Processing math: 100%
Research article Special Issues

Equivalence of novel IH-implicit fixed point algorithms for a general class of contractive maps

  • In this paper, a novel implicit IH-multistep fixed point algorithm and convergence result for a general class of contractive maps is introduced without any imposition of the "sum conditions" on the countably finite family of the iteration parameters. Furthermore, it is shown that the convergence of the proposed iteration scheme is equivalent to some other implicit IH-type iterative schemes (e.g., implicit IH-Noor, implicit IH-Ishikawa and implicit IH-Mann) for the same class of maps. Also, some numerical examples are given to illustrate that the equivalence is true. Our results complement, improve and unify several equivalent results recently announced in literature.

    Citation: Imo Kalu Agwu, Umar Ishtiaq, Naeem Saleem, Donatus Ikechi Igbokwe, Fahd Jarad. Equivalence of novel IH-implicit fixed point algorithms for a general class of contractive maps[J]. AIMS Mathematics, 2023, 8(1): 841-872. doi: 10.3934/math.2023041

    Related Papers:

    [1] Lu-Chuan Ceng, Li-Jun Zhu, Tzu-Chien Yin . Modified subgradient extragradient algorithms for systems of generalized equilibria with constraints. AIMS Mathematics, 2023, 8(2): 2961-2994. doi: 10.3934/math.2023154
    [2] Anjali, Seema Mehra, Renu Chugh, Salma Haque, Nabil Mlaiki . Iterative algorithm for solving monotone inclusion and fixed point problem of a finite family of demimetric mappings. AIMS Mathematics, 2023, 8(8): 19334-19352. doi: 10.3934/math.2023986
    [3] Junaid Ahmad, Kifayat Ullah, Hasanen A. Hammad, Reny George . On fixed-point approximations for a class of nonlinear mappings based on the JK iterative scheme with application. AIMS Mathematics, 2023, 8(6): 13663-13679. doi: 10.3934/math.2023694
    [4] Muhammad Waseem Asghar, Mujahid Abbas, Cyril Dennis Enyi, McSylvester Ejighikeme Omaba . Iterative approximation of fixed points of generalized $ \alpha _{m} $-nonexpansive mappings in modular spaces. AIMS Mathematics, 2023, 8(11): 26922-26944. doi: 10.3934/math.20231378
    [5] Noor Muhammad, Ali Asghar, Samina Irum, Ali Akgül, E. M. Khalil, Mustafa Inc . Approximation of fixed point of generalized non-expansive mapping via new faster iterative scheme in metric domain. AIMS Mathematics, 2023, 8(2): 2856-2870. doi: 10.3934/math.2023149
    [6] Rose Maluleka, Godwin Chidi Ugwunnadi, Maggie Aphane . Inertial subgradient extragradient with projection method for solving variational inequality and fixed point problems. AIMS Mathematics, 2023, 8(12): 30102-30119. doi: 10.3934/math.20231539
    [7] Saud Fahad Aldosary, Mohammad Farid . A viscosity-based iterative method for solving split generalized equilibrium and fixed point problems of strict pseudo-contractions. AIMS Mathematics, 2025, 10(4): 8753-8776. doi: 10.3934/math.2025401
    [8] Muhammad Bux, Saleem Ullah, Muhammad Bilal Khan, Najla Aloraini . A novel iterative approach for resolving generalized variational inequalities. AIMS Mathematics, 2023, 8(5): 10788-10801. doi: 10.3934/math.2023547
    [9] Dong Ji, Yao Yu, Chaobo Li . Fixed point and endpoint theorems of multivalued mappings in convex $ b $-metric spaces with an application. AIMS Mathematics, 2024, 9(3): 7589-7609. doi: 10.3934/math.2024368
    [10] Hamza Bashir, Junaid Ahmad, Walid Emam, Zhenhua Ma, Muhammad Arshad . A faster fixed point iterative algorithm and its application to optimization problems. AIMS Mathematics, 2024, 9(9): 23724-23751. doi: 10.3934/math.20241153
  • In this paper, a novel implicit IH-multistep fixed point algorithm and convergence result for a general class of contractive maps is introduced without any imposition of the "sum conditions" on the countably finite family of the iteration parameters. Furthermore, it is shown that the convergence of the proposed iteration scheme is equivalent to some other implicit IH-type iterative schemes (e.g., implicit IH-Noor, implicit IH-Ishikawa and implicit IH-Mann) for the same class of maps. Also, some numerical examples are given to illustrate that the equivalence is true. Our results complement, improve and unify several equivalent results recently announced in literature.



    The problem of solving a nonlinear equation and that of approximating fixed points of corresponding contractive-type mapping are closely related. In line with this, there is a practical and theoretical interest in finding approximate fixed points of various contractive-type operators. Existing literature is filled with several methods for achieving this.

    Let (Z,d) be a complete metric space and Γ:ZZ a self-map of Z. Assume that F(Γ)={qZ:Γq=q} is the set of fixed points of Γ.

    In recent years, implicit iterative schemes for approximating fixed points of nonlinear mappings have attracted the attention of different researchers all over the world. Regarding this direction, some authors have explored implicit iterations in terms of their qualitative features with regard to convergence, stability and equivalence of convergence in various spaces (see [1,2,3,4,5,6,7,8], and the references therein). Implicit iterations are indispensable from a numerical point of view due to the fact that they give an accurate approximation as compared to explicit iterations. Using computer-oriented programs, it has been observed that approximation of a fixed point via implicit iterative schemes has the potential to reduce the computational cost of the fixed-point problem (see [4] for more details). Other areas in which iteration techniques have found practical values are in solving the root-finding problems (see [9,10]) and in generating fractal patterns (for details see [11]). In the area of the convergence of implicit and explicit iterations in different spaces, numerous research papers have been published (see [12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39] and the references contained in them).

    In computational mathematics, it is of paramount importance (theoretically and practically) to check for the equivalence of iterations so as to avoid duplication of results. For recent works in this direction, see [3,40] and the references contained therein. Among the works relating to the Kirk-type iteration scheme and equivalence of convergence results, the results in [37] caught our attention for the obvious reason that the sum conditions imposed on the countably finite family of the iteration parameters are too strong and could constitute a computational hazard for the effective implementation of the iterative scheme in applications. For instance, considering the explicit iterative method (1.1) as described in [37], the iterative scheme of the sequence {yn}n=0 is defined by

    yn+1=γn,0z1n+1r=1γn,kΓrz1n,1r=0αn,r=1;ztn=αtn,0zt+1n+t+1s=1αtn,sΓszt+1n,t+1s=0αtn,s=1,t=1,2,,u2;zu1n=us=0αu1n,tΓsyn,us=0αu1n,t=1,u2,n0, (1.1)

    where y0 is an arbitrary point in X, 123u for each u, αtn,s,γn,t0 and γn,0,αn,0,0 for each i, αin,s,γn,t[0,1],t=1,2,,u2,s=0,1,2,,u and 1 and u are fixed integers for each u (which is a generalization of different explicit iterations), which introduces some inherent challenges with the topmost being that of the necessary and sufficient condition for the convergence of (1.1) to the fixed point of the contractive-type mapping Γ. This condition requires that the sum of the countably finite family of the iteration parameters be at unity (i.e., 1r=0αn,r=1;t+1s=0αtn,s=1 and us=0αu1n,t=1) which, as explained above, is not only complex and time consuming but also mandates a huge computational cost.

    In view of the aforementioned challenges, it becomes pertinent to ask the following question:

    Question 1.1. Can it be possible to construct a more effective implicit multistep iterative scheme that will address the challenges mentioned above and still maintain the results in [3]?

