In this work, Hölder-Isçan inequality is used for the class of $ n $-times differentiable $ (s, m) $-convex functions. The outcomes are new Hermite-Hadamard type inequalities and modified integrals are estimated by better bounds. Special cases are deduced as the existing results from literature. Furthermore, some applications to arithmetic, geometric and logarithmic means are also presented.
Citation: Khuram Ali Khan, Shaista Ayaz, İmdat İşcan, Nehad Ali Shah, Wajaree Weera. Applications of Hölder-İşcan inequality for $ n $-times differentiable $ (s, m) $-convex functions[J]. AIMS Mathematics, 2023, 8(1): 1620-1635. doi: 10.3934/math.2023082
[1] | M. Emin Özdemir, Saad I. Butt, Bahtiyar Bayraktar, Jamshed Nasir . Several integral inequalities for (α, s,m)-convex functions. AIMS Mathematics, 2020, 5(4): 3906-3921. doi: 10.3934/math.2020253 |
[2] | Tekin Toplu, Mahir Kadakal, İmdat İşcan . On n-Polynomial convexity and some related inequalities. AIMS Mathematics, 2020, 5(2): 1304-1318. doi: 10.3934/math.2020089 |
[3] | Haoliang Fu, Muhammad Shoaib Saleem, Waqas Nazeer, Mamoona Ghafoor, Peigen Li . On Hermite-Hadamard type inequalities for $ n $-polynomial convex stochastic processes. AIMS Mathematics, 2021, 6(6): 6322-6339. doi: 10.3934/math.2021371 |
[4] | Muhammad Samraiz, Kanwal Saeed, Saima Naheed, Gauhar Rahman, Kamsing Nonlaopon . On inequalities of Hermite-Hadamard type via $ n $-polynomial exponential type $ s $-convex functions. AIMS Mathematics, 2022, 7(8): 14282-14298. doi: 10.3934/math.2022787 |
[5] | Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441 |
[6] | Hong Yang, Shahid Qaisar, Arslan Munir, Muhammad Naeem . New inequalities via Caputo-Fabrizio integral operator with applications. AIMS Mathematics, 2023, 8(8): 19391-19412. doi: 10.3934/math.2023989 |
[7] | Saad Ihsan Butt, Ahmet Ocak Akdemir, Muhammad Nadeem, Nabil Mlaiki, İşcan İmdat, Thabet Abdeljawad . $ (m, n) $-Harmonically polynomial convex functions and some Hadamard type inequalities on the co-ordinates. AIMS Mathematics, 2021, 6(5): 4677-4690. doi: 10.3934/math.2021275 |
[8] | Ahmet Ocak Akdemir, Saad Ihsan Butt, Muhammad Nadeem, Maria Alessandra Ragusa . Some new integral inequalities for a general variant of polynomial convex functions. AIMS Mathematics, 2022, 7(12): 20461-20489. doi: 10.3934/math.20221121 |
[9] | Gültekin Tınaztepe, Sevda Sezer, Zeynep Eken, Sinem Sezer Evcan . The Ostrowski inequality for $ s $-convex functions in the third sense. AIMS Mathematics, 2022, 7(4): 5605-5615. doi: 10.3934/math.2022310 |
[10] | Moquddsa Zahra, Dina Abuzaid, Ghulam Farid, Kamsing Nonlaopon . On Hadamard inequalities for refined convex functions via strictly monotone functions. AIMS Mathematics, 2022, 7(11): 20043-20057. doi: 10.3934/math.20221096 |
In this work, Hölder-Isçan inequality is used for the class of $ n $-times differentiable $ (s, m) $-convex functions. The outcomes are new Hermite-Hadamard type inequalities and modified integrals are estimated by better bounds. Special cases are deduced as the existing results from literature. Furthermore, some applications to arithmetic, geometric and logarithmic means are also presented.
In recent years, convexity theory has gained special attention by many researchers because of it engrossing properties and expedient characterizations. It has many applications in fields like biology, numerical analysis and statistics (see [1,2,3,4]). Mathematical inequalities are extensively studied with all type of convex functions (see[1,3,11,13,14,16]). One of the fundamental inequality is Hermite-Hadamard inequality. It has been discussed via different types of convexities and became the center of attention for many researchers. Recently, in 2016, Khan et al. have discussed generalizations of Hermite-Hadamard type for $ MT $-convex functions [26]. In 2017, Khan et al. studied some new inequalities of Hermite-Hadamard types [27]. In 2019, Khurshid et al. have utilized conformable fractional integrals via preinvex functions [28]. In 2020, Khan et al. have discussed Hermite-Hadamard type inequalities via quantum calculus involving green function [29], Mohammed et al. have established a new version of Hermite-Hadamard inequality for Riemann-Liouville fractional integrals [30], Han et al. used fractional integral to generalize Hermite-Hadamard inequality for convex functions [31], Zhao et al. utilized harmonically convex functions to generalized fractional integral inequalities of Hermite-Hdamrd type [32], Awan et al. presented new inequalities of Hermite-Hdamard type for $ n $-polynomial harmonically convex functions [33]. In 2022, Khan et al. introduced some new versions of Hermite-Hadamard integral inequalities in fuzzy fractional calculus for generalized pre-invex functions via fuzzy-interval-valued settings [34]. This reflects the importance of Hermite Hadamard type inequalities among current research.
In [9], $ s $-convex function is given as,
Definition 1.1. A real valued function $ \chi $ is called $ s $-convex function on $ \mathbb{R} $, if
$ \begin{equation*} \chi \Big(\varsigma \rho+ (1-\varsigma)\gamma\Big)\leq \varsigma^{s} \chi(\rho)+(1-\varsigma)^{s} \chi(\gamma), \end{equation*} $ |
for each $ \rho, \gamma \in \mathbb{R} $ and $ \varsigma \in (0, 1) $ where $ s\in (0, 1] $.
In [10], $ m $-convexity is discussed as,
Definition 1.2. A real valued function $ \chi $ defined on $ [0, b] $ is said to be a $ m $-convex function for $ m \in [0, 1] $, if
$ \begin{equation*} \chi \Big(\varsigma \rho+ m(1-\varsigma)\gamma\Big)\leq \varsigma\chi(\rho)+m(1-\varsigma) \chi(\gamma), \end{equation*} $ |
holds for all $ \rho, \gamma \in [0, b] $ and $ \varsigma \in [0, 1] $.
$ (s, m) $-convexity in [17] is discussed as,
Definition 1.3. A function $ \chi: [0, b] \longrightarrow \mathbb{R} $, $ b > 0 $ is said to be a $ (s, m) $-convex function in the second sense where $ s, m \in (0, 1]^{2} $, if
$ \begin{equation*} \chi \Big(\varsigma \rho+ m(1-\varsigma)\gamma\Big)\leq \varsigma^{s}\chi(\rho)+m(1-\varsigma)^{s} \chi(\gamma), \end{equation*} $ |
holds provided that all $ \rho, \gamma \in [0, b] $ and $ \varsigma \in [0, 1] $.
Equivalent definition for $ (s, m) $–convex functions:
Let $ \rho, \alpha, \gamma \in [0, b] $, $ \rho < \alpha < \gamma $
$ \begin{equation} \chi (\alpha) \le {\left(\frac{{\gamma - \alpha}}{{\gamma - \rho}}\right)^s}\chi (\rho) + {m\left(\frac{{\alpha - \rho}}{{\gamma - \rho}}\right)^{s}}\chi (\gamma). \end{equation} $ | (1.1) |
Hölder-İşcan Inequality [5]:
Let $ p > 1 $, $ \chi $ and $ \psi $ be real valued functions defined on $ \left[\rho, \gamma \right] $ and $ |\chi|^{p}, |\psi|^{q} $ are integrable functions on interval $ \left[\rho, \gamma \right] $
$ \begin{equation} \begin{array}{l} \int_\rho ^\gamma | \chi (\omega)\psi (\omega)|d\omega \le \frac{1}{{\gamma - \rho }}{\left( {\int_\rho ^\gamma {(\gamma - \omega)} |\chi (\omega){|^p}d\omega} \right)^{\frac{1}{p}}}{\left( {\int_\rho ^\gamma {(\gamma - \omega)} |\psi (\omega){|^q}d\omega} \right)^{\frac{1}{q}}} \\ + \frac{1}{{\gamma - \rho }}{\left( {\int_\rho^\gamma {(\omega - \rho )} |\chi (\omega){|^p}d\omega} \right)^{\frac{1}{p}}}{\left( {\int_\rho ^\gamma {(\omega - \rho )} |\psi (\omega){|^q}d\omega} \right)^{\frac{1}{q}}}, \end{array} \end{equation} $ | (1.2) |
where $ \frac{1}{p}+\frac{1}{q} = 1 $.
Following lemma is useful to obtain our main results.
Lemma 1.4. [8] For $ n\in \mathbb{N} $, let $ \chi:U\subseteq \mathbb{R} \longrightarrow \mathbb{R} $ be $ n $-times differentiable mapping on $ U^{\circ} $, where $ \rho, \gamma \in U^{\circ} $, $ \rho < \gamma $ and $ \chi^{n} \in L[\rho, \gamma] $, we have following identity
$ \begin{equation} \sum\limits_{\nu = 0}^{n - 1} {{{( - 1)}^\nu}}\left (\frac{{{\chi ^{(\nu)}}(\gamma ){\gamma ^{\nu + 1}} - {\chi ^{(\nu)}}(\rho ){\rho ^{\nu + 1}}}}{{(\nu + 1)!}}\right) - \int\limits_\rho ^\gamma {\chi (\omega)d\omega} = \frac{{{{( - 1)}^{n + 1}}}}{{n!}}\int\limits_\rho ^\gamma {{\omega^n}} {\chi ^{(n)}}(\omega)d\omega, \end{equation} $ | (1.3) |
where an empty set is understood to be nil.
In this paper, Hölder-İşcan inequality is used to modify inequalities involving functions having $ s $-convex or $ s $-concave derivatives at certain powers. The purpose of this paper is to establish some generalized inequalities for $ n $-times differentiable $ (s, m) $-convex functions. Applications of these inequalities to means are also discussed. Means are defined as,
Let $ 0 < \rho < \gamma $,
$ \begin{equation*} A(\rho, \gamma) = \frac{\rho+\gamma}{2}, \end{equation*} $ |
$ \begin{equation*} G(\rho, \gamma) = \sqrt{\rho\gamma}, \end{equation*} $ |
$ \begin{equation*} L_{p}(\rho, \gamma) = \Big (\frac{\gamma^{p+1}-\rho^{p+1}}{(p+1)(\gamma-\rho)}\Big )^{\frac{1}{p}}, \end{equation*} $ |
where $ p\neq0, -1 $ and $ \rho\neq\gamma $.
Theorem 2.1. For any positive integer $ n $, let $ \chi:U\subseteq(0, \infty)\rightarrow \mathbb{R} $ be $ n $-times differentiable mapping on $ U^{\circ} $, where $ \rho, \gamma \in U^{\circ} $ with $ \rho < \gamma $. If $ \chi^{(n)} \in L[\rho, \gamma] $ and $ |\chi^{(n)} |^{q} $ for $ q > 1 $ is $ (s, m) $-convex on interval $ [\rho, \gamma] $ then
$ \begin{equation} \begin{array}{l} \left| {\sum\limits_{\nu = 0}^{n - 1} {{{( - 1)}^\nu}} \left(\frac{{{\chi ^{(\nu)}}(\gamma ){\gamma ^{\nu + 1}} - {\chi ^{(\nu)}}(\rho ){\rho ^{\nu + 1}}}}{{(\nu + 1)!}}\right) - \int\limits_\rho ^\mu {\chi (\omega)d\omega} } \right|\\ \le \frac{1}{{n!}}{(\gamma-\rho)^{\frac{1}{q}}}\left( \begin{array}{l} {[\gamma L_{np}^{np}(\rho , \gamma ) - L_{np + 1}^{np + 1}(\rho , \gamma )]^{\frac{1}{p}}}{\left[ {\frac{{{{\left| {{\chi ^n}(\gamma )} \right|}^q}}}{{(s + 2)(s + 1)}} + \frac{{{{m\left| {{\chi ^n}(\rho )} \right|}^q}}}{{(s + 2)}}} \right]^{\frac{1}{q}}}\\ + {[L_{np + 1}^{np + 1}(\rho , \gamma ) - \rho L_{np}^{np}(\rho , \gamma )]^{\frac{1}{p}}}{\left[ {\frac{{{{\left| {{\chi ^n}(\gamma )} \right|}^q}}}{{(s + 2)}} + \frac{{{{m\left| {{\chi ^n}(\rho )} \right|}^q}}}{{(s + 1)(s + 2)}}} \right]^{\frac{1}{q}}} \end{array} \right), \end{array} \end{equation} $ | (2.1) |
where $ \frac{1}{p}+\frac{1}{q} = 1 $.
