest Minzu University(No. 2019XJYLZY-02).

Conflict of interest

The authors declare no competing interests.

AIMS Mathematics Volume 8, Issue 9, 20665–20678.



20677

References

1. B. Abdellaoui, A. Attar, R. Bentifour, On the fractional p-Laplacian equations with weight and
general datum, Adv. Nonlinear Anal., 8 (2016), 144–174. https://doi.org/10.1515/anona-2016-0072
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