    To address these challenges, Agwu and Igbokwe [41,42] introduced the following explicit iterative schemes:

    Let H be a Hilbert space and let Γ:HH be a self-map of X. For an arbitrary x0H define the sequence {xn}n=0 iteratively, for s=1,2,,k2, as follows:

    {xn+1=δn,1xn+1j=2δn,jj1i=1(1δn,i)Γj1y1n+1i=1(1δn,i)Γ1y1n;ysn=αsn,1xn+s+1j=2αsn,jj1i=1(1αsn,i)Γj1ys+1n+s+1i=1(1αsn,i)Γ1ys+1n;yk1n=kj=1αk1n,jj1i=1(1αk1n,i)Γj1xn+ki=1(1αk1n,i)Γkxn,k2,n1, (1.2)

    where 123k, for each j, {{δn,j}n=0}kj=1,{{αn,j}n=0}kj=1[0,1] for each k and 1,2,,k are fixed integers (for each k). The iteration scheme defined by (1.2) is called the multistep IH-iteration scheme.

    Again, for any x0X, the sequence {xn}n=0 is defined recursively, for s=1,2,,k2, by

    {xn+1=δn,1y1n+1j=2δn,jj1i=1(1δn,i)Γj1y1n+1i=1(1δn,i)Γ1y1n;ysn=αsn,1ys+1n+s+1j=2αsn,jj1i=1(1αsn,i)Γj1ys+1n+s+1i=1(1αsn,i)Γ1ys+1n;yk1n=kj=1αk1n,jj1i=1(1αk1n,i)Γj1xn+ki=1(1αk1n,i)Γkxn,k2,n1, (1.3)

    where 123k, for each j, {{δn,j}n=0}kj=1,{{αn,j}n=0}kj=1[0,1] for each k and 1,2,,k are fixed integers (for each k); this is called a multistep DI-iteration scheme. Using (1.2) and (1.3), Agwu and Igbokwe [41,42] achieved strong convergence and stability results without any imposition of the sum conditions on the control sequences.

    The above iteration techniques deal with explicit iterations. The case of implicit iterative schemes have not been fully employed to examine the fixed points of nonlinear problems in recent times. Following the results of Chugh et al. [43], in which the authors proved convergence of faster implicit iterative schemes and remarked that this type of scheme has an advantage over the corresponding explicit iterative scheme for nonlinear problems (as they are widely used in many applications when explicit iterative schemes are inefficient), several researchers have concentrated their efforts in this direction.

    Most recently, Bosede et al. [3] invented the following implicit multistep iterative scheme: Define the sequence {zn}n=0 by

    zn+1=γn,0z1n+1r=1γn,kΓrzn+1,1r=0αn,r=1;ztn=αtn,0zt+1n+t+1s=1αtn,sΓsztn,t+1s=0αtn,s=1,t=1,2,,u2;zu1n=αu1n,tzn+us=1αu1n,tΓszu1n,us=0αu1n,t=1,u2,n0, (1.4)

    where z0 is an arbitrary point in X, 123u for each u, αtn,s,γn,t0 and γn,0,αn,0,0 for each i, αin,s,γn,t[0,1],t=1,2,,u2,s=0,1,2,,u and 1 and u are fixed integers for each u. Again, (1.4) is a generalization of many implicit iterative schemes (i.e., implicit Kirk-Noor, implicit Kirk-lshikawa and implicit Kirk-Mann). Despite their usefulness, the same necessary and sufficient conditions (the sum conditions) required for the convergence of (1.1) to the fixed point of a certain contractive-type mapping Γ is evident in (1.4). Consequent to this, the following second question emerges:

    Question 1.2. Is it possible to replicate (1.2) for the case of an implicit multistep iterative scheme and still retain the results in [3]?

    Motivated and inspired by the results in [3,41,42] and remark in [4], in this paper, we define a novel iterative scheme for which an affirmative answer is provided for Question 1.2. See [43,44,45], for more details.

    The remaining part of the paper is organized as follows. Section 2 considers some preliminary results required to prove our convergence theorems. Section 3 deals with the strong convergence of the implicit IH-multistep iteration scheme, implicit IH-Noor iteration scheme, implicit IH-Ishikawa iteration scheme and implicit IH-Mann iteration scheme. In Section 4, numerical examples, open problems and the conclusion are considered.

    Throughout the remaining sections, ϕ:R+R+,R+,N and H will denote a monotone increasing subadditive function, the set of positive real numbers, the set of natural numbers and a real Hilbert space, respectively. Also, the following definition, lemmas and propositions will be needed in order to establish our main results.

    Definition 2.1. ([24]) Suppose Y is a metric space and let Γ:YY be a self-map of Y. Let {xn}n=0Y be a sequence generated by the iteration scheme

    xn+1=g(Γ,xn), (2.1)

    where x0Y is the initial approximation and g is some function. Suppose {xn}n=0 converges to a fixed point q of Γ. Let {tn}n=0Y be an arbitrary sequence and set ϵn=d(tn,g(Γ,tn)),n=1,2, Then, (2.1) is said to be Γ-stable if and only if limnϵn=0 implies limnxn=q.

    Note that in practice, the sequence {tn}n=0 could be obtained the using the following approach: Let x0Y. Set xn+1=g(Γ,xn) and let t0=x0. Since, x1=g(Γ,x0), following the rounding in the function Γ, the value t1 (which is estimated to be equal to x1) could be calculated to give t2, an approximate value of g(Γ,t1). The procedure is continued to yield the sequence {tn}n=0, which is approximately the same as the sequence {xn}n=0.

    Lemma 2.1. (See, e.g., [37]) Let {τn}n=0R+:τn0asn. For 0δ<1, let {wn}n=0 be a sequence of positive numbers satisfying wn+1δwn+τn,n=0,1,2,. Then, wn0asn.

    Lemma 2.2. ([28]) Let (Y, .) be a normed space and Γ:YY a selfmap of Y. Let ϕ:R+R+ be monotonic increasing subadditive function such that ϕ(0)=0andϕ(Mr)=Mϕ(r)forall0ρ<1,M0andrR+. Then, iNands,tY; we have

    ΓjsΓjtρjst+ji=0(ji)ρj1ϕ(sΓs). (2.2)

    Proposition 2.1. ([38]) Let {αi}Ni=kR be a countable subset of the set of real numbers R, where k is a fixed nonnegative integer and NN is any integer with k+1N. Then, the following identity holds:

    αk+Ni=k+1αii1j=k(1αj)+Nj=k(1αj)=1. (2.3)

    Proposition 2.2. ([38]) Let k be a fixed nonnegative integer, t,u,vH and NN with k+1N. Let {vi}N1i=1H and {αi}Ni=1[0,1]. Define

    y=αkt+Ni=k+1αii1j=k(1αj)vi1+Nj=k(1αj)v.

    Then,

    yu2=αktu2+Ni=k+1αii1j=k(1αj)vi1u2+Nj=k(1αj)vu2αk[Ni=k+1αii1j=k(1αj)tvi12+i1j=k(1αj)tv2](1αk)[Ni=k+1αii1j=k(1αj)vi1(αi+1+wi+1)2+αNi1j=k(1αj)vvN12],

    where wk=Ni=k+1αii1j=k(1αj)vi1+i1j=k(1αj)v,k=1,2,,N and wn=(1cn)v.

    In this section, we introduce the following implicit IH-type iterative schemes.