Proof. Since $ |\chi^{n}|^q $ is $ (s, m) $-convex by using inequality (1.1) for $ \rho < \omega < \gamma $, using Lemma 1.4 and Hölder-Işcan inequality (1.2),
$\begin{equation*} \begin{array}{c} {\left| {{\chi ^n}(\omega)} \right|^q} \le {\left| {{\chi ^n}(\frac{{\omega - \rho }}{{\gamma - \rho }}\gamma +m \frac{{\gamma - \omega}}{{\gamma - \rho }}\rho )} \right|^q}\\ \\ \le {(\frac{{\omega - \rho }}{{\gamma - \rho }})^s}{\left| {{\chi ^n}(\gamma )} \right|^q} + {m(\frac{{\gamma - \omega}}{{\gamma - \rho }})^{s}}{\left| {{\chi ^n}(\rho )} \right|^q}, \\ \begin{array}{l} \left| {\sum\limits_{\nu = 0}^{n - 1} {{{( - 1)}^\nu }\left( {\frac{{{\chi ^{(\nu )}}(\gamma ){\gamma ^{\nu + 1}} - {\chi ^{(\nu )}}(\rho ){\rho ^{\nu + 1}}}}{{(\nu + 1)!}}} \right) - \int\limits_\rho ^\gamma {\chi (\omega )d\omega } } } \right|\\ \le \frac{1}{{n!}}\int\limits_\rho ^\gamma {{\omega ^n}} \left| {{\chi ^{(n)}}(\omega )} \right|d\omega , \end{array}\\ \le \frac{1}{{n!}}\frac{1}{{\gamma - \rho }}\left\{ \begin{array}{l} {\left( {\int\limits_\rho ^\gamma {(\gamma - \omega ){\omega ^{np}}d\omega } } \right)^{\frac{1}{p}}}{\left( {\int\limits_\rho ^\gamma {(\gamma - \omega ){{\left| {{\chi ^{(n)}}(\omega )} \right|}^q}d\omega} } \right)^{\frac{1}{q}}} + \\ {\left( {\int\limits_\rho ^\gamma {(\omega - \rho ){\omega ^{np}}d\omega } } \right)^{\frac{1}{p}}}{\left( {\int\limits_\rho ^\gamma {(\omega - \rho ){{\left| {{\chi ^{(n)}}(\omega )} \right|}^q}d\omega } } \right)^{\frac{1}{q}}} \end{array} \right\},\\ \le \frac{1}{{n!}}\frac{1}{{\gamma - \rho }}{\left( {\int\limits_\rho ^\gamma {(\gamma - \omega){\omega^{np}}d\omega} } \right)^{\frac{1}{p}}}{\left( {\int\limits_\rho ^\gamma {(\gamma - \omega)\left[ {{{(\frac{{\omega - \rho }}{{\gamma - \rho }})}^s}{{\left| {{\chi ^n}(\gamma )} \right|}^q} + {{m(\frac{{\gamma - \omega}}{{\gamma - \rho }})}^s}{{\left| {{\chi ^n}(\rho )} \right|}^q}} \right]d\omega} } \right)^{\frac{1}{q}}}\\ + \frac{1}{{n!}}\frac{1}{{\gamma - \rho }}{\left( {\int\limits_\rho ^\gamma {(\omega - \rho){\omega^{np}}d\omega} } \right)^{\frac{1}{p}}}{\left( {\int\limits_\rho ^\gamma {(\omega - \rho)\left[ {{{(\frac{{\omega - \rho }}{{\gamma - \rho }})}^s}{{\left| {{\chi ^n}(\gamma )} \right|}^q} + {{m(\frac{{\gamma - \omega}}{{\gamma - \rho }})}^s}{{\left| {{\chi ^n}(\rho )} \right|}^q}} \right]d\omega} } \right)^{\frac{1}{q}}},\end{array} \end{equation*} $ | (2.2) |
Let
$ \begin{equation*} \begin{array}{*{20}{l}} {{I_1} = {{\left[ {\int\limits_\rho ^\gamma {(\gamma - \omega){\omega^{np}}d\omega} } \right]}^{\frac{1}{p}}}} { = {{\left[ {\int\limits_\rho ^\gamma {(\gamma {\omega^{np}} - {\omega^{np + 1}})d\omega} } \right]}^{\frac{1}{p}}}}\\ { = {{(\gamma - \rho )}^{\frac{1}{p}}}{{\left[ {\gamma \left( {\frac{{{\gamma ^{np + 1}} - {\rho ^{np + 1}}}}{{(\gamma - \rho )(np + 1)}}} \right) - \left( {\frac{{{\gamma ^{np + 2}} - {\rho ^{np + 2}}}}{{(\gamma - \rho )(np + 2)}}} \right)} \right]}^{\frac{1}{p}}}} { = {{(\gamma - \rho )}^{\frac{1}{p}}}{{\left[ {\gamma L_{np}^{np}(\rho , \gamma ) - L_{np + 1}^{np + 1}(\rho , \gamma )} \right]}^{\frac{1}{p}}}}, \end{array} \end{equation*} $ |
$ \begin{equation*} \begin{array}{*{20}{l}} {{I_2} = {{\left[ {\int\limits_\rho ^\gamma {(\omega - \rho ){\omega^{np}}dt} } \right]}^{\frac{1}{p}}}} { = {{\left[ {\int\limits_\rho ^\gamma {({\omega^{np + 1}} - \rho {\omega^{np}})d\omega} } \right]}^{\frac{1}{p}}}}\\ { = {{(\gamma - \rho )}^{\frac{1}{p}}}{{\left[ {\left( {\frac{{{\gamma ^{np + 2}} - {\rho ^{np + 2}}}}{{(\gamma - \rho )(np + 2)}}} \right) - \rho \left( {\frac{{{\gamma ^{np + 1}} - {\rho ^{np + 1}}}}{{(\gamma - \rho )(np + 1)}}} \right)} \right]}^{\frac{1}{p}}}} { = {{(\gamma - \rho )}^{\frac{1}{p}}}{{\left[ {L_{np + 1}^{np + 1}(\rho , \gamma ) - \rho L_{np}^{np}(\rho , \gamma )} \right]}^{\frac{1}{p}}}}, \end{array} \end{equation*} $ |
$ \begin{equation*} \begin{array}{l} {I_3} = \int\limits_\rho ^\gamma {(\gamma - \omega){{(\omega - \rho )}^s}} d\omega = (\gamma - \omega)\frac{{{{(\omega - \rho )}^{s + 1}}}}{{s + 1}}|_\rho ^\gamma + \int\limits_\rho ^\gamma {\frac{{{{(\omega - \rho )}^{s + 1}}}}{{s + 1}}} d\omega = \frac{{{{(\gamma - \rho )}^{s + 2}}}}{{(s + 1)(s + 2)}}, \end{array} \end{equation*} $ |
$ \begin{equation*} \begin{array}{l} {I_4} = \int\limits_\rho ^\gamma {{{(\gamma - \omega)}^{s + 1}}} d\omega = \frac{{{{(\gamma - \rho )}^{s + 2}}}}{{s + 2}}, {I_5} = \int\limits_\rho ^\gamma {{{(\omega - \rho )}^{s + 1}}} d\omega = \frac{{{{(\gamma - \rho )}^{s + 2}}}}{{s + 2}}, \\ {I_6} = \int\limits_\rho ^\gamma {(\omega - \rho ){{(\gamma - \omega)}^s}} d\omega = (\omega - \rho )\frac{{{{(\gamma - \omega)}^{s + 1}}}}{{(s + 1)}}|_\rho ^\gamma + \int\limits_\rho ^\gamma {\frac{{{{(\gamma - \omega)}^{s + 1}}}}{{(s + 1)}}} d\omega = \frac{{{{(\gamma - \rho )}^{s + 2}}}}{{(s + 1)(s + 2)}}. \end{array} \end{equation*} $ |
Substituting integrals $ {I_1}, {I_2}, {I_3}, {I_4}, {I_5}, {I_6} $ in inequality (2.2) we have,
$ \begin{equation*} \begin{array}{l} \left| {\sum\limits_{\nu = 0}^{n - 1} {{{( - 1)}^\nu}} (\frac{{{\chi ^{(\nu)}}(\gamma ){\gamma ^{\nu + 1}} - {\chi ^{(\nu)}}(\rho ){\rho ^{\nu + 1}}}}{{(\nu + 1)!}}) - \int\limits_\rho ^\gamma {\chi (\omega)d\omega} } \right| \le \\ \frac{1}{{n!(\gamma - \rho )}}\left( {\begin{array}{*{20}{l}} {{{(\gamma - \rho )}^{\frac{1}{p}}}{{[\gamma L_{np}^{np}(\rho , \gamma ) - L_{np + 1}^{np + 1}(\rho , \gamma )]}^{\frac{1}{p}}}{{\left[ {{{(\gamma - \rho )}^2}\left( {\frac{{{{\left| {{\chi ^n}(\gamma )} \right|}^q}}}{{(s + 2)(s + 1)}} + \frac{{{{m\left| {{\chi ^n}(\rho )} \right|}^q}}}{{(s + 2)}}} \right)} \right]}^{\frac{1}{q}}}}\\ { + {{(\gamma - \rho )}^{\frac{1}{p}}}{{[L_{np + 1}^{np + 1}(\rho , \gamma ) - \rho L_{np}^{np}(\rho , \gamma )]}^{\frac{1}{p}}}{{\left[ {{{(\gamma - \rho )}^2}\left( {\frac{{{{\left| {{\chi ^n}(\gamma )} \right|}^q}}}{{(s + 2)}} + \frac{{{{m\left| {{\chi ^n}(\rho )} \right|}^q}}}{{(s + 1)(s + 2)}}} \right)} \right]}^{\frac{1}{q}}}} \end{array}} \right) \end{array} \end{equation*} $ |
$ \begin{equation*} \begin{array}{l} = \frac{{{{(\gamma - \rho )}^{\frac{1}{p} - 1 + \frac{2}{q}}}}}{{n!}}\left( {\begin{array}{*{20}{l}} {{{[\gamma L_{np}^{np}(\rho , \gamma ) - L_{np + 1}^{np + 1}(\rho , \gamma )]}^{\frac{1}{p}}}{{\left[ {\frac{{{{\left| {{\chi ^n}(\gamma )} \right|}^q}}}{{(s + 2)(s + 1)}} + \frac{{{{m\left| {{\chi ^n}(\rho )} \right|}^q}}}{{(s + 2)}}} \right]}^{\frac{1}{q}}}}\\ { + {{[L_{np + 1}^{np + 1}(\rho , \gamma ) - \rho L_{np}^{np}(\rho , \gamma )]}^{\frac{1}{p}}}{{\left[ {\frac{{{{\left| {{\chi ^n}(\gamma )} \right|}^q}}}{{(s + 2)}} + \frac{{{{m\left| {{\chi ^n}(\rho )} \right|}^q}}}{{(s + 1)(s + 2)}}} \right]}^{\frac{1}{q}}}} \end{array}} \right) \end{array} \end{equation*} $ |
$ \begin{equation*} \begin{array}{l} = \frac{1}{{n!}}{(\gamma-\rho)^{\frac{1}{q}}}\left( \begin{array}{l} {[\gamma L_{np}^{np}(\rho , \gamma ) - L_{np + 1}^{np + 1}(\rho , \gamma )]^{\frac{1}{p}}}{\left[ {\frac{{{{\left| {{\chi ^n}(\gamma )} \right|}^q}}}{{(s + 2)(s + 1)}} + \frac{{{{m\left| {{\chi ^n}(\rho )} \right|}^q}}}{{(s + 2)}}} \right]^{\frac{1}{q}}}\\ + {[L_{np + 1}^{np + 1}(\rho , \gamma ) - \rho L_{np}^{np}(\rho , \gamma )]^{\frac{1}{p}}}{\left[ {\frac{{{{\left| {{\chi ^n}(\gamma )} \right|}^q}}}{{(s + 2)}} + \frac{{{{m\left| {{\chi ^n}(\rho )} \right|}^q}}}{{(s + 1)(s + 2)}}} \right]^{\frac{1}{q}}} \end{array} \right). \end{array} \end{equation*} $ |
which is required inequality (2.1).