    Let (Z,|.) be a normed linear space, E a nonempty closed convex subset of Z and Γ:EE a self-map of E. For an arbitrary x0E, the sequence {xn}n=0 is defined iteratively, for j=1,2,,r2, by

    {xn+1=δn,1x(1)n+1i=2δn,ii1t=1(1δn,t)Γi1xn+1+1t=1(1δn,t)Γ1xn+1;x(j)n=γjn,1x(j+1)n+j+1i=2γjn,ii1t=1(1γjn,t)Γi1x(j)n+j+1t=1(1γjn,t)Γj+1x(j)n;x(r1)n=γr1xn+ri=2γr1n,ii1t=1(1γr1n,t)Γi1x(r1)n+rt=1(1γr1n,t)Γrx(r1)n,r2, (3.1)

    where n1,123q for each j, δn,i0,δn,10,γjn,i0, and γjn,10 for each j, {{δn,i}n=0}ri=1,{{γjn,i}n=0}qi=1[0,1] for each j and 1,2,,r are fixed integers (for each j); this is called an implicit IH-multistep iteration.

    Equation (3.1) represents a general iteration scheme for getting other implicit IH-type iterations. Indeed, if r=3 in (3.1), we get a three-step implicit IH-Noor iteration, as follows:

    {xn+1=δn,1x(1)n+1i=2δn,ii1t=1(1δn,t)Γi1xn+1+1t=1(1δn,t)Γ1xn+1;x(1)n=γ1n,1x(2)n+2i=2γ1n,ii1t=1(1γ1n,t)Γi1x(1)n+2t=1(1γ1n,t)Γ2x(1)n;x(2)n=γ2n,1xn+3i=2γ2n,ii1t=1(1γ2n,t)Γi1x(2)n+3t=1(1γ2n,t)Γ3x(2)n,n1, (3.2)

    where 123, δn,i0,δn,10,γ1n,1,γ2n,10,γ1n,10,γ2n,10,{{δn,i}n=0}3i=1,{{γjn,i}n=0}3i=1[0,1] and 1,2 and 3 are fixed positive integers. Again, if r=2 in (3.1), we get a two-step implicit IH-lshikawa iteration as shown below:

    {xn+1=δn,1x(1)n+1i=2δn,ii1t=1(1δn,t)Γi1xn+1+1t=1(1δn,t)Γ1xn+1;x(1)n=γ1n,1xn+2i=2γ1n,ii1t=1(1γ1n,t)Γi1x1n+2t=1(1γ1n,t)Γ2x1n, (3.3)

    where 12, δn,i0,δn,10,γ1n,10,γ1n,10,{{δn,i}n=0}2i=1,{{γjn,i}n=0}2i=1[0,1] and 1 and 2 are fixed positive integers. Lastly, if r=2and2=0 in (3.1), we have a one-step implicit IH-Mann iterative scheme as follows:

    xn+1=δn,1x(1)n+1i=2δn,ii1t=1(1δn,t)Γi1xn+1+1t=1(1δn,t)Γ1xn+1, (3.4)

    where δn,i0,δn,10,{{δn,i}n=0}1i=1[0,1] and 1 is a fixed positive integer.

    For the sake of convenience, especially in our attempt to prove our proposed equivalence, (3.2)–(3.4) shall be rewritten in the manner shown below: Let (Z,|.) be a normed linear space, E a nonempty closed convex subset of Z and Γ:EE a self-map of E. For an arbitrary w0E, the sequence {wn}n=0 is defined iteratively by

    {wn+1=δn,1w(1)n+1i=2δn,ii1t=1(1δn,t)Γi1wn+1+1t=1(1δn,t)Γ1wn+1;w(1)n=γ1n,1w(2)n+2i=2γ1n,ii1t=1(1γ1n,t)Γi1w(1)n+2t=1(1γ1n,t)Γ2w(1)n;w(2)n=γ2n,1wn+3i=2γ2n,ii1t=1(1γ2n,t)Γi1w(2)n+3t=1(1γ2n,t)Γ3w(2)n,n1, (3.5)

    where 123, δn,i0,δn,10,γ1n,1,γ2n,10,γ1n,10,γ2n,10,{{δn,i}n=0}3i=1,{{γjn,i}n=0}3i=1[0,1] and 1,2 and 3 are fixed positive integers; this is called an implicit HI-Noor iterative scheme. Further, for an arbitrary z0E, a two-step implicit IH-lshikawa iteration will be defined as follows:

    {zn+1=δn,1z(1)n+1i=2δn,ii1t=1(1δn,t)Γi1zn+1+1t=1(1δn,t)Γ1zn+1;z(1)n=γ1n,1zn+2i=2γ1n,ii1t=1(1γ1n,t)Γi1z1n+2t=1(1γ1n,t)Γ2z1n, (3.6)

    where 12, δn,i0,δn,10,γ1n,10,γ1n,10,{{δn,i}n=0}2i=1,{{γjn,i}n=0}2i=1[0,1] and 1and2 are fixed positive integers. Also, for an arbitrary u0E, a one-step implicit IH-Mann iterative scheme will be defined as follows:

    un+1=δn,1u(1)n+1i=2δn,ii1t=1(1δn,t)Γi1un+1+1t=1(1δn,t)Γ1un+1, (3.7)

    where δn,i0,δn,10,{{δn,i}n=0}1i=1[0,1] and 1 is a fixed positive integer.

    Remark 3.1. If 1=2=3=2, δn,1=δn,δn,2=βn,γ1n,1=γn,γ1n,2=αn,γ2n,1=σn,γ2n,2=τn and Γ2=Γ, then we obtain the following iteration method from (3.5):

    {wn+1=δnw(1)n+(1δn)[βnwn+1+(1βn)Γwn+1],w(1)n=γnw(2)n+(1γn)[αnw(1)n+(1αn)Γw(1)n],w(2)n=σnwn+(1σn)[τnw(1)n+(1τn)Γw(2)n]. (3.8)

    Also, if βn=αn=τn=0 and σn=0, then we obtain the following well known iterative methods:

    (i) If βn=αn=τn=0, then we have

    {wn+1=δnw(1)n+(1δn)Γwn+1,w(1)n=γnw(2)n+(1γn)Γw(1)n,w(2)n=σnwn+(1σn)Γw(2)n, (3.9)

    which is called the implicit Noor iteration method.

    (ii) If σn=0 in (3.9), then we have

    {wn+1=δnw(1)n+(1δn)Γwn+1,w(1)n=γnw(2)n+(1γn)Γw(1)n, (3.10)

    which is called the implicit Ishikawa iteration method.

    (ii) If γn=0 in (3.10), then we have

    wn+1=δnw(1)n+(1δn)Γwn+1, (3.11)

    which is called the implicit Mann iteration method.

    Now, we present our convergence theorems.

    Theorem 3.1. Let H be a real Hilbert space, D a nonempty closed and convex subset of H and Γ:DD a self-map of H satisfying the contractive condition

    ΓixΓiyρxy, (3.12)

    where x,yHand0ρj<1. For an arbitrary x0H, let {xn}n=0 be the implicit IH-multistep iteration scheme defined by (3.1) with n=1(1δn,1)=. Then,

    (I) the fixed point q of Γ satisfying condition (3.12) is unique;

    (II) the implicit IH-multistep iteration scheme converges strongly to the unique fixed point q of Γ.

    Proof. First, we establish that the mapping Γ satisfying (3.12) has a unique fixed point. Assume there exist q1,q2F(Γ) and q1q2,with0<q1q2. Then,

    0<q1q2=Γq1Γq2ρiq1q2. (3.13)

    The Eq (3.13) implies that (1ρi)q1q20. Since ρ[0,1), it follows that 0<1ρi and q1q20. Also, since the norm is nonnegative, we get q1q2=0. That is, q1=q2=q(say). Therefore, q is the unique fixed point of Γ.

    (III) Now, we prove that the sequence defined by (3.1) converges strongly to q. From (3.1), (3.12) and Proposition 2.4 with xn+1=y,q=u,x(1)=t,k=1,Γi1xn+1=vj1 and Γ1=v, we get

    xn+1q2=δn,1x(1)n+1i=2δn,ii1t=1(1δn,t)Γi1xn+1+1t=1(1δn,t)Γ1xn+1q2δn,1x(1)nq2+1i=2δn,ii1t=1(1δn,t)Γi1xn+1q2+1t=1(1δn,t)Γ1xn+1q2δn,1x(1)nq2+(1i=2δn,ii1t=1(1δn,t)(ρi)2+1t=1(1δn,t)(ρi)2)xn+1q2(δn,11[(1i=2δn,ii1t=1(1δn,t)(ρi)2+1t=1(1δn,t)(ρi)2)])×x(1)nq2. (3.14)

    Again, from (3.1), (3.12) and Proposition 2.4 with x(j)n=y,q=u,xj+1n=t,k=1,Γi1x(j)nvj1 and Γ2=v, we have the following estimates (for j=1):

    x(1)nq2=γ1n,1x(2)n+2i=2γ1n,ii1t=1(1γ1n,t)Γi1x(1)n+2t=1(1γ1n,t)Γ2x(1)nq2γ1n,1x(2)nq2+2i=2γ1n,ii1t=1(1γ1n,t)Γi1x(1)nq2+2t=1(1γ1n,t)Γ2x(1)nq2γ1n,1x(2)nq2+2i=2γ1n,ii1t=1(1γ1n,t)(ρi)2x(1)nq2+2t=1(1γ1n,t(ρi)2x(1)nq2=γ1n,1x(2)nq2+(2i=2γ1n,ii1t=1(1γ1n,t)(ρi)2+2t=1(1γ1n,t(ρi)2)x(1)nq2γ1n,11[(2i=2γ1n,ii1t=1(1γ1n,t)(ρi)2+2t=1(1γ1n,t(ρi)2)]x(2)nq2. (3.15)

    Furthermore, using (3.1), (3.12) and Proposition 2.4 with

    x(j)n=y,q=u,xj+1n=t,k=1,Γi1x(j)nvj1 and Γ3=v,

    we have the following estimates (for j=2):

    x(2)nq2=γ2n,1x(3)n+3i=2γ2n,ii1t=1(1γ2n,t)Γi1x(2)n+3t=1(1γ2n,t)Γ3x(2)nq2γ2n,1x(3)nq2+3i=2γ2n,ii1t=1(1γ2n,t)Γi1x(2)nq2+3t=1(1γ2n,t)Γ3x(2)nq2γ2n,1x(3)nq2+3i=2γ2n,ii1t=1(1γ2n,t)(ρi)2x(2)nq2+3t=1(1γ2n,t(ρi)2x(2)nq2=γ2n,1x(3)nq2+(3i=2γ2n,ii1t=1(1γ2n,t)(ρ)2+3t=1(1γ2n,t(ρi)2)x(2)nq2γ2n,11[(2i=2γ2n,ii1t=1(1γ2n,t)(ρi)2+3t=1(1γ2n,t(ρi)2)]x(3)nq2. (3.16)

    Continuing in this manner, using (3.1), (3.12) and Proposition 2.4 with x(j)n=y,q=u,xj+1n=t,k=1,Γi1x(j)nvj1 and Γr2=v, we have the following estimates (with j=r2 and j=r1) for x(r1)nq2 and x(r1)nq2:

    (3.17)

    and

    x(r1)nq2=γr1n,1x(r)n+r1i=2γr1n,ii1t=1(1γr1n,t)Γi1x(r1)n+rt=1(1γr1n,t)Γrx(r1)nq2γr1n,1x(r)nq2+ri=2γr1n,ii1t=1(1γr1n,t)Γi1x(r1)nq2+rt=1(1γr1n,t)Γrx(r2)nq2γr1n,1x(r)nq2+ri=2γr1n,ii1t=1(1γr1n,t)(ρi)r1x(r1)nq2+rt=1(1γr1n,t(ρi)2x(r1)nq2=γr1n,1x(r)nq2+(ri=2γr1n,ii1t=1(1γr1n,t)(ρi)2+rt=1(1γr1n,t(ρi)2)x(r1)nq2γr1n,11[(r1i=2γr1n,ii1t=1(1γr1n,t)(ρi)2+rt=1(1γr1n,t(ρi)2)]×x(r)nq2. (3.18)

    Now, from (3.14)–(3.18), we have

    xn+1q2(δn,11[(1i=2δn,ii1t=1(1δn,t)(ρi)2+1t=1(1δn,t)(ρi)2)])×(γ1n,11[(2i=2γ1n,ii1t=1(1γ1n,t)(ρi)2+2t=1(1γ1n,t(ρi)2)])×(γ2n,11[(2i=2γ2n,ii1t=1(1γ2n,t)(ρi)2+3t=1(1γ2n,t(ρi)2)])×(γr2n,11[(r2i=2γr2n,ii1t=1(1γr2n,t)(ρi)2+r1t=1(1γr2n,t(ρi)2)])×(γr1n,11[(r1i=2γr1n,ii1t=1(1γr1n,t)(ρi)2+rt=1(1γr1n,t(ρi)2)])×xnq2. (3.19)

    Let

    D1=1δn,11[(1i=2δn,ii1t=1(1δn,t)(ρi)2+1t=1(1δn,t)(ρi)2)].

    Then,

    D1=1[(1i=2δn,ii1t=1(1δn,t)(ρi)2+1t=1(1δn,t)(ρi)2)]+δn,11[(1i=2δn,ii1t=1(1δn,t)(ρi)2+1t=1(1δn,t)(ρi)2)]1[(1i=2δn,ii1t=1(1δn,t)(ρi)2+1t=1(1δn,t)(ρi)2)]+δn,1.

    Consequently,

    D11i=2δn,ii1t=1(1δn,t)(ρi)2+1t=1(1δn,t)(ρi)2+δn,1. (3.20)

    Since ρ[0,1), it follows that ρiρ<1 for iN. Also, since from Proposition 2.3

    1i=2δn,ii1t=1(1δn,t)(ρi)2+1t=1(1δn,t)(ρi)2=(1δn,11t=1(1δn,t))ρ+1t=1(1δn,t)ρ,

    it follows (from (3.20)) that

    D1=(1δn,1)+δn,1. (3.21)

    Using similar argument as above, we obtain

    γ1n,11[(2i=2γ1n,ii1t=1(1γ1n,t)(ρi)2+3t=1(1γ1n,t(ρi)2)](1γ1n,1)ρ+γ1n,1, (3.22)
    γ2n,11[(2i=2γ2n,ii1t=1(1γ2n,t)(ρi)2+3t=1(1γ2n,t(ρi)2)](1γ2n,1)ρ+γ2n,1, (3.23)
    γr2n,11[(r2i=2γr2n,ii1t=1(1γr2n,t)(ρi)2+r2t=1(1γr2n,t(ρi)2)](1γr2n,1)ρ+γr2n,1, (3.24)

    and

    γr1n,11[(r1i=2γ2n,ii1t=1(1γr1n,t)(ρi)2+r1t=1(1γr1n,t(ρi)2)](1γr1n,1)ρ+γr1n,1. (3.25)

    Now, using (3.19)–(3.25), we have

    xn+1q2[(1δn,1)+δn,1][(1γ1n,1)+γ1n,1][(1γ2n,1)ρ+γ2n,1]××[(1γr2n,1)ρ+γr2n,1][(1γr1n,1)ρ+γr1n,1]xnq2[1(1δn,1)(1ρ)]xnq2. (3.26)

    From (3.26) and Lemma 2.2, we have xnq as n and this completes the proof.

    Since (3.1) includes (3.5)–(3.7), the corollary below follows immediately from Theorem 3.1.