For $ n = 1 $ inequality (2.1) becomes,
$ \begin{equation} \begin{array}{*{20}{l}} {\left| {\left( {\frac{{\chi (\gamma )\gamma - \chi (\rho )\rho }}{{\gamma - \rho }}} \right) - \frac{1}{{\gamma - \rho }}\int\limits_\rho ^\gamma {\chi (\omega)d\omega} } \right| \le }\\ {{{(\gamma - \rho )}^{\frac{1}{q} - 1}}\left( {\begin{array}{*{20}{l}} {{{\left[ {\gamma L_p^p(\rho , \gamma ) - L_{p + 1}^{p + 1}(\rho , \gamma )} \right]}^{\frac{1}{p}}}{{\left[ {\frac{{{{\left| {\chi '(\gamma )} \right|}^q}}}{{(s + 1)(s + 2)}} + {{\frac{{m\left| {\chi '(\rho )} \right|}}{{(s + 2)}}}^q}} \right]}^{\frac{1}{q}}}}\\ { + {{\left[ {L_{p + 1}^{p + 1}(\rho, \gamma ) - \rho L_p^p(\rho , \gamma )} \right]}^{\frac{1}{p}}}{{\left[ {\frac{{{{m\left| {\chi '(\rho )} \right|}^q}}}{{(s + 1)(s + 2)}} + {{\frac{{\left| {\chi '(\gamma )} \right|}}{{(s + 2)}}}^q}} \right]}^{\frac{1}{q}}}} \end{array}} \right)}. \end{array} \end{equation} $ | (2.3) |
Remark 2.2. For $ s = 1 $ and $ m = 1 $ our resulting inequality (2.1) becomes the inequality ($ 2 $) of [5].
Theorem 2.3. For $ n\in \mathbb{N} $, let $ \chi:U\subseteq(0, \infty)\rightarrow \mathbb{R} $ be $ n $-times differentiable mapping on $ U^{\circ} $, where, $ \rho, \gamma \in U^{\circ} $, $ \rho < \gamma $, $ \chi^{(n)} \in L[\rho, \gamma] $ and $ |\chi^{(n)} |^{q} $ for $ q > 1 $, is $ (s, m) $-convex on interval $ [\rho, \gamma] $ then following inequality holds
$ \begin{equation} \begin{array}{l} \left| {\sum\limits_{\nu = 0}^{n - 1} {{{( - 1)}^\nu}\left( {\frac{{{\chi ^{(\nu)}}(\gamma ){\gamma ^{\nu + 1}} - {\chi ^{(\nu)}}(\rho ){\rho ^{\nu + 1}}}}{{(\nu + 1)!}}} \right) - \int\limits_\rho ^\gamma {\chi (\omega)d\omega} } } \right| \le \\ \frac{1}{s^\frac{1}{q}{n!}}{\left( {\frac{1}{2}} \right)^{\frac{1}{p}}}{(\gamma - \rho )^{\frac{2}{p} - 1}}\\ \left( {\begin{array}{*{20}{l}} {{{\left( {\begin{array}{*{20}{l}} {\frac{{{{\left| {{\chi ^{(n)}}(\gamma )} \right|}^q}}}{{{{(\gamma - \rho )}^{s-1}}}}\left[ { - L_{nq + 2}^{nq + 2}(\rho , \gamma ) + (\rho + \gamma )L_{nq + 1}^{nq + 1}(\rho , \gamma ) - \rho \gamma L_{nq}^{nq}(\rho , \gamma )} \right] + }\\ {{{\frac{{m\left| {{\chi ^{(n)}}(\rho )} \right|^{q}}}{{{{(\gamma - \rho )}^{s-1}}}}}}\left[ {L_{nq + 2}^{nq + 2}(\rho , \gamma ) - 2\gamma L_{nq + 1}^{nq + 1}(\rho , \gamma ) + {\gamma ^2}L_{nq}^{nq}(\rho , \gamma )} \right]} \end{array}} \right)}^{\frac{1}{q}}} + }\\ {{{\left( {\begin{array}{*{20}{l}} {{{\frac{{\left| {{\chi ^{(n)}}(\gamma )} \right|^{q}}}{{{{(\gamma - \rho )}^{s-1}}}}}}\left[ {L_{nq + 2}^{nq + 2}(\rho , \gamma ) - 2\rho L_{nq + 1}^{nq + 1}(\rho , \gamma ) + {\rho ^2}L_{nq}^{nq}(\rho , \gamma )} \right] + }\\ {{{\frac{{m\left| {{\chi ^{(n)}}(\rho )} \right|^{q}}}{{{{(\gamma - \rho )}^{s-1}}}}}}\left[ { - L_{nq + 2}^{nq + 2}(\rho , \gamma ) + (\rho + \gamma )L_{nq + 1}^{nq + 1}(\rho , \gamma ) - \rho \gamma L_{nq}^{nq}(\rho , \gamma )} \right]} \end{array}} \right)}^{\frac{1}{q}}}} \end{array}} \right) \end{array}. \end{equation} $ | (2.4) |
Proof. Since $ |\chi^{(n)}|^{q} $ for $ q > 1 $ is $ (s, m) $-convex on $ [\rho, \gamma] $, by using Lemma 1.4 and Hölder-İşcan inequality (1.2), since $ s \in (0, 1] $, this fact can be used for $ \omega, \rho, \gamma \in U\subseteq(0, \infty) $,
$ \begin{equation*} \begin{array}{c} {(\omega - \rho )^s} < \frac {(\omega - \rho )}{s}, {(\gamma - \omega)^s} < \frac{(\gamma - \omega)}{s}\\ \begin{array}{l} \left| {\sum\limits_{\nu = 0}^{n - 1} {{{( - 1)}^\nu}\left( {\frac{{{\chi ^{(\nu)}}(\gamma ){\gamma ^{\nu + 1}} - {\chi ^{(\nu)}}(\rho ){\rho ^{\nu + 1}}}}{{(\nu + 1)!}}} \right) - \int\limits_\rho ^\gamma {\chi (\omega)d\omega} } } \right|\\ \le \frac{1}{{n!}}\int\limits_\rho ^\gamma {1.{\omega^n}} \left| {{\chi ^{(n)}}(\omega)} \right|d\omega, \\ \le \frac{1}{{n!}}\frac{1}{{(\gamma - \rho )}}\left( \begin{array}{l} \left[ {{{\left( {\int\limits_\rho ^\gamma {(\gamma - \omega)d\omega} } \right)}^{\frac{1}{p}}}{{\left( {\int\limits_\rho ^\gamma {(\gamma - \omega){\omega^{nq}}{{\left| {{\chi ^{(n)}}(\omega)} \right|}^q}d\omega} } \right)}^{\frac{1}{q}}}} \right] + \\ \left[ {{{\left( {\int\limits_\rho ^\gamma {(\omega - \rho )d\omega} } \right)}^{\frac{1}{p}}}{{\left( {\int\limits_\rho ^\gamma {(\omega - \rho ){\omega^{nq}}{{\left| {{\chi ^{(n)}}(\omega)} \right|}^q}d\omega} } \right)}^{\frac{1}{q}}}} \right] \end{array} \right), \end{array}\\ \le \frac{1}{{n!}}\frac{1}{{(\gamma - \rho )}}{\left( {\int\limits_\rho ^\gamma {(\gamma - \omega)d\omega} } \right)^{\frac{1}{p}}}\left( {\int\limits_\rho ^\gamma {(\gamma - \omega){\omega^{nq}}\left[ {{{\left( {\frac{{\omega - \rho }}{{\gamma - \rho }}} \right)}^s}{{\left| {{\chi ^n}(\gamma )} \right|}^q} + {{m\left( {\frac{{\gamma - \omega}}{{\gamma - \rho }}} \right)}^s}{{\left| {{\chi ^n}(\rho )} \right|}^q}} \right]dt} } \right)^{\frac{1}{q}} + \\ \frac{1}{{n!}}\frac{1}{{(\gamma - \rho )}}{\left( {\int\limits_\rho ^\gamma {(\omega - \rho )dt} } \right)^{\frac{1}{p}}}\left( {\int\limits_\rho ^\gamma {(\omega - \rho ){\omega^{nq}}\left[ {{{\left( {\frac{{\omega - \rho }}{{\gamma - \rho }}} \right)}^s}{{\left| {{\chi ^n}(\gamma )} \right|}^q} + {{m\left( {\frac{{\gamma - \omega}}{{\gamma - \rho }}} \right)}^s}{{\left| {{\chi ^n}(\rho )} \right|}^q}} \right]dx} } \right)^{\frac{1}{q}}, \\ \le \frac{1}{s^{\frac{1}{q}}{n!}}\frac{1}{{(\gamma - \rho )}}{\left( {\int\limits_\rho ^\gamma {(\gamma - \omega)d\omega} } \right)^{\frac{1}{p}}}\left( {\int\limits_\rho ^\gamma {(\gamma - \omega){\omega^{nq}}\left[ {\frac{{(\omega - \rho )}}{{{{(\gamma - \rho )}^s}}}{{\left| {{\chi ^n}(\gamma )} \right|}^q} + \frac{{m(\gamma - \omega)}}{{{{(\gamma - \rho )}^s}}}{{\left| {{\chi ^n}(\rho )} \right|}^q}} \right]d\omega} } \right)^{\frac{1}{q}}\\ + \frac{1}{s^{\frac{1}{q}}{n!}}\frac{1}{{(\gamma - \rho )}}{\left( {\int\limits_\rho ^\gamma {(\omega - \rho )d\omega} } \right)^{\frac{1}{p}}}\left( {\int\limits_\rho ^\gamma {(\omega - \rho ){\omega^{nq}}\left[ {\frac{{(\omega - \rho )}}{{{{(\gamma - \rho )}^s}}}{{\left| {{\chi ^n}(\gamma )} \right|}^q} + \frac{{m(\gamma - \omega)}}{{{{(\gamma - \rho )}^s}}}{{\left| {{\chi ^n}(\rho )} \right|}^q}} \right]d\omega} } \right)^{\frac{1}{q}}, \\ \begin{array}{l} \ \ \ \ {I_1} = \int\limits_\rho ^\gamma {(\gamma - \omega )d\omega = } {\rm{ }}\frac{{{{(\gamma - \rho )}^2}}}{2} \\ \ \ \ \ {I_2} = \int\limits_\rho ^\gamma {(\gamma - \omega)(\omega - \rho ){\omega^{nq}}d\omega} = {\gamma \frac{{{\omega^{nq + 1}}}}{{nq + 1}} - \rho \gamma \frac{{{\omega^{nq + 1}}}}{{nq + 1}} - \frac{{{\omega^{nq + 3}}}}{{nq + 3}} + \frac{{\rho {\omega^{nq + 2}}}}{{nq + 2}}}|_\rho ^\gamma \\ \ \ \ \ = - \left( {\frac{{{\gamma ^{nq + 3}} - {\rho ^{nq + 3}}}}{{nq + 3}}} \right) + \rho \left( {\frac{{{\gamma ^{nq + 2}} - {\rho ^{nq + 2}}}}{{nq + 2}}} \right) + \gamma \left( {\frac{{{\gamma ^{nq + 2}} - {\rho ^{nq + 2}}}}{{nq + 2}}} \right) - \rho \gamma \left( {\frac{{{\gamma ^{nq + 1}} - {\rho ^{nq + 1}}}}{{nq + 1}}} \right)\\\ \ \ \ = (\gamma - \rho )\left[ { - L_{nq + 2}^{nq + 2}(\rho , \gamma ) + (\rho + \gamma )L_{nq + 1}^{nq + 1}(\rho , \gamma ) - \rho \gamma L_{nq}^{nq}(\rho , \gamma )} \right], \\ \ \ \ \ \ \ \ \ {I_3} = \int\limits_\rho ^\gamma {{{(\gamma - \omega)}^2}} {\omega^{nq}}d\omega = {{\gamma ^2}\frac{{{\omega^{nq + 1}}}}{{nq + 1}} + \frac{{{\omega^{nq + 3}}}}{{nq + 3}} - 2\gamma \frac{{{\omega^{nq + 2}}}}{{nq + 2}}} |_\rho ^\gamma \\ \ \ \ \ \ \ \ \ = \left( {\frac{{{\gamma ^{nq + 3}} - {\rho ^{nq + 3}}}}{{nq + 3}}} \right) - 2\gamma \left( {\frac{{{\gamma ^{nq + 2}} - {\rho ^{nq + 2}}}}{{nq + 2}}} \right) + {\gamma ^2}\left( {\frac{{{\gamma ^{nq + 1}} - {\rho ^{nq + 1}}}}{{nq + 1}}} \right)\\ \ \ \ \ \ \ \ \ = (\gamma - \rho )\left[ {L_{nq + 2}^{nq + 2}(\rho , \gamma ) - 2\gamma L_{nq + 1}^{nq + 1}(\rho , \gamma ) + {\gamma ^2}L_{nq}^{nq}(\rho , \gamma )} \right], \\ \ \ \ \ \ \ \ \ {I_4} = \int\limits_\rho ^\gamma {{{(\omega - \rho )}^2}} {\omega^{nq}}d\omega = {\frac{{{\omega^{nq + 3}}}}{{nq + 3}} + {\rho ^2}\frac{{{\omega^{nq + 1}}}}{{nq + 1}} - 2\rho \frac{{{\omega^{nq + 2}}}}{{nq + 2}}} |_\rho ^\gamma \\ \ \ \ \ \ \ \ \ = \left( {\frac{{{\gamma ^{nq + 3}} - {\rho ^{nq + 3}}}}{{nq + 3}}} \right) + {\rho ^2}\left( {\frac{{{\gamma ^{nq + 1}} - {\rho ^{nq + 1}}}}{{nq + 1}}} \right) - 2\rho \left( {\frac{{{\gamma ^{nq + 2}} - {\rho ^{nq + 2}}}}{{nq + 2}}} \right)\\ \ \ \ \ \ \ \ \ = (\gamma - \rho )\left[ {L_{nq + 2}^{nq + 2}(\rho , \gamma ) + {\rho ^2}L_{nq}^{nq}(\rho , \gamma ) - 2\rho L_{nq + 1}^{nq + 1}(\rho , \gamma )} \right]. \end{array} \end{array} \end{equation*} $ | (2.5) |
Substituting integrals $ {I_1}, {I_2}, {I_3}, {I_4}, {I_5}, {I_6} $ in inequality (2.5) we have,
$ \begin{equation*} \begin{array}{l} \left| {\sum\limits_{\nu = 0}^{n - 1} {{{( - 1)}^\nu}\left( {\frac{{{\chi ^{(\nu)}}(\gamma ){\gamma ^{\nu + 1}} - {\chi ^{(\nu)}}(\rho ){\rho ^{\nu + 1}}}}{{(\nu + 1)!}}} \right) - \int\limits_\rho ^\gamma {\chi (\omega)d\omega} } } \right| \le \frac{1}{s^{\frac{1}{q}}{n!}}{\left( {\frac{1}{2}} \right)^{\frac{1}{p}}}{(\gamma - \rho )^{\frac{2}{p} - 1}}\times\\ \left( \begin{array}{l} {\left( {\begin{array}{*{20}{l}} {{{\frac{{\left| {{\chi ^{(n)}}(\gamma )} \right|^{q}}}{{{{(\gamma - \rho )}^s}}}}}\left[ {(\gamma - \rho )( - L_{nq + 2}^{nq + 2}(\rho , \gamma ) + (\rho + \gamma )L_{nq + 1}^{nq + 1}(\rho , \gamma ) - \rho \gamma L_{nq}^{nq}(\rho , \gamma ))} \right] + }\\ {{{\frac{{m\left| {{\chi ^{(n)}}(\rho )} \right|^{q}}}{{{{(\gamma - \rho )}^s}}}}}\left[ {(\gamma - \rho )(L_{nq + 2}^{nq + 2}(\rho , \gamma ) - 2\gamma L_{nq + 1}^{nq + 1}(\rho , \gamma ) + {\gamma ^2}L_{nq}^{nq}(\rho , \gamma ))} \right]} \end{array}} \right)^{\frac{1}{q}}}\\+ {\left( {\begin{array}{*{20}{l}} {{{\frac{{\left| {{\chi ^{(n)}}(\gamma )} \right|^{q}}}{{{{(\gamma - \rho )}^s}}}}}\left[ {(\gamma - \rho )(L_{nq + 2}^{nq + 2}(\rho , \gamma ) - 2\rho L_{nq + 1}^{nq + 1}(\rho , \gamma ) + {\rho ^2}L_{nq}^{nq}(\rho , \gamma ))} \right] + }\\ {{{\frac{{m\left| {{\chi ^{(n)}}(\rho )} \right|^{q}}}{{{{(\gamma - \rho )}^s}}}}}\left[ {(\gamma - \rho )( - L_{nq + 2}^{nq + 2}(\rho , \gamma ) + (\rho + \gamma )L_{nq + 1}^{nq + 1}(\rho , \gamma ) - \rho \gamma L_{nq}^{nq}(\rho , \gamma ))} \right]} \end{array}} \right)^{\frac{1}{q}}} \end{array} \right), \end{array} \end{equation*} $ |
$ \begin{equation*} \begin{array}{l} = \frac{1}{s^{\frac{1}{q}}{n!}}{\left( {\frac{1}{2}} \right)^{\frac{1}{p}}}{(\gamma - \rho )^{\frac{2}{p} - 1}}\times \\ \left( {\begin{array}{*{20}{l}} {{{\left( {\begin{array}{*{20}{l}} {\frac{{{{\left| {{\chi ^{(n)}}(\gamma )} \right|}^q}}}{{{{(\gamma - \rho )}^{s-1}}}}\left[ { - L_{nq + 2}^{nq + 2}(\rho , \gamma ) + (\rho + \gamma )L_{nq + 1}^{nq + 1}(\rho , \gamma ) - \rho \gamma L_{nq}^{nq}(\rho , \gamma )} \right] + }\\ {{{\frac{{m\left| {{\chi ^{(n)}}(\rho )} \right|^{q}}}{{{{(\gamma - \rho )}^{s-1}}}}}}\left[ {L_{nq + 2}^{nq + 2}(\rho , \gamma ) - 2\gamma L_{nq + 1}^{nq + 1}(\rho , \gamma ) + {\gamma ^2}L_{nq}^{nq}(\rho , \gamma )} \right]} \end{array}} \right)}^{\frac{1}{q}}} + }\\ {{{\left( {\begin{array}{*{20}{l}} {{{\frac{{\left| {{\chi ^{(n)}}(\gamma )} \right|^{q}}}{{{{(\gamma - \rho )}^{s-1}}}}}}\left[ {L_{nq + 2}^{nq + 2}(\rho , \gamma ) - 2\rho L_{nq + 1}^{nq + 1}(\rho , \gamma ) + {\rho ^2}L_{nq}^{nq}(\rho , \gamma )} \right] + }\\ {{{\frac{{m\left| {{\chi ^{(n)}}(\rho )} \right|^{q}}}{{{{(\gamma - \rho )}^{s-1}}}}}}\left[ { - L_{nq + 2}^{nq + 2}(\rho , \gamma ) + (\rho + \gamma )L_{nq + 1}^{nq + 1}(\rho , \gamma ) - \rho \gamma L_{nq}^{nq}(\rho , \gamma )} \right]} \end{array}} \right)}^{\frac{1}{q}}}} \end{array}} \right). \end{array} \end{equation*} $ |
For $ n = 1 $, Theorem2.3 reduced to the inequality
$ \begin{equation} \begin{array}{l} \left| {\frac{{\gamma \chi (\gamma ) - \rho \chi (\rho )}}{{(\gamma - \rho )}} - \frac{1}{{(\gamma - \rho )}}\int\limits_\rho ^\gamma {\chi (\omega)d\omega} } \right| \le \\ \frac{1}{{s^{\frac{1}{q}}}}{\left( {\frac{1}{2}} \right)^{\frac{1}{p}}}{(\gamma - \rho )^{\frac{2}{p} - 2}}\left( {\begin{array}{*{20}{l}} {{{\left( {\begin{array}{*{20}{l}} {\frac{{{{\left| {{\chi ^{(1)}}(\gamma )} \right|}^q}}}{{{{(\gamma - \rho )}^{s - 1}}}}\left[ { - L_{q + 2}^{q + 2}(\rho , \gamma ) + (\rho + \gamma )L_{q + 1}^{q + 1}(\rho , \gamma ) - \rho \gamma L_q^q(\rho , \gamma )} \right] + }\\ {{{\frac{{m\left| {{\chi ^{(1)}}(\rho )} \right|}}{{{{(\gamma - \rho )}^{s - 1}}}}}^q}\left[ {L_{q + 2}^{q + 2}(\rho , \gamma ) - 2\gamma L_{q + 1}^{q + 1}(\rho , \gamma ) + {\gamma ^2}L_q^q(\rho , \gamma )} \right]} \end{array}} \right)}^{\frac{1}{q}}} + }\\ {{{\left( {\begin{array}{*{20}{l}} {{{\frac{{\left| {{\chi ^{(1)}}(\gamma )} \right|}}{{{{(\gamma - \rho )}^{s - 1}}}}}^q}\left[ {L_{q + 2}^{q + 2}(\rho , \gamma ) - 2\rho L_{q + 1}^{q + 1}(\rho , \gamma ) + {\rho ^2}L_q^q(\rho , \gamma )} \right] + }\\ {{{\frac{{m\left| {{\chi ^{(1)}}(\rho )} \right|}}{{{{(\gamma - \rho )}^{s - 1}}}}}^q}\left[ { - L_{q + 2}^{q + 2}(\rho , \gamma ) + (\rho + \gamma )L_{q + 1}^{q + 1}(\rho , \gamma ) - \rho \gamma L_q^q(\rho , \gamma )} \right]} \end{array}} \right)}^{\frac{1}{q}}}} \end{array}} \right). \end{array} \end{equation} $ | (2.6) |
Remark 2.4. For $ s = 1 $ and $ m = 1 $ our resulting inequality (2.4) becomes the inequality $ (6) $ of [5].
Theorem 2.5. If function $ \chi: [0, b] \longrightarrow \mathbb{R} $, $ b > 0 $ is a (s, m)-convex function in the second sense where $ (s, m) \in (0, 1]^{2} $, holds provided that all $ \rho, \gamma \in [0, b] $ and $ \varsigma \in [0, 1] $, then
$ \begin{equation} \begin{array}{l} {2^s} {\chi \left( {\frac{{\rho + m\gamma }}{2}} \right)} \le \left[ {\frac{1}{{m\gamma - \rho }}\int\limits_\rho ^{m\gamma } {\chi (\omega )d\omega + \frac{{{m^2}}}{{m\gamma - \rho }}\int\limits_{\frac{\rho }{m}}^\gamma {\chi (l)dl} } } \right]\\ \le \frac{{\chi (\rho ) + m\chi (\gamma )}}{{s + 1}} + \frac{{\chi (\gamma ) + m\chi (\frac{\rho }{{{m^2}}})}}{{s + 1}}. \end{array} \end{equation} $ | (2.7) |
Proof. A function $ \chi: [0, b] \longrightarrow \mathbb{R} $, $ b > 0 $ is said to be a $ (s, m) $-convex function in the second sense where $ s, m \in (0, 1]^{2} $, if
$ \begin{equation*} \chi \Big(\varsigma \rho+ m(1-\varsigma)\gamma\Big)\leq \varsigma^{s}\chi(\rho)+m(1-\varsigma)^{s} \chi(\gamma), \end{equation*} $ |
holds provided that all $ \rho, \gamma \in [0, b] $ and $ \varsigma \in [0, 1] $.