    Corollary 3.1. Let H be a real Hilbert space, D a nonempty closed and convex subset of H and Γ:HH a self-map of H satisfying the contractive condition

    ΓixΓiyρixy, (3.27)

    where x,yHand0ρj<1. For arbitrary w0=z0=u0H, let {wn}n=0, {zn}n=0 and {un}n=0 be the implicit IH-Noor, implicit multistepIH-Ishikawa and implicit IH-Mann iteration scheme defined by (3.5)(3.7), respectively. Then,

    (I) the fixed point q of Γ defined by (3.26) is unique;

    (II) the implicit IH-Noor iteration scheme (3.5) converges strongly to the unique fixed point q of Γ;

    (III) the implicit IH-Ishikawa iteration scheme (3.6) converges strongly to the unique fixed point q of Γ;

    (IV) the implicit IH-Mann iteration scheme (3.7) converges strongly to the unique fixed point q of Γ

    Theorem 3.2. Let H be a real Hilbert space, E a nonempty closed and convex subset of H and Γ:EE, with qF(Γ), satisfying the following condition:

    Γixqρixy, (3.28)

    where ρi[0,1). Let {xn}n=1and{un}n=1 be the implicit IH-multistep and implicit IH-Mann iteration schemes defined by (3.1) and (3.7), respectively with n=1(1δn,1)=. If x0=u0E, then (a) and (b) below are equivalent.

    (a) Implicit IH-Mann iterative scheme {un}n=1 defined by (3.7) converges to q;

    (b) Implicit IH-multistep iterative scheme {xn}n=1 defined by (3.1) converges to q.

    Proof. First, we prove that (a)(b). Assume unq as n. Since, (3.1), (3.7) and (3.28) imply

    un+1xn+12=δn,1(unxn)1i=2δn,ii1t=1(1δn,t)[Γi1xn+1Γi1un+1]1t=1(Γxn+1Γun+1)2,

    it follows that

    un+1xn+12δn,1unxn2+1i=2δn,ii1t=1(1δn,t)[Γi1xn+1Γi1un+1]1t=1(Γxn+1Γun+1)2δn,1unxn2+1i=2δn,ii1t=1(1δn,t)Γi1xn+1Γi1un+12+1t=1Γxn+1Γun+1)2δn,1unxn2+1i=2δn,ii1t=1(1δn,t)(ρi)2xn+1un+12+1t=1(ρi)2xn+1un+1)2(δn,11[1i=2δn,ii1t=1(1δn,t)(ρi)2+1t=1(ρi)2])×unxn2. (3.29)

    Also, using (3.1), we have

    unx(1)n2=γn,1(unx(2)n)2i=2γ1n,ii1t=1(1γ1n,t)[Γi1unun(Γi1x(1)nΓi1un)]2t=1(1γ1n,t)(Γ2x(1)nΓ2un)2γn,1unx(2)n2+2i=2γ1n,ii1t=1(1γ1n,t)[Γi1unun(Γi1x(1)nΓi1un)]2t=1(1γ1n,t)(Γ2x(1)nΓ2un)2=γn,1unx(2)n2+2i=2γ1n,ii1t=1(1γ1n,t)(Γi1unun)2t=1(1γ1n,t)(Γ2unun)[2i=2γ1n,ii1t=1(1γ1n,t)Big(Γi1x(1)nΓi1un)2t=1(1γ1n,t)(Γ2unΓ2x(1)n)]2γn,1unx(2)n2+2i=2γ1n,ii1t=1(1γ1n,t)(Γi1unun)2t=1(1γ1n,t)(Γ2unun)[2i=2γ1n,ii1t=1(1γ1n,t)Big(Γi1x(1)nΓi1un)2t=1(1γ1n,t)(Γ2unΓ2x(1)n)]2γn,1unx(2)n2+2i=2γ1n,ii1t=1(1γ1n,t)(Γi1unun)2t=1(1γ1n,t)(Γ2unun)2+2i=2γ1n,ii1t=1(1γ1n,t)(Γi1x(1)nΓi1un)2t=1(1γ1n,t)(Γ2unΓ2x(1)n)2γn,1unx(2)n2+2i=2γ1n,ii1t=1(1γ1n,t)Γi1unun2+2t=1(1γ1n,t)Γ2unun)2+2i=2γ1n,ii1t=1(1γ1n,t)Γi1x(1)nΓi1un2+2t=1(1γ1n,t)Γ2unΓ2x(1)n2. (3.30)

    Applying condition (3.28) to (3.30), we get

    unx(1)n2γ1n,1unx(2)n2+2i=2γ1n,ii1t=1(1γ1n,t)Γi1unun2+2t=1(1γ1n,t)Γ2unun)2+2i=2γ1n,ii1t=1(1γ1n,t)(ρi)2x(1)nun2+2t=1(1γ1n,t)(ρi)2unx(1)n2γn,11[2i=2γ1n,ii1t=1(1γ1n,t)(ρi)2+2t=1(1γ1n,t)(ρi)2]unx(2)n2+2i=2γ1n,ii1t=1(1γ1n,t)1[2i=2γ1n,ii1t=1(1γ1n,t)(ρi)2+2t=1(1γ1n,t)(ρi)2]Γi1unun2+2t=1(1γ1n,t)1[2i=2γ1n,ii1t=1(1γ1n,t)(ρi)2+2t=1(1γ1n,t)(ρi)2]×Γ2unun)2. (3.31)

    Observe that

    Γi1unun2=unq(Γi1unΓi1q)2unq2+Γi1unΓi1q2(1+(ρi)2)unq2. (3.32)

    From (3.31) and (3.32), we have

    unx(1)n2γ1n,11[2i=2γ1n,ii1t=1(1γ1n,t)(ρi)2+2t=1(1γ1n,t)(ρi)2]unx(2)n2+2i=2γ1n,ii1t=1(1γ1n,t)(1+(ρi)2)1[2i=2γ1n,ii1t=1(1γ1n,t)(ρi)2+2t=1(1γ1n,t)(ρi)2]unq2+2t=1(1γ1n,t)(1+(ρi)2)1[2i=2γ1n,ii1t=1(1γ1n,t)(ρi)2+2t=1(1γ1n,t)(ρi)2]×unq2. (3.33)

    Using a similar argument as above, we obtain

    unx(2)n2γ2n,11[3i=2γ2n,ii1t=1(1γ2n,t)(ρi)2+3t=1(1γ2n,t)(ρi)2]unx(3)n2+3i=2γ2n,ii1t=1(1γ2n,t)(1+(ρi)2)1[3i=2γ2n,ii1t=1(1γ2n,t)(ρi)2+3t=1(1γ2n,t)(ρi)2]unq2+3t=1(1γ2n,t)(1+(ρi)2)1[3i=2γ2n,ii1t=1(1γ2n,t)(ρi)2+3t=1(1γ2n,t)(ρi)2]×unq2, (3.34)
    unx(3)n2γ3n,11[4i=2γ3n,ii1t=1(1γ3n,t)(ρi)2+4t=1(1γ3n,t)(ρi)2]unx(4)n2+4i=2γ3n,ii1t=1(1γ3n,t)(1+(ρi)2)1[2i=2γ3n,ii1t=1(1γ3n,t)(ρi)2+3t=1(1γ3n,t)(ρi)2]unq2+4t=1(1γ3n,t)(1+(ρi)2)1[4i=2γ3n,ii1t=1(1γ3n,t)(ρi)2+4t=1(1γ3n,t)(ρi)2]×unq2 (3.35)

    and continuing this process (r2) and (r1) times yields

    (3.36)

    and

    unx(r1)n2γr1n,11[ri=2γr1n,ii1t=1(1γr1n,t)(ρi)2+rt=1(1γr1n,t)(ρi)2]unx(r)n2+ri=2γr1n,ii1t=1(1γr1n,t)(1+(ρi)2)1[ri=2γr1n,ii1t=1(1γr1n,t)(ρi)2+rt=1(1γr1n,t)(ρi)2]unq2+rt=1(1γr1n,t)(1+(ρi)2)1[ri=2γr1n,ii1t=1(1γr2n,t)(ρi)2+r1t=1(1γr1n,t)(ρi)2]×unq2. (3.37)