Integrating w.r.t $ \varsigma $ on $ [0, 1] $,
$ \begin{equation*} \begin{array}{l} \int\limits_0^1 \chi (\varsigma \rho + m(1 - \varsigma )\gamma )d\varsigma \le \int\limits_0^1 {{\varsigma ^s}\chi (\rho )d\varsigma + \int\limits_0^1 {m{{(1 - \varsigma )}^s}\chi (\gamma )d\varsigma, } } \\ \\ = {\frac{{{\varsigma ^{s + 1}}}}{{s + 1}}} |_0^1\chi (\rho ) - m\chi (\gamma ) {\frac{{{{(1 - \varsigma )}^{s + 1}}}}{{s + 1}}} |_0^1 = \frac{{\chi (\rho ) + m\chi (\gamma )}}{{s + 1}}. \\ \ \ \ \ \ \ \int\limits_0^1 \chi (\varsigma \rho + m(1 - \varsigma )\gamma ) d\varsigma \leq\frac{{\chi (\rho ) + m\chi (\gamma )}}{{s + 1}}. \end{array} \end{equation*} $ | (2.8) |
and
$ \begin{equation*} \begin{array}{l} \chi (\varsigma \gamma + m(1 - \varsigma )\frac{\rho }{{{m^2}}}) \le {\varsigma ^s}\chi (\gamma ) + m{(1 - \varsigma )^s}\chi (\frac{\rho }{{{m^2}}}), \\ \int\limits_0^1 {\chi (\varsigma \gamma + m(1 - \varsigma )\frac{\rho }{{{m^2}}})} d\varsigma \le \frac{{\chi (\gamma ) + m\chi (\frac{\rho }{{{m^2}}})}}{{s + 1}}. \end{array} \end{equation*}$ | (2.9) |
As $ \chi $ is $ (s, m) $-convex,
$ \begin{equation*} \begin{array}{l} \chi \left( {\frac{{\rho + m\gamma }}{2}} \right) = \chi \left( {\frac{{\varsigma \rho + (1 - \varsigma )m\gamma }}{2} + m.\frac{{(1 - \varsigma )\frac{\rho }{m} + \varsigma \gamma }}{2}} \right) \\ \le {\left( {\frac{1}{2}} \right)^s}\chi (\varsigma \rho + (1 - \varsigma )\gamma m) + m{\left( {\frac{1}{2}} \right)^s}\chi (\varsigma \gamma + (1 - \varsigma )\frac{\rho }{m}), \\ \end{array} \end{equation*} $ |
Integrating w.r.t $ \varsigma $ over $ [0, 1] $ and by using (2.8) and (2.9) we get,
$ \begin{equation} \begin{array}{l} {2^s}\chi \left( {\frac{{\rho + m\gamma }}{2}} \right) \le \int\limits_0^1 {\left( {\chi (\varsigma \rho + (1 - \varsigma )\gamma m} \right)d\varsigma + } m\int\limits_0^1 {\chi (\varsigma \gamma + (1 - \varsigma )\frac{\rho }{m})} d\varsigma \\ \le \frac{{\chi (\rho ) + m\chi (\gamma )}}{{s + 1}} + \frac{{\chi (\gamma ) + m\chi (\frac{\rho }{{{m^2}}})}}{{s + 1}}. \end{array} \end{equation} $ | (2.10) |
Substituting in first integral,
$ { { \varsigma \rho + (1 - \varsigma)\gamma m}} = \omega $,
$ \begin{equation} \begin{array}{l} \int\limits_0^1 {\chi (\varsigma \rho + (1 - \varsigma )m\gamma )d\varsigma = \frac{1}{{\gamma m - \rho }}} \int\limits_\rho ^{\gamma m} {\chi (\omega)d\omega}. \\ \end{array} \end{equation} $ | (2.11) |
Substituting in the second integral,
$ \varsigma \gamma + (1 - \varsigma)\frac{\rho }{m} = l $,
$ \begin{equation} \begin{array}{l} \int\limits_0^1 {\chi (\varsigma \gamma + (1 - \varsigma )\frac{\rho }{m} )d\varsigma = \frac{m}{{\gamma m - \rho }}} \int\limits_{\frac{\rho }{m}}^\gamma {\chi (l)dl}, {\rm{ }} \end{array} \end{equation} $ | (2.12) |
Using (2.11) and (2.12) in (2.10) required inequality (2.7) obtained.
Remark 2.6. For $ s, m = 1 $ inequality (2.7) becomes classical Hadamard inequality for convex functions.
Theorem 2.7. For $ n\in \mathbb{N} $, let $ \chi:U\subseteq(0, \infty)\rightarrow \mathbb{R} $ be n-times differentiable mapping on $ U^{\circ} $, where, $ \rho, \gamma \in U^{\circ} $, $ \rho < \gamma $ and $ \chi^{(n)} \in L[\rho, \gamma] $ and $ |\chi^{(n)} |^{q} $ for $ q > 1 $ is (s, m)-concave on interval $ [\rho, m\gamma] $, then
$ \begin{equation} \begin{array}{l} \left| {\sum\limits_{\nu = 0}^{n - 1} {{{( - 1)}^\nu }\left( {\frac{{{\chi ^{(\nu )}}(\gamma ){\gamma ^{\nu + 1}} - {\chi ^{(\nu )}}(\rho ){\rho ^{\nu + 1}}}}{{(\nu + 1)!}}} \right) - \int\limits_\rho ^{m\gamma } {\chi (\omega )d\omega } } } \right| \le \\ \frac{{{2^{\frac{s}{q}}}{{(m\gamma - \rho )}^{\frac{1}{q}}}\left| {{\chi ^{(n)}}\left( {\frac{{\rho + m\gamma }}{2}} \right)} \right|}}{{n!}}\left( {\begin{array}{*{20}{l}} {{{\left( {\gamma L_{np}^{np}(\rho , m\gamma ) - L_{np + 1}^{np + 1}(\rho , m\gamma )} \right)}^{\frac{1}{p}}}}\\ { + {{\left( {L_{np + 1}^{np + 1}(\rho , m\gamma ) - \rho L_{np}^{np}(\rho , m\gamma )} \right)}^{\frac{1}{p}}}} \end{array}} \right). \end{array} \end{equation} $ | (2.13) |
Proof. $ |\chi^{(n)} |^{q} $ for $ q > 1 $ is $ (s, m) $-concave then by using Theorem 2.5 we have,
$ \begin{equation*} \begin{array}{l} \frac{{{{\left| {{\chi ^{(n)}}(\rho )} \right|}^q} + m{{\left| {{\chi ^{(n)}}(\gamma )} \right|}^q}}}{{s + 1}} + \frac{{{{\left| {{\chi ^{(n)}}(\gamma )} \right|}^q} + m{{\left| {{\chi ^{(n)}}(\frac{\rho }{{{m^2}}})} \right|}^q}}}{{s + 1}} - \frac{{{m^2}}}{{(m\gamma - \rho )}}\int\limits_{\frac{\rho }{m}}^\gamma {{{\left| {{\chi ^{(n)}}(l)} \right|}^q}dl} \\ \le \frac{1}{{(m\gamma - \rho )}}\int\limits_\rho ^{m\gamma } {{{\left| {{\chi ^{(n)}}(\omega )} \right|}^q}d\omega } \le {2^s}{\left| {{\chi ^{(n)}}\left( {\frac{{\rho + m\gamma }}{2}} \right)} \right|^q}, \end{array} \end{equation*} $ |
$ \begin{equation*} \int\limits_\rho ^{m\gamma } {{{\left| {{\chi ^{(n)}}(\omega )} \right|}^q}d\omega } \le {2^s}(m\gamma - \rho ){\left| {{\chi ^{(n)}}\left( {\frac{{\rho + m\gamma }}{2}} \right)} \right|^q}, \end{equation*} $ |
$ \begin{equation*} \frac{1}{{(m\gamma - \rho )}}\int\limits_\rho ^{\gamma m} {(\gamma - \omega ){{\left| {{\chi ^{(n)}}(\omega )} \right|}^q}d\omega \le } \int\limits_\rho ^{\gamma m} {{{\left| {{\chi ^{(n)}}(\omega )} \right|}^q}d\omega }\le {2^s}(m\gamma - \rho ){\left| {{\chi ^{(n)}}\left( {\frac{{\rho + m\gamma }}{2}} \right)} \right|^q}, \end{equation*} $ |
$ \begin{equation*} \frac{1}{{(m\gamma - \rho )}}\int\limits_\rho ^{\gamma m} {(\gamma - \omega ){{\left| {{\chi ^{(n)}}(\omega )} \right|}^q}d\omega \le } \int\limits_\rho ^{\gamma m} {{{\left| {{\chi ^{(n)}}(\omega )} \right|}^q}d\omega }\le {2^s}(m\gamma - \rho ){\left| {{\chi ^{(n)}}\left( {\frac{{\rho + m\gamma }}{2}} \right)} \right|^q}. \end{equation*} $ |
Using Lemma 1.4 and Hölder-Îşcan inequality (1.2),
$ \begin{equation*} \begin{array}{l}\left| {\sum\limits_{\nu = 0}^{n - 1} {{{( - 1)}^\nu}\left( {\frac{{{\chi ^{(\nu)}}(\gamma ){\gamma ^{\nu + 1}} - {\chi ^{(\nu)}}(\rho ){\rho ^{\nu + 1}}}}{{(\nu + 1)!}}} \right) - \int\limits_\rho ^{\gamma m} {\chi (\omega)d\omega} } } \right| \le \frac{1}{{n!}}\int\limits_\rho ^{\gamma m} {{\omega^n}} \left| {{\chi ^{(n)}}(\omega)} \right|d\omega, \\ \ \ \ \ \ \ \le \frac{1}{{n!}}\frac{1}{{\gamma - \rho }}\left\{ \begin{array}{l} {\left( {\int\limits_\rho ^{\gamma m} {(\gamma - \omega ){\omega ^{np}}d\omega } } \right)^{\frac{1}{p}}}{\left( {\int\limits_\rho ^{m\gamma } {(\gamma - \omega ){{\left| {{\chi ^n}(\omega )} \right|}^q}d\omega } } \right)^{\frac{1}{q}}} + \\ {\left( {\int\limits_\rho ^{\gamma m} {(\omega - \rho ){\omega ^{np}}d\omega } } \right)^{\frac{1}{p}}}{\left( {\int\limits_\rho ^{m\gamma } {(\omega - \rho ){{\left| {{\chi ^n}(\omega )} \right|}^q}d\omega } } \right)^{\frac{1}{q}}} \end{array} \right\}, \\ \ \ \ \ \ \ \le \frac{1}{{n!}}\frac{1}{{\gamma - \rho }}\left( {\begin{array}{*{20}{l}} \begin{array}{l} {\left( {\int\limits_\rho ^{\gamma m} {(\gamma - \omega ){\omega ^{np}}d\omega } } \right)^{\frac{1}{p}}}{\left( {{2^s}{{(m\gamma - \rho )}^2}{{\left| {{\chi ^{(n)}}\left( {\frac{{\rho + m\gamma }}{2}} \right)} \right|}^q}} \right)^{\frac{1}{q}}}+ \\ {\left( {\int\limits_\rho ^{\gamma m} {(\omega - \rho ){\omega^{np}}d\omega} } \right)^{\frac{1}{p}}} {\left( {{2^s}{{(m\gamma - \rho )}^2}{{\left| {{\chi ^{(n)}}\left( {\frac{{\rho + m\gamma }}{2}} \right)} \right|}^q}} \right)^{\frac{1}{q}}} \end{array} \end{array}} \right), \\ \ \ \ \ \ \ \ \ \ \ \ \ {I_1} = \left( {\int\limits_\rho ^{\gamma m}{(\gamma - \omega){\omega^{np}}d\omega} } \right)^{\frac{1}{p}} = \left( {\gamma \frac{{{\omega^{np + 1}}}}{{np + 1}}| _\rho ^{\gamma m}- \frac{{{\omega^{np + 2}}}}{{np + 2}}}| _\rho ^{\gamma m} \right)^{\frac{1}{p}}\\ \ \ \ \ \ \ \ \ \ \ \ \ = {(m\gamma-\rho)^{\frac{1}{p}}}\left(\gamma L_{np}^{np}(\rho , m\gamma ) - L_{np + 1}^{np + 1}(\rho , m\gamma )\right)^{\frac{1}{p}}, \\ \ \ \ \ \ \ \ \ \ \ \ \ {I_2} = {\left( {\int\limits_\rho ^{\gamma m} {(\omega - \rho ){\omega^{np}}d\omega} } \right)^{\frac{1}{p}}} = {\left( {\frac{{{\omega^{np + 2}}}}{{np + 2}}| _\rho^{\gamma m}- \rho \frac{{{\omega^{np + 1}}}}{{np + 1}}}|_\rho^{\gamma m} \right)^{\frac{1}{p}}}\\\ \ \ \ \ \ \ \ \ \ \ \ = {(m\gamma-\rho)}^{\frac{1}{p}}\left( L_{np + 1}^{np + 1}(\rho , m\gamma ) - \rho L_{np}^{np}(\rho , m\gamma )\right)^{\frac{1}{p}}. \end{array} \end{equation*} $ | (2.14) |
Substituting integrals $ {I_1}, {I_2} $ in inequality (2.14) required inequality (2.13) is obtained.
For $ n = 1 $ inequality (2.13) becomes,
$ \begin{equation} \begin{array}{l} \left| {\frac{{\chi (\gamma )\gamma - \rho \chi (\rho )}}{{(\gamma - \rho )}} - \frac{1}{{(\gamma - \rho )}}\int\limits_\rho ^{\gamma m} {\chi (\omega)d\omega} } \right| \le \\ \frac{{{2^{\frac{s}{q}}}{{(m\gamma - \rho )}^{\frac{1}{q}}}\left| {{\chi ^{(1)}}\left( {\frac{{\rho + \gamma }}{2}} \right)} \right|}}{1!}\left( \begin{array}{l} {\left( {\gamma L_p^p(\rho , m\gamma ) - L_{p + 1}^{p + 1}(\rho , m\gamma )} \right)^{\frac{1}{p}}}\\ + {\left( {L_{p + 1}^{p + 1}(\rho , m\gamma ) - \rho L_p^p(\rho , m\gamma )} \right)^{\frac{1}{p}}} \end{array} \right). \end{array} \end{equation} $ | (2.15) |
Remark 2.8. For $ s = 1 $ and $ m = 1 $ our resulting inequality becomes the inequality obtained in Theorem $ 4 $ of [5].
Proposition 2.9. Let $ \rho, \gamma \in (0, \infty) $, where $ \rho < \gamma $, $ q > 1 $, $ n, i \in \mathbb{N} $ with $ i\geq n $,
$ \begin{equation} \begin{array}{l} \left| {L_i^i(\rho , \gamma )\left[ {(i + 1)\sum\nolimits_{\nu = 0}^{n - 1} {\frac{{{{( - 1)}^\nu}P(i, \nu)}}{{(\nu + 1)!}} - 1} } \right]} \right| \le \frac{1}{{n!}}{(\gamma - \rho )^{\frac{1}{q} - 1}}\\ \times \left( \begin{array}{l} {\left[ {\gamma L_{np}^{np}(\rho , \gamma ) - L_{np + 1}^{np + 1}(\rho , \gamma )} \right]^{\frac{1}{p}}}{\left( {\frac{{{\gamma ^{(i - n)q}}}}{{(s + 1)(s + 2)}} + \frac{{{m\rho ^{(i - n)q}}}}{{(s + 2)}}} \right)^{\frac{1}{q}}}\\ + {\left[ {L_{np + 1}^{np + 1}(\rho , \gamma ) - \rho L_{np}^{np}(\rho , \gamma )} \right]^{\frac{1}{p}}}{\left( {\frac{{{m\rho ^{(i - n)q}}}}{{(s + 1)(s + 2)}} + \frac{{{\gamma ^{(i - n)q}}}}{{(s + 2)}}} \right)^{\frac{1}{q}}} \end{array} \right), \end{array} \end{equation} $ | (2.16) |
where
$ \begin{equation*} P(i, n) = \left\{ \begin{array}{l} i(i - 1)...(i - n + 1), i > n\\ n!, \quad i = n\\ 1, \quad n = 0 \end{array} \right\}. \end{equation*} $ |
Proof. Let
$ \begin{equation*} \chi (\omega) = {\omega^i}, {\left| {{\chi ^{(n)}}(\omega)} \right|^q} = {\left| {P(i, n){\omega^{i - n}}} \right|^q}\\ \end{equation*} $ |
Let
$ \begin{equation*} g(\varsigma) = {\left| {P(i, n)(\varsigma \rho + m(1 - \varsigma )\gamma } \right|^{(i - n)q}} - {\left| {P(i, n){\varsigma ^s}\rho } \right|^{(i - n)q}} - {\left| m{P(i, n){{(1 - \varsigma )}^s}\gamma } \right|^{(i - n)q}}, \end{equation*} $ |
$ \begin{equation*} \begin{array}{l} {g^{''}}(\varsigma ) = P(i, n)((i - n)q)((i - n)q - 1){(\varsigma \rho + m(1 - \varsigma )\gamma )^{(i - n)q - 2}}{(\rho - m\gamma )^2} - \\ s(s - 1){\varsigma ^{s - 2}}P(i, n){\rho ^{(i - n)q}} - ms(s - 1){(1 - \varsigma )^{s - 2}}P(i, n){\gamma ^{(i - n)q}}, \end{array} \end{equation*} $ |
$ {g^{''}}(\varsigma) \ge 0 $ means g is convex and $ g(1) = g(0) = 0 $, which omplies $ g\leq 0 $, hence
$ \begin{equation*} {\left| {P(i, n)(\varsigma \rho + m(1 - \varsigma )\gamma) } \right|^{(i - n)q}} \le {\left| {P(i, n){\varsigma ^s}\rho } \right|^{(i - n)q}} + \left| m{P(i, n){{(1 - \varsigma )}^s}\gamma) } \right|^{(i-n)q}. \end{equation*} $ |
By using Theorem 2.1 for $ |\chi^{n}(\omega)|^{q} $ which is $ (s, m) $–convex for $ s, m \in (0, 1]^{2} $ inequality (2.16) obtained.
Remark 2.10. For $ s, m = 1 $ inequality (2.16) becomes inequality $ (3) $ of [5].
Example 2.11. Taking $ i = 2 $, $ n = 1 $, $ p = q = 2 $ in Proposition 2.9, the following is valid:
$ \begin{equation*} \begin{array}{l} 2A({\rho ^2}, {\gamma ^2}) + {G^2}(\rho , \gamma ) \le (\frac{3}{{2\sqrt 6 }})\left( \begin{array}{l} {\left[ {A(3{\rho ^2}, {\gamma ^2}) + {G^2}(\rho , \gamma )} \right]^{\frac{1}{2}}}{\left( {\frac{{{\gamma ^2}}}{{(s + 1)(s + 2)}} + \frac{{{m\rho ^2}}}{{(s + 2)}}} \right)^{\frac{1}{2}}}\\ + {\left[ {A({\rho ^2}, 3{\gamma ^2}) + {G^2}(\rho , \gamma )} \right]^{\frac{1}{2}}}{\left( {\frac{{{m\rho ^2}}}{{(s + 1)(s + 2)}} + \frac{{{\gamma ^2}}}{{(s + 2)}}} \right)^{\frac{1}{2}}} \end{array} \right), \end{array} \end{equation*} $ |
where $ A $ and $ G $ are classical arithmetic and geometric means, respectively.
Proposition 2.12. Let $ \rho, \gamma \in (0, \infty) $, with, $ \rho < \gamma $, $ q > 1 $ and $ n \in \mathbb{N} $,
$ \begin{equation} \begin{array}{l} 1 \le {(\gamma - \rho )^{\frac{1}{q} - 1}}\left( \begin{array}{l} {\left[ {\gamma L_p^p(\rho , \gamma ) - L_{p + 1}^{p + 1}(\rho , \gamma )} \right]^{\frac{1}{p}}}{\left[ {(\frac{{{\gamma ^{ - q}}}}{{(s + 1)(s + 2)}} + \frac{{{m\rho ^{ - q}}}}{{(s + 2)}})} \right]^{\frac{1}{q}}} + \\ {\left[ { L_{p + 1}^{p + 1}(\rho , \gamma ) -\rho L_p^p(\rho , \gamma )} \right]^{\frac{1}{p}}}{\left[ {(\frac{{{m\rho ^{ - q}}}}{{(s + 1)(s + 2)}} + \frac{{{\gamma ^{ - q}}}}{{(s + 2)}})} \right]^{\frac{1}{q}}} \end{array} \right), \end{array} \end{equation} $ | (2.17) |
where $ L $ is classical logarithmic mean.
Proof.
$ \begin{equation*} \chi (\omega) = \ln \omega, {\left| {{\chi ^{(1)}}(\omega)} \right|^q} = {\left| {{\omega^{ - 1}}} \right|^q} \end{equation*} $ |
Let
$ \begin{equation*} g(\varsigma) = {\left| {(\varsigma \rho + m(1 - \varsigma )\gamma } \right|^{ - q}} - {\left| {{\varsigma ^s}\rho } \right|^{ - q}} - {\left| {{{m(1 - \varsigma )}^s}\gamma } \right|^{ - q}} \end{equation*} $ |
$ \begin{equation*} \begin{array}{l} {g^{''}}(\varsigma) = ( - q)( - q - 1){(\varsigma \rho + m(1 - \varsigma )\gamma )^{ - q - 2}}{(\rho - m\gamma )^2}\\ - s(s - 1){\varsigma ^{s - 2}}{\rho ^{ - q}} - ms(s - 1){(1 - \varsigma )^{s - 2}}{\gamma ^{-q}}, \end{array} \end{equation*} $ |
$ {g^{''}}(\varsigma) \ge 0 $ means $ g $ is convex and $ g(1) = g(0) = 0 $ which implies $ g\leq 0 $ as
$ \begin{equation*} {\left| {(\varsigma \rho +m (1 - \varsigma )\gamma } \right|^{ - q}} \le {\left| {{\varsigma ^s}\rho } \right|^{ - q}}\\ + {\left| {{{m(1 - \varsigma )}^s}\gamma } \right|^{ - q}}. \end{equation*} $ |
So $ {\left| {{\chi ^{(1)}}(\omega)} \right|^q} $ is $ (s, m) $-convex. Then by using inequality (2.3) required inequality (2.17) obtained.
Remark 2.13. For $ s, m = 1 $ inequality (2.17) becomes $ (4) $ of [5].
Example 2.14. For $ n = 1 $ and $ p = q = 2 $, Proposition 2.12 gives:
$ \begin{equation*} \label{45} 1 \le \frac{1}{{\sqrt 6 }}\left( {\begin{array}{*{20}{l}} {{{\left[ {A(3{\rho ^2}, {\gamma ^2}) + {G^2}(\rho , \gamma )} \right]}^{\frac{1}{p}}}{{\left[ {(\frac{{{\gamma ^{ - 2}}}}{{(s + 1)(s + 2)}} + \frac{{m{\rho ^{ - 2}}}}{{(s + 2)}})} \right]}^{\frac{1}{2}}} + }\\ {{{\left[ {A({\rho ^2}, 3{\gamma ^2}) + {G^2}(\rho , \gamma )} \right]}^{\frac{1}{p}}}{{\left[ {(\frac{{m{\rho ^{ - 2}}}}{{(s + 1)(s + 2)}} + \frac{{{\gamma ^{ - 2}}}}{{(s + 2)}})} \right]}^{\frac{1}{2}}}} \end{array}} \right). \end{equation*} $ |
Proposition 2.15. Let $ \rho, \gamma \in (0, \infty) $, $ \rho < \gamma $, $ q > 1 $, $ i \in (- \infty, 0] \cup [1, \infty)\backslash\{ - 2q, - q\} $
then
$ \begin{equation} L_{\frac{i}{q} + 1}^{\frac{i}{q} + 1}(\rho , \gamma ) \le {(\gamma - \rho )^{\frac{1}{q} - 1}}\left( \begin{array}{l} {\left[ {\gamma L_p^p(\rho , \gamma ) - L_{p + 1}^{p + 1}(\rho , \gamma )} \right]^{\frac{1}{p}}}{\left[ {(\frac{{{\gamma ^i}}}{{(s + 1)(s + 2)}} + \frac{{m{\rho ^i}}}{{(s + 2)}})} \right]^{\frac{1}{q}}}\\ + {\left[ {L_{p + 1}^{p + 1}(\rho , \gamma ) - \rho L_p^p(\rho , \gamma )} \right]^{\frac{1}{p}}}{\left[ {(\frac{{m{\rho ^i}}}{{(s + 1)(s + 2)}} + \frac{{{\gamma ^i}}}{{(s + 2)}})} \right]^{\frac{1}{q}}} \end{array} \right). \end{equation} $ | (2.18) |
Proof.