    Now, using (3.29) and (3.33)–(3.37), we have

    un+1xn+12(δn,11[1i=2δn,ii1t=1(1δn,t)(ρi)2+1t=1(1δn,t)(ρi)2])×(γ1n,11[2i=2γ1n,ii1t=1(1γ1n,t)(ρi)2+2t=1(1γ1n,t)(ρi)2])×(γ2n,11[3i=2γ2n,ii1t=1(1γ2n,t)(ρi)2+3t=1(1γ2n,t)(ρi)2])×(γ3n,11[4i=2γ3n,ii1t=1(1γ3n,t)(ρi)2+4t=1(1γ3n,t)(ρi)2])××(γr2n,11[r1i=2γr2n,ii1t=1(1γr2n,t)(ρi)2+r1t=1(1γr2n,t)(ρi)2])×(γr1n,11[ri=2γr1n,ii1t=1(1γr1n,t)(ρi)2+rt=1(1γr1n,t)(ρi)2])×unxn2+{(γ1n,11[2i=2γ1n,ii1t=1(1γ1n,t)(ρi)2+2t=1(1γ1n,t)(ρi)2])×(γ2n,11[3i=2γ2n,ii1t=1(1γ2n,t)(ρi)2+3t=1(1γ2n,t)(ρi)2])×(γ3n,11[4i=2γ3n,ii1t=1(1γ3n,t)(ρi)2+4t=1(1γ3n,t)(ρi)2])××(γr2n,11[r1i=2γr2n,ii1t=1(1γr2n,t)(ρi)2+r1t=1(1γr2n,t)(ρi)2])×[r1i=2γr2n,ii1t=1(1γr2n,t)1[r1i=2γr2n,ii1t=1(1γr2n,t)(ρi)2+r1t=1(1γr2n,t)(ρi)2]+r1t=1(1γr2n,t)1[r1i=2γr2n,ii1t=1(1γr2n,t)(ρi)2+r1t=1(1γr2n,t)(ρi)2]]+(γ1n,11[2i=2γ1n,ii1t=1(1γ1n,t)(ρi)2+2t=1(1γ1n,t)(ρi)2])×(γ2n,11[3i=2γ2n,ii1t=1(1γ2n,t)(ρi)2+3t=1(1γ2n,t)(ρi)2])×(γ3n,11[4i=2γ3n,ii1t=1(1γ3n,t)(ρi)2+4t=1(1γ3n,t)(ρi)2])××(γr2n,11[r1i=2γr2n,ii1t=1(1γr2n,t)(ρi)2+r1t=1(1γr2n,t)(ρi)2])×[r2i=2γr3n,ii1t=1(1γr3n,t)1[r2i=2γr3n,ii1t=1(1γr3n,t)(ρi)2+r2t=1(1γr3n,t)(ρi)2]+r2t=1(1γr3n,t)1[r2i=2γr3n,ii1t=1(1γr3n,t)(ρi)2+r2t=1(1γr3n,t)(ρi)2]]+2i=2γ1n,ii1t=1(1γ1n,t)1[2i=2γ1n,ii1t=1(1γ1n,t)(ρi)2+2t=1(1γ1n,t)(ρi)2]+2t=1(1γ1n,t)1[2i=2γ1n,ii1t=1(1γ1n,t)(ρi)2+2t=1(1γ1n,t)(ρi)2]}×(δn,11[1i=2δn,ii1t=1(1δn,t)(ρi)2+1t=1(1δn,t)(ρi)2])×(1+(ρi)2)unq2. (3.38)

    Substituting (3.21)–(3.25) into (3.38) yields

    un+1xn+12((1δn,1)+δn,1)((1γ1n,1)+γ1n,1)((1γ2n,1)+γ2n,1)((1γ3n,1)+γ3n,1)××((1γr2n,1)+γr2n,1)((1γr1n,1)+γr1n,1)unxn2+{((1γ1n,1)+γ1n,1)((1γ2n,1)+γ2n,1)((1γ3n,1)+γ3n,1)((1γr2n,1)+γr2n,1)×[r1i=2γr2n,ii1t=1(1γr2n,t)1[r1i=2γr2n,ii1t=1(1γr2n,t)(ρi)2+r1t=1(1γr2n,t)(ρi)2]+r1t=1(1γr2n,t)1[r1i=2γr2n,ii1t=1(1γr2n,t)(ρi)2+r1t=1(1γr2n,t)(ρi)2]]+((1γ1n,1+γ1n,1))((1γ2n,1)+γ2n,1)((1γ3n,1)+γ3n,1)××((1γr2n,1)+γr2n,1)×[r2i=2γr3n,ii1t=1(1γr3n,t)1[r2i=2γr3n,ii1t=1(1γr3n,t)(ρi)2+r2t=1(1γr3n,t)(ρi)2]+r2t=1(1γr3n,t)1[r2i=2γr3n,ii1t=1(1γr3n,t)(ρi)2+r2t=1(1γr3n,t)(ρi)2]]+2i=2γ1n,ii1t=1(1γ1n,t)1[2i=2γ1n,ii1t=1(1γ1n,t)(ρi)2+2t=1(1γ1n,t)(ρi)2]+2t=1(1γ1n,t)1[2i=2γ1n,ii1t=1(1γ1n,t)(ρi)2+2t=1(1γ1n,t)(ρi)2]}×((1δn,1)+δn,1)(1+(ρi)2)unq2[1(1δn,1)(1ρ)]unxn2+{((1γ1n,1)+γ1n,1)((1γ2n,1)+γ2n,1)((1γ3n,1)+γ3n,1)((1γr2n,1)+γr2n,1)×[r1i=2γr2n,ii1t=1(1γr2n,t)1[r1i=2γr2n,ii1t=1(1γr2n,t)(ρi)2+r1t=1(1γr2n,t)(ρi)2]+r1t=1(1γr2n,t)1[r1i=2γr2n,ii1t=1(1γr2n,t)(ρi)2+r1t=1(1γr2n,t)(ρi)2]]+((1γ1n,1+γ1n,1))((1γ2n,1)+γ2n,1)((1γ3n,1)+γ3n,1)××((1γr2n,1)+γr2n,1)×[r2i=2γr3n,ii1t=1(1γr3n,t)1[r2i=2γr3n,ii1t=1(1γr3n,t)(ρi)2+r2t=1(1γr3n,t)(ρi)2]+r2t=1(1γr3n,t)1[r2i=2γr3n,ii1t=1(1γr3n,t)(ρi)2+r2t=1(1γr3n,t)(ρi)2]]
    +2i=2γ1n,ii1t=1(1γ1n,t)1[2i=2γ1n,ii1t=1(1γ1n,t)(ρi)2+2t=1(1γ1n,t)(ρi)2]+2t=1(1γ1n,t)1[2i=2γ1n,ii1t=1(1γ1n,t)(ρi)2+2t=1(1γ1n,t)(ρi)2]}×((1δn,1)+δn,1)(1+(ρi)2)unq2. (3.39)