$ \begin{equation*} \chi (t) = \frac{q}{{i + q}}{\omega^{\frac{i}{q} + 1}}, |\chi^{'} (\omega)|^{q} = \omega^{i} \end{equation*} $ |
Let
$ \begin{equation*} g(\varsigma) = {\left| {(\varsigma \rho + m(1 - \varsigma )\gamma } \right|^i} - {\left| {{\varsigma ^s}\rho } \right|^i} - {\left| {{{m(1 - \varsigma )}^s}\gamma } \right|^i}, \end{equation*} $ |
$ \begin{equation*} {g^{''}}(\varsigma) = (i)(i - 1){(\varsigma \rho +m (1 - \varsigma )\gamma )^{i - 2}}{(\rho - m\gamma )^2} - s(s - 1){\varsigma ^{s - 2}}{\rho ^i} - ms(s - 1){(1 - \varsigma )^{s - 2}}{\gamma ^i}, \end{equation*} $ |
$ g^{''}(\varsigma) \geq 0 $ and $ g(1) = g(0) $ so $ g\leq0 $ and $ |\chi^{'} (\omega)|^{q} $ is $ (s, m) $-convex, by using inequality (2.3) we have (2.18).
Remark 2.16. For $ s, m = 1 $ inequality (2.18) becomes $ (5) $ of [5].
Example 2.17. For $ i = 2 $ and $ p = q = 2 $ Proposition 2.15 reduced to
$ \begin{equation} \begin{array}{l} 2A({\rho ^2}, {\gamma ^2}) + {G^2}(\rho , \gamma ) \le \\ {(\frac{3}{\sqrt{6}})}\left( \begin{array}{l} {\left[ {A(3{\rho ^2}, {\gamma ^2}) + {G^2}(\rho , \gamma )} \right]^{\frac{1}{2}}}{\left[ {(\frac{{{\gamma ^2}}}{{(s + 1)(s + 2)}} + \frac{{{m\rho ^2}}}{{(s + 2)}})} \right]^{\frac{1}{2}}} + \\ {\left[ {A({\rho ^2}, 3{\gamma ^2}) + {G^2}(\rho , \gamma )} \right]^{\frac{1}{2}}}{\left[ {(\frac{{{m\rho ^2}}}{{(s + 1)(s + 2)}} + \frac{{{\gamma ^2}}}{{(s + 2)}})} \right]^{\frac{1}{2}}} \end{array} \right). \end{array} \end{equation} $ | (2.19) |
Proposition 2.18. Let $ \rho, \gamma \in (0, \infty) $ with $ \rho < \gamma $, $ q > 1 $ and $ n \in \mathbb{N} $ then we have
$ \begin{equation} \times \begin{array}{*{20}{l}} {\left| {L_i^i(\rho , \gamma )\left[ {\sum\limits_{\nu = 0}^{n - 1} {\frac{{{{( - 1)}^\nu}P(i, \nu)}}{{(\nu + 1)!}} - 1} } \right]} \right| \le \frac{{P(i, n)}}{s^{\frac{1}{q}}{n!}}{{\left( {\frac{1}{2}} \right)}^{\frac{1}{p}}}{{(\gamma - \rho )}^{\frac{2}{p} - 1}}}\\ {{{\left( {\begin{array}{*{20}{l}} {\frac{{{\gamma ^{(i - n)q}}}}{{{{(\gamma - \rho )}^{s - 1}}}}\left[ { - L_{nq + 2}^{nq + 2}(\rho , \gamma ) + (\rho + \gamma )L_{nq + 1}^{nq + 1}(\rho , \gamma ) - \rho \gamma L_{nq}^{nq}(\rho , \gamma )} \right] + }\\ {\frac{{{m\rho ^{(i - n)q}}}}{{{{(\gamma - \rho )}^{s - 1}}}}\left[ {L_{nq + 2}^{nq + 2}(\rho , \gamma ) - 2\gamma L_{nq + 1}^{nq + 1}(\kappa , \mu ) + {\mu ^2}L_{nq}^{nq}(\rho , \gamma )} \right]} \end{array}} \right)}^{\frac{1}{q}}}}\\ { + \frac{{P(i, n)}}{s^{\frac{1}{q}}{n!}}{{\left( {\frac{1}{2}} \right)}^{\frac{1}{p}}}{{(\gamma - \rho )}^{\frac{2}{p} - 1}}{{\left( {\begin{array}{*{20}{l}} {\frac{{{\gamma ^{(i - n)q}}}}{{{{(\gamma - \rho )}^{s - 1}}}}\left[ {L_{nq + 2}^{nq + 2}(\rho , \gamma ) - 2\rho L_{nq + 1}^{nq + 1}(\rho , \gamma ) + {\rho ^2}L_{nq}^{nq}(\rho , \gamma )} \right] + }\\ {\frac{{{m\rho ^{(i - n)q}}}}{{{{(\gamma - \rho )}^{s - 1}}}}\left[ { - L_{nq + 2}^{nq + 2}(\rho , \gamma ) + (\rho + \gamma )L_{nq + 1}^{nq + 1}(\rho , \gamma ) - \rho \gamma L_{nq}^{nq}(\rho , \gamma )} \right]} \end{array}} \right)}^{\frac{1}{q}}}}. \end{array} \end{equation} $ | (2.20) |
Proof. Let,
$ \begin{equation*} \chi (\omega) = {\omega^i}\\, {\left| {{\chi ^{(n)}}(\omega)} \right|^q} = {\left[ {P(i, n){\omega^{i - n}}} \right]^q} \end{equation*} $ |
As $ |\chi^{n}(\omega)|^{q} $ is $ (s, m) $-convex on $ (0, \infty) $, therefore by using Theorem 2.3 required inequality (2.20) is obtained.
Remark 2.19. For $ s, m = 1 $ inequality (2.20) becomes inequality obtained in Proposition $ 4 $ of [5].
Proposition 2.20. Let $ \rho, \gamma \in (0, \infty) $ with $ \rho < \gamma $ $ q > 1 $ and $ n \in \mathbb{N} $ then we have,
$ \begin{equation} 1 \le \frac{{{{(\gamma - \rho )}^{\frac{2}{p} - 2}}}}{{{s^{\frac{1}{q}}.2^{\frac{1}{p}}}}}\left( \begin{array}{l} {\left( {\begin{array}{*{20}{l}} {\frac{{{\gamma ^{ - q}}}}{{{{(\gamma - \rho )}^{s-1}}}}\left[ { - L_{q + 2}^{q + 2}(\rho , \gamma ) + (\rho + \gamma )L_{q + 1}^{q + 1}(\rho , \gamma ) - \rho \gamma L_{q}^{q}(\rho , \gamma )} \right] + }\\ {\frac{{{m\rho ^{ - q}}}}{{{{(\gamma - \rho )}^{s-1}}}}\left[ {L_{q + 2}^{q + 2}(\rho , \gamma ) - 2\gamma L_{q + 1}^{q + 1}(\rho , \gamma ) + {\gamma ^2}L_{q}^{q}(\rho , \gamma )} \right]} \end{array}} \right)^{\frac{1}{q}}}\\ +{\left( {\begin{array}{*{20}{l}} {\frac{{{\gamma ^{ - q}}}}{{{{(\gamma - \rho )}^{s-1}}}}\left[ {L_{q + 2}^{q + 2}(\rho , \gamma ) - 2\rho L_{q + 1}^{q + 1}(\rho , \gamma ) + {\rho ^2}L_{q}^{q}(\rho , \gamma )} \right] + }\\ {\frac{{{m\rho ^{ - q}}}}{{{{(\gamma - \rho )}^{s-1}}}}\left[ { - L_{q + 2}^{q + 2}(\rho , \gamma ) + (\rho + \gamma )L_{q + 1}^{q + 1}(\rho , \gamma ) - \rho \gamma L_{q}^{q}(\rho , \gamma )} \right]} \end{array}} \right)^{\frac{1}{q}}} \end{array} \right), \end{equation} $ | (2.21) |
Proof.
$ \begin{equation*} \chi (\omega) = \ln \omega, {\left| {{\chi ^{(1)}}(\omega)} \right|^q} = {\left[ {{\omega^{ - 1}}} \right]^q} \end{equation*} $ |
As $ {\left| {{\chi ^{(1)}}(\omega)} \right|^q} $ is $ (s, m) $–convex, therefore by using inequality (2.6) required (2.21) obtained.
Remark 2.21. For $ s, m = 1 $ inequality (2.21) becomes inequality obtained in Proposition $ 5 $ of [5].
Proposition 2.22. Let $ \rho, \gamma \in (0, \infty) $ with $ \rho < \gamma $ $ q > 1 $ and $ i \in (-\infty, 0]\backslash\{-2q, q\} $, then
$ \begin{equation} L_{\frac{i}{q} + 1}^{\frac{i}{q} + 1}(\rho , \gamma ) \le \frac{{{{(\gamma - \rho )}^{\frac{2}{p} - 2}}}}{{{s^{\frac{1}{q}}.2^{\frac{1}{p}}}}}\left( \begin{array}{l} {\left( {\begin{array}{*{20}{l}} {\frac{{{\gamma ^i}}}{{{{(\gamma - \rho )}^{s-1}{}}}}\left[ { - L_{q + 2}^{nq + 2}(\rho , \gamma ) + (\rho + \gamma )L_{q + 1}^{q + 1}(\rho , \gamma ) - \rho \gamma L_{q}^{q}(\rho , \gamma )} \right] + }\\ {\frac{{{m\rho ^i}}}{{{{(\gamma - \rho )}^{s-1}}}}\left[ {L_{q + 2}^{q + 2}(\rho , \gamma ) - 2\gamma L_{q + 1}^{q + 1}(\rho , \gamma ) + {\gamma ^2}L_{q}^{q}(\rho , \gamma )} \right]} \end{array}} \right)^{\frac{1}{q}}}\\ +{\left( {\begin{array}{*{20}{l}} {\frac{{{\gamma ^i}}}{{{{(\gamma - \rho )}^{s-1}}}}\left[ {L_{q + 2}^{q + 2}(\rho , \gamma ) - 2\rho L_{q + 1}^{q + 1}(\rho , \gamma ) + {\rho ^2}L_{q}^{q}(\rho , \gamma )} \right] + }\\ {\frac{{{m\rho ^m}}}{{{{(\gamma - \rho )}^{s-1}}}}\left[ { - L_{q + 2}^{q + 2}(\rho , \gamma ) + (\rho + \gamma )L_{q + 1}^{q + 1}(\rho , \gamma ) - \rho \gamma L_{q}^{q}(\rho , \gamma )} \right]} \end{array}} \right)^{\frac{1}{q}}} \end{array} \right). \end{equation} $ | (2.22) |
Proof.
$ \begin{equation*} \chi (\omega) = \frac{q}{{i + q}}{\omega^{\frac{i}{q} + 1}} |\chi^{'} (\omega)|^{q} = \omega^{i} \end{equation*} $ |
$ |\chi^{'} (w)|^{q} $ is $ (s, m) $-convex by using inequality (2.6) required (2.22) obtained.
For $ i = 1 $ inequality (2.22) becomes,
$ \begin{equation} L_{\frac{1}{q} + 1}^{\frac{1}{q} + 1}(\rho , \gamma ) \le \frac{{{{(\gamma - \rho )}^{\frac{2}{p} - 2}}}}{{{s^{\frac{1}{q}}.2^{\frac{1}{p}}}}}\left( {\begin{array}{*{20}{l}} {{{\left( {\begin{array}{*{20}{l}} {\frac{{{\gamma^1}}}{{{{(\gamma - \rho )}^{s - 1}}}}\left[ { - L_{q + 2}^{q + 2}(\rho , \gamma ) + (\rho + \gamma )L_{q + 1}^{q + 1}(\rho , \gamma ) - \rho \gamma L_q^q(\rho , \gamma )} \right] + }\\ {\frac{{{m\rho ^1}}}{{{{(\gamma - \rho )}^{s - 1}}}}\left[ {L_{q + 2}^{q + 2}(\rho , \gamma ) - 2\gamma L_{q + 1}^{q + 1}(\rho , \gamma ) + {\gamma ^2}L_q^q(\rho , \gamma )} \right]} \end{array}} \right)}^{\frac{1}{q}}}}\\ +{{{\left( {\begin{array}{*{20}{l}} {\frac{{{\gamma ^1}}}{{{{(\gamma - \rho )}^{s - 1}}}}\left[ {L_{q + 2}^{q + 2}(\rho , \gamma ) - 2\rho L_{q + 1}^{q + 1}(\rho , \gamma ) + {\rho ^2}L_q^q(\rho , \gamma )} \right] + }\\ {\frac{{{m\rho ^1}}}{{{{(\gamma - \rho )}^{s - 1}}}}\left[ { - L_{q + 2}^{q + 2}(\rho , \gamma ) + (\rho + \gamma )L_{q + 1}^{q + 1}(\rho , \gamma ) - \rho \gamma L_q^q(\rho , \gamma )} \right]} \end{array}} \right)}^{\frac{1}{q}}}} \end{array}} \right). \end{equation} $ | (2.23) |
Remark 2.23. For $ s, m = 1 $ inequality (2.22) becomes inequality obtained in Proposition $ 6 $ of [5].
Proposition 2.24. Let $ \rho, \gamma \in (0, \infty) $ with $ \rho < \gamma $, $ q > 1 $ and $ i \in [0, 1] $ we have,
$ \begin{equation} \begin{array}{l} L_{\frac{i}{q} + 1}^{\frac{i}{q} + 1}(\rho , \gamma ) \le \\ \frac{{{2^{\frac{s}{q}}}{{(m\gamma - \rho )}^{\frac{1}{q}}}}}{{1!}} {A^{\frac{i}{q}}}(\rho , \gamma )\left( \begin{array}{l} {\left( {\gamma L_p^p(\rho , m\gamma ) - L_{p + 1}^{p + 1}(\rho , m\gamma )} \right)^{\frac{1}{p}}}\\ + {\left( {L_{p + 1}^{p + 1}(\rho , m\gamma ) - \rho L_p^p(\rho , m\gamma )} \right)^{\frac{1}{p}}} \end{array} \right). \end{array} \end{equation} $ | (2.24) |
Proof.
$ \begin{equation*} \chi (\omega) = \frac{q}{{i + q}}{\omega^{\frac{i}{q} + 1}}, |\chi^{'} (\omega)|^{q} = \omega^{i}. \end{equation*} $ |
As $ |\chi^{'} (\omega)|^{q} $ is $ (s, m) $-concave by using inequality (2.15) we obtain required inequality (2.24).
Remark 2.25. For $ s, m = 1 $ inequality (2.24) becomes the inequality obtained in Proposition $ 9 $ of [5].
In this paper, Hölder-Isçan inequality is utilized to prove Hermite-Hadamard type inequalities for $ n $-times differentiable $ (s, m) $-convex functions. The method is adequate and provide many generalizations of existing results as shown in remarks. Moreover, many other inequalities can be generalized for other types of convex functions.
This research received funding support from the NSRF via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation, (grant number B05F650018)
The authors declare no conflict of interest.
[1] | S. S. Dragomir, C. E. M. Pearce, Selected topics on Hermite-Hadamard inequality and applications, Victoria University, Melbourne, 2000. |
[2] | D. Y. Hwang, Some inequalities for $n$-times differentiable mappings and applications, Kyungpook Math., 43 (2003), 335–343. |
[3] | İ. İşcan, Hermite-Hdarmard type inequalities for harmonically convex functions, Hacet. J. Math. Stat., 43 (2014), 935–942. |
[4] |
B. Y. Xi, F. Qi, Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means, J. Funct. Space. Appl., 2012 (2012). https://doi.org/10.1155/2012/980438 doi: 10.1155/2012/980438
![]() |
[5] |
P. Agarwal, M. Kadakal, İ. İşcan, Y. M. Chu, Better approaches for $n$-times differentiable convex functions, Mathematics, 8 (2020), 950. https://doi.org/10.3390/math8060950 doi: 10.3390/math8060950
![]() |
[6] | B. G. Pachpatte, Mathemematical inequalities, Elsevier, Netherlands, 2005. |
[7] |
İ. İşcan, New refinement for integral and sum forms of Hölder inequality, J. Inequal. Appl., 8 (2019), 304. https://doi.org/10.1186/s13660-019-2258-5 doi: 10.1186/s13660-019-2258-5
![]() |
[8] |
S. Maden, H. Kadakal, M. Kadakal, İ. İmdat, Some new integral inequalities for $n$-times differentiable convex and concave functions, J. Nonlinear Sci. Appl., 10 (2017), 6141–6148. https://doi.org/10.22436/jnsa.010.12.01 doi: 10.22436/jnsa.010.12.01
![]() |
[9] |
H. Barsam, M. S. Ramezani, Y. Sayyari, On the new Hermite-Hadamard type inequalities for $s$-convex functions, Afr. Mat., 32 (2021), 1355–1367. https://doi.org/10.1007/s13370-021-00904-7 doi: 10.1007/s13370-021-00904-7
![]() |
[10] | M. Z. Sarikaya, E. Set, M. E. Özdemir, Some new Hermite Hadamard type inequalities for cooridinated $m$-convex and $(\alpha, m)$-convex functions, Hacet. J. Math. Stat., 40 (2011), 219–229. |
[11] | S. P. Bai, S. H. Wang, F. Qi, Some Hermite-Hadamrd type for convex functions with applications to means, J. Inequal. Appl., 2012. |
[12] |
P. Cerone, S. S. Dragomir, J. Roumeliotis, A new generalization of the trapezoid formula for $n$-time differentiable mappings and applications, Demonstr. Math., 33 (2000), 719–736. https://doi.org/10.1515/dema-2000-0404 doi: 10.1515/dema-2000-0404
![]() |
[13] |
W. D. Jiang, D. W. Niu, Y. Hua, F. Qi, Generalizations of Hermite-Hadamard inequality to $n$-times differentiable function which $s$-convex in second sense, Analysis, 32 (2012), 209–220. https://doi.org/10.1524/anly.2012.1161 doi: 10.1524/anly.2012.1161
![]() |
[14] |
H. Kadakal, New inequalities for strongly $r$-convex functions, J. Funct. Space., 2019 (2019). https://doi.org/10.1155/2019/1219237 doi: 10.1155/2019/1219237
![]() |
[15] |
H. Kadakal, $(\alpha, m_{1}, m_{2})$-convexity and some inequalities of Hermite-Hadamard type, Commun. Fact. Sci. Univ. Ank. Ser. Math. Stat., 68 (2019), 2128–2142. https://doi.org/10.31801/cfsuasmas.511184 doi: 10.31801/cfsuasmas.511184
![]() |
[16] |
S. Özcan, Î. Îşcan, Some integral inequalitites for harmonically $(\alpha, s)$-convex functions, J. Funct. Space., 2019 (2019). https://doi.org/10.1155/2019/2394021 doi: 10.1155/2019/2394021
![]() |
[17] |
M. V. Cortez, Féjer type inequalities for $(s, m)$-convex functions in second sense, Appl. Math. Inform. Sci., 10 (2016), 1–8. https://doi.org/10.1155/2019/2394021 doi: 10.1155/2019/2394021
![]() |
[18] |
S. B. Akbar, J. Pečarić, G. Farid, X. Qiang, Generalized fractional integral inequalities for exponentially $(s, m)$-convex functions, J. Inequal. Appl., 2020 (2020), 70. https://doi.org/10.1186/s13660-020-02335-7 doi: 10.1186/s13660-020-02335-7
![]() |
[19] |
N. Eftekhari, Some remarks on $(s, m)$-convexity in the second sense, J. Math. Inequal., 8 (2014), 489–495. https://doi.org/10.7153/jmi-08-36 doi: 10.7153/jmi-08-36
![]() |
[20] |
Y. C. Kwun, A. A. Shahid, W. Nazeer, S. I. Butt, M. A. Shin, Tricorns and multicorns in noor orbit with $s$-convexity, IEEE Access, 7 (2019), 95297–95304. https://doi.org/10.1109/ACCESS.2019.2928796 doi: 10.1109/ACCESS.2019.2928796
![]() |
[21] | S. I. Butt, M. Nadeem, G. Farid, On Caputo fractional derivatives via exponential $s$-convex functions, Turkish J. Sci., 5 (2020), 140–146. |
[22] |
M. Z. Sarikaya, E. Set, M. E. Ozdemir, On new inequalities of Simpson's type for $s$-convex functions, Comput. Math. Appl., 60 (2020), 2191–2199. https://doi.org/10.1016/j.camwa.2010.07.033 doi: 10.1016/j.camwa.2010.07.033
![]() |
[23] |
E. Set, New inequalities of Ostrowski typefor mapppings whose derivatives are $s$-convex in the second sense via fractional integrals, Comput. Math. Appl., 63 (2012), 1147–1154. https://doi.org/10.1016/j.camwa.2011.12.023 doi: 10.1016/j.camwa.2011.12.023
![]() |
[24] |
M. E. Özdemir, M. A. Latif, A. O. Akdemir, On some Hadamard-type inequalities for product of two $s$-convex functions on the coordinate, J. Inequal. Appl., 2012 (2012), 21. https://doi.org/10.1186/1029-242X-2012-21 doi: 10.1186/1029-242X-2012-21
![]() |
[25] |
M. E. Özdemir, Ç. Yildiz, A. O. Akdemir, E. Set, On some inequalities for $s$-convex functions and applications, J. Inequal. Appl., 2013 (2013), 1–11. https://doi.org/10.1186/1029-242X-2013-333 doi: 10.1186/1029-242X-2013-333
![]() |
[26] | Y. M. Chu, M. A. Khan, T. U. Khan, T. Ali, Generalizations of Hermite-Hadamard type inequalities for $MT$-convex functions, J. Nonlinear Sci. Appl., 9 (2016), 4305–4316. |
[27] |
M. A. Khan, Y. M. Chu, T. U. Khan, J. Khan, Some new inequalities of Hermite-Hadamard type for $s$-convex functions with applications, Open Math., 15 (2017), 1414–1430. https://doi.org/10.1515/math-2017-0121 doi: 10.1515/math-2017-0121
![]() |
[28] |
Y. Khurshid, M. A. Khan, Y. M. Chu, Z. A. Khan, Hermite-Hadamard-Fejér inequalities for conformable fractional integrals via preinvex functions, J. Funct. Space., 2019 (2019). https://doi.org/10.1155/2019/3146210 doi: 10.1155/2019/3146210
![]() |
[29] |
M. A. Khan, N. Mohammad, E. R. Nwaeze, Y. M. Chu, Hermite-Hadamard type inequalities via quantum calculus involving green function, Adv. Differ. Equ., 2020 (2020), 99. https://doi.org/10.1186/s13662-020-02559-3 doi: 10.1186/s13662-020-02559-3
![]() |
[30] |
P. O. Mohammed, I. Brevik, A new version of Hermite-Hadamard inequality for Riemann-Liouville fractional integrals, Symmetry, 12 (2020), 1–11. https://doi.org/10.3390/sym12040610 doi: 10.3390/sym12040610
![]() |
[31] |
J. Han, P. O. Mohammed, H. Zeng, Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function, Mathematics, 18 (2020), 794–806. https://doi.org/10.1515/math-2020-0038 doi: 10.1515/math-2020-0038
![]() |
[32] |
D. Zhao, M. A. Ali, A. Kashuri, H. Budak, Generalized fractional integral inequalities of Hermite-Hadamard type for harmonically convex functions, Adv. Differ. Equ., 2020 (2020), 137. https://doi.org/10.1186/s13662-020-02589-x doi: 10.1186/s13662-020-02589-x
![]() |
[33] |
M. U. Awan, N. Akhtar, S. Iftikhar, M. A. Noor, Y. M. Chu, New Hermite-Hadamard type inequalities for $n$-polynomial harmonically convex functions, J. Inequal. Appl., 2020 (2020), 125. https://doi.org/10.1186/s13660-020-02393-x doi: 10.1186/s13660-020-02393-x
![]() |
[34] |
M. B. Khan, M. A. Noor, N. A. Shah, K. M. Abualnaja, T. Botmart, Some new versions of Hermite-Hadamard integral inequalities in fuzzy fractional calculus for generalized pre-invex functions via fuzzy-interval-valued setting, J. Fractal Fract., 6 (2022), 83. https://doi.org/10.3390/fractalfract6020083 doi: 10.3390/fractalfract6020083
![]() |
1. | Ammara Nosheen, Maria Tariq, Khuram Ali Khan, Nehad Ali Shah, Jae Dong Chung, On Caputo Fractional Derivatives and Caputo–Fabrizio Integral Operators via (s, m)-Convex Functions, 2023, 7, 2504-3110, 187, 10.3390/fractalfract7020187 | |
2. | Jie Li, Yong Lin, Serap Özcan, Muhammad Shoaib Saleem, Ahsan Fareed Shah, A study of Hermite-Hadamard inequalities via Caputo-Fabrizio fractional integral operators using strongly $(s, m)$-convex functions in the second sense, 2025, 2025, 1029-242X, 10.1186/s13660-025-03266-x |