    Let

    σn=(1δn,1)(1ρ) (3.40)

    and

    τn={((1γ1n,1)+γ1n,1)((1γ2n,1)+γ2n,1)((1γ3n,1)+γ3n,1)((1γr2n,1)+γr2n,1)×[r1i=2γr2n,ii1t=1(1γr2n,t)1[r1i=2γr2n,ii1t=1(1γr2n,t)(ρi)2+r1t=1(1γr2n,t)(ρi)2]+r1t=1(1γr2n,t)1[r1i=2γr2n,ii1t=1(1γr2n,t)(ρi)2+r1t=1(1γr2n,t)(ρi)2]]+((1γ1n,1+γ1n,1))((1γ2n,1)+γ2n,1)((1γ3n,1)+γ3n,1)××((1γr2n,1)+γr2n,1)×[r2i=2γr3n,ii1t=1(1γr3n,t)1[r2i=2γr3n,ii1t=1(1γr3n,t)(ρi)2+r2t=1(1γr3n,t)(ρi)2]+r2t=1(1γr3n,t)1[r2i=2γr3n,ii1t=1(1γr3n,t)(ρi)2+r2t=1(1γr3n,t)(ρi)2]]+2i=2γ1n,ii1t=1(1γ1n,t)1[2i=2γ1n,ii1t=1(1γ1n,t)(ρi)2+2t=1(1γ1n,t)(ρi)2]+2t=1(1γ1n,t)1[2i=2γ1n,ii1t=1(1γ1n,t)(ρi)2+2t=1(1γ1n,t)(ρi)2]}×((1δn,1)+δn,1)(1+(ρi)2)unq2. (3.41)

    Then, we get (from (3.39)) that

    un+1xn+12(1σn)unxn2+τn. (3.42)

    From Lemma 2.3 and (3.42), we conclude that

    limnunxn=0. (3.43)

    Since xnqunxn+unq, it follows from the assumption limnunxn=0 and (3.43) that limnxnq=0.

    Next, we prove that (b)(a). To do this, assume that x unq as n. Furthermore, since, (3.1), (3.7) and (3.56) imply

    xn+1un+12=δn,1(xnu(1)n)1i=2δn,ii1t=1(1δn,t)[Γi1un+1Γi1xn+1]1t=1(Γun+1Γxn+1)2,

    it follows that

    xn+1un+12δn,1x(1)nun2+1i=2δn,ii1t=1(1δn,t)[Γi1un+1Γi1xn+1]1t=1(Γun+1Γxn+1)2δn,1unxn2+1i=2δn,ii1t=1(1δn,t)(Γi1xn+1Γi1un+1)2+1t=1(Γxn+1Γun+1)2=δn,1unxn2+1i=2δn,ii1t=1(1δn,t)Γi1xn+1Γi1un+12+1t=1Γxn+1Γun+12δn,1unxn2+1i=2δn,ii1t=1(1δn,t)(ρi)2xn+1un+12+1t=1(ρi)2xn+1un+1)2δn,11[1i=2δn,ii1t=1(1δn,t)(ρi)2+1t=1(ρi)2]unxn2. (3.44)

    Again, from (3.1), (3.7), (3.28) and the fact that (ab)2a2+b2, we obtain

    The last inequality and (3.32) imply

    x(1)nun2γ1n,11[2i=2γ1n,ii1t=1(1γ1n,t)(ρi)2+2t=1(1γ1n,t)(ρi)2]x(2)nun2+2i=2γ1n,ii1t=1(1γ1n,t)+2t=1(1γ1n,t)1[2i=2γ1n,ii1t=1(1γ1n,t)(ρi)2+2t=1(1γ1n,t)(ρi)2]×(1+(ρi)2)unq2. (3.45)

    Using a similar argument as in (3.45), we get the following:

    x(2)nun2γ2n,11[3i=2γ2n,ii1t=1(1γ3n,t)(ρi)2+3t=1(1γ2n,t)(ρi)2]x(3)nun2+3i=2γ2n,i3t=1(1γ2n,t)+3t=1(1γ2n,t)1[3i=2γ1n,ii1t=1(1γ2n,t)(ρi)2+3t=1(1γ2n,t)(ρi)2]×(1+(ρi)2)unq2, (3.46)
    x(3)nun2γ3n,11[4i=2γ1n,ii1t=1(1γ3n,t)(ρi)2+4t=1(1γ3n,t)(ρi)2]x(4)nun2+4i=2γ3n,ii1t=1(1γ3n,t)+4t=1(1γ3n,t)1[4i=2γ3n,ii1t=1(1γ3n,t)(ρi)2+4t=1(1γ3n,t)(ρi)2]×(1+(ρi)2)unq2 (3.47)

    and by continuing the computation up to (r2) and (r1) times, we get

    (3.48)

    and

    x(r1)nun2γr1n,11[ri=2γr1n,ii1t=1(1γr1n,t)(ρi)2+rt=1(1γr1n,t)(ρi)2]x(r)nun2+ri=2γr1n,ii1t=1(1γr1n,t)+rt=1(1γr1n,t)1[ri=2γr1n,ii1t=1(1γr1n,t)(ρi)2+rt=1(1γr1n,t)(ρi)2]×(1+(ρi)2)unq2. (3.49)

    Putting (3.45)–(3.49) into (3.44) and simplifying using Proposition 2.3 (bearing in mind that ρi[0,1) so that 0<(ρi)2<ρ<1), we get

    xn+1un+12((1δn,1)+δn,1)((1γ1n,1)+γ1n,1)((1γ2n,1)+γ2n,1)((1γ3n,1)+γ3n,1)××((1γr2n,1)+γr2n,1)((1γr1n,1)+γr1n,1)xnun2+{((1γ1n,1)+γ1n,1)((1γ2n,1)+γ2n,1)((1γ3n,1)+γ3n,1)((1γr2n,1)+γr2n,1)×[r1i=2γr2n,ii1t=1(1γr2n,t)1[r1i=2γr2n,ii1t=1(1γr2n,t)(ρi)2+r1t=1(1γr2n,t)(ρi)2]+r1t=1(1γr2n,t)1[r1i=2γr2n,ii1t=1(1γr2n,t)(ρi)2+r1t=1(1γr2n,t)(ρi)2]]+((1γ1n,1+γ1n,1))((1γ2n,1)+γ2n,1)((1γ3n,1)+γ3n,1)××((1γr2n,1)+γr2n,1)×[r2i=2γr3n,ii1t=1(1γr3n,t)1[r2i=2γr3n,ii1t=1(1γr3n,t)(ρi)2+r2t=1(1γr3n,t)(ρi)2]+r2t=1(1γr3n,t)1[r2i=2γr3n,ii1t=1(1γr3n,t)(ρi)2+r2t=1(1γr3n,t)(ρi)2]]+2i=2γ1n,ii1t=1(1γ1n,t)1[2i=2γ1n,ii1t=1(1γ1n,t)(ρi)2+2t=1(1γ1n,t)(ρi)2]+2t=1(1γ1n,t)1[2i=2γ1n,ii1t=1(1γ1n,t)(ρi)2+2t=1(1γ1n,t)(ρi)2]}×((1δn,1)+δn,1)(1+(ρi)2)unq2[1(1δn,1)(1ρ)]xnun2+{((1γ1n,1)+γ1n,1)((1γ2n,1)+γ2n,1)((1γ3n,1)+γ3n,1)((1γr2n,1)+γr2n,1)×[r1i=2γr2n,ii1t=1(1γr2n,t)1[r1i=2γr2n,ii1t=1(1γr2n,t)(ρi)2+r1t=1(1γr2n,t)(ρi)2]+r1t=1(1γr2n,t)1[r1i=2γr2n,ii1t=1(1γr2n,t)(ρi)2+r1t=1(1γr2n,t)(ρi)2]]+((1γ1n,1+γ1n,1))((1γ2n,1)+γ2n,1)((1γ3n,1)+γ3n,1)××((1γr2n,1)+γr2n,1)×[r2i=2γr3n,ii1t=1(1γr3n,t)1[r2i=2γr3n,ii1t=1(1γr3n,t)(ρi)2+r2t=1(1γr3n,t)(ρi)2]+r2t=1(1γr3n,t)1[r2i=2γr3n,ii1t=1(1γr3n,t)(ρi)2+r2t=1(1γr3n,t)(ρi)2]]+2i=2γ1n,ii1t=1(1γ1n,t)1[2i=2γ1n,ii1t=1(1γ1n,t)(ρi)2+2t=1(1γ1n,t)(ρi)2]+2t=1(1γ1n,t)1[2i=2γ1n,ii1t=1(1γ1n,t)(ρi)2+2t=1(1γ1n,t)(ρi)2]}×((1δn,1)+δn,1)(1+(ρi)2)unq2. (3.50)

    We set

    σn=(1δn,1)(1ρ) (3.51)

    and

    τn={((1γ1n,1)+γ1n,1)((1γ2n,1)+γ2n,1)((1γ3n,1)+γ3n,1)((1γr2n,1)+γr2n,1)×[r1i=2γr2n,ii1t=1(1γr2n,t)1[r1i=2γr2n,ii1t=1(1γr2n,t)(ρi)2+r1t=1(1γr2n,t)(ρi)2]+r1t=1(1γr2n,t)1[r1i=2γr2n,ii1t=1(1γr2n,t)(ρi)2+r1t=1(1γr2n,t)(ρi)2]]+((1γ1n,1+γ1n,1))((1γ2n,1)+γ2n,1)((1γ3n,1)+γ3n,1)××((1γr2n,1)+γr2n,1)×[r2i=2γr3n,ii1t=1(1γr3n,t)1[r2i=2γr3n,ii1t=1(1γr3n,t)(ρi)2+r2t=1(1γr3n,t)(ρi)2]+r2t=1(1γr3n,t)1[r2i=2γr3n,ii1t=1(1γr3n,t)(ρi)2+r2t=1(1γr3n,t)(ρi)2]]+2i=2γ1n,ii1t=1(1γ1n,t)1[2i=2γ1n,ii1t=1(1γ1n,t)(ρi)2+2t=1(1γ1n,t)(ρi)2]+2t=1(1γ1n,t)1[2i=2γ1n,ii1t=1(1γ1n,t)(ρi)2+2t=1(1γ1n,t)(ρi)2]}×((1δn,1)+δn,1)(1+(ρi)2)unq2. (3.52)

    Then, we have (from (3.50)) that

    xn+1un+12(1σn)xnun2+τn. (3.53)

    From Lemma 2.3 and (3.53), we obtain

    limnxnun=0. (3.54)

    Since unqxnun+xnq, it follows from the assumption limnxnq=0 and (3.54) that limnunq=0.

    Since (a)(b) and (b)(a), it follows that the convergence of the implicit IH-multistep iterative scheme (3.1) is equivalent to the convergence of the implicit IH-Mann iterative scheme (3.7) when applied to the general class of the map (3.56). This completes the proof.

    The corollaries below are immediate consequences of Theorem 3.3.

    Corollary 3.2. Let H be a real Hilbert space, E a nonempty closed and convex subset of H and Γ:EE, with qF(Γ) satisfying the following condition:

    Γixqρixy, (3.55)

    where ρi[0,1). Let u0=z0=w0E, then the following are equivalent.

    (a) (i) Implicit IH-Mann iterative scheme {un}n=1 defined by (3.7) converges to q;

    (ii) Implicit IH-Ishikawa iterative scheme {zn}n=1 defined by (3.6) converges to q;

    (b) (i) Implicit IH-Mann iterative scheme {un}n=1 defined by (3.7) converges to q;

    (ii) Implicit IH-Noor iterative scheme {zn}n=1 defined by (3.5) converges to q.

    Proof. The proof of Corollary 3.4 is similar to that of Theorem 3.3. This completes the proof.

    Corollary 3.3. Let H be a real Hilbert space, E a nonempty closed and convex subset of H and Γ:EE, with qF(Γ) satisfying the following condition:

    Γixqρixy, (3.56)

    where ρi[0,1). Let u0=z0=w0x0E, then the following are equivalent.

    (i) Implicit IH-Mann iterative scheme {un}n=1 defined by (3.7) converges to q;

    (ii) Implicit IH-Ishikawa iterative scheme {zn}n=1 defined by (3.6) converges to q;

    (iii) Implicit IH-Noor iterative scheme {un}n=1 defined by (3.5) converges to q;

    (iv) Implicit IH-multistep iterative scheme {zn}n=1 defined by (3.1) converges to q.

    Implicit iterations could be seen in application for problems involving recurrent neural network (RNN) analysis. Indeed, neural networks are a class of nonlinear approximation functions and stable states which is established in recurrent auto-associative neural network using iterations. Here, we analyze the convergence speed of implicit iterations in an RNN and several important results will be studied for decreasing and increasing functions. The results obtained possess multifaceted real life applications and in particular can be helpful to design the inner product kernel of support vector machines with a faster convergence rate (for further study about RNNs, we refer any interested reader to [44]).

    Now, we demonstrate the equivalence of convergence between the implicit IH-multistep iterative scheme (3.1) and other implicit IH-type [implicit IH-Noor (3.5), implicit IH-Ishikawa (3.6), implicit IH-Mann (3.7)] iterative schemes with the help of computer programs in Matlab. We shall consider increasing and decreasing functions for the demonstration of our results as shown in the tables below.

    Let Γ:[6,8][6,8] be defined by Γx=x2+3. Then, Γ is an increasing function with the fixed point q=6.000000. Using the initial values x0=w0=z0=u0=7.000000 and δn,i=γjn,i=11nforj=1,2,3,,r2,n2 for all iterative schemes. The equivalent of the iterative schemes considered for the fixed point q=6.000000 are as shown below in the Table 1.

    Table 1.  Numerical example for decreasing function Γx=x2+3.
    n IH-MANN IH- ISHIKAWA IH-NOOR IH-MULTI-STEP
    1 7.000000 7.000000 7.000000 7.000000
    2 6.800000 6.400000 6.200000 6.100000
    3 6.640000 6.160000 6.040000 6.010000
    4 6.512000 6.064000 6.008000 6.001000
    5 6.409600 6.025600 6.001600 6.000100
    6 6.327680 6.010240 6.000320 6.000001
    7 6.262144 6.004096 6.000064 6.000000
    8 6.209715 6.001638 6.000013 6.000000
    9 6.167772 6.000655 6.000003 6.000000
    10 6.134218 6.000262 6.000001 6.000000
    12 6.107374 6.000105 6.000000 6.000000
    13 6.085899 6.000042 6.000000 6.000000
    14 6.068719 6.000017 6.000000 6.000000
    15 6.054976 6.000007 6.000000 6.000000
    16 6.043980 6.000003 6.000000 6.000000
    17 6.035184 6.000001 6.000000 6.000000
    18 6.028147 6.000000 6.000000 6.000000
    19 6.022518 6.000000 6.000000 6.000000
    20 6.018014 6.000000 6.000000 6.000000
    21 6.014412 6.000000 6.000000 6.000000
    22 6.011529 6.000000 6.000000 6.000000
    23 6.009223 6.000000 6.000000 6.000000
    24 6.007379 6.000000 6.000000 6.000000
    25 6.005903 6.000000 6.000000 6.000000
    26 6.004722 6.000000 6.000000 6.000000
    27 6.003778 6.000000 6.000000 6.000000
    28 6.003022 6.000000 6.000000 6.000000
    29 6.002418 6.000000 6.000000 6.000000
    30 6.001934 6.000000 6.000000 6.000000
    31 6.001547 6.000000 6.000000 6.000000
    32 6.001238 6.000000 6.000000 6.000000
    33 6.000990 6.000000 6.000000 6.000000
    34 6.000792 6.000000 6.000000 6.000000
    35 6.000634 6.000000 6.000000 6.000000
    36 6.000507 6.000000 6.000000 6.000000
    37 6.000406 6.000000 6.000000 6.000000
    38 6.000325 6.000000 6.000000 6.000000
    39 6.000260 6.000000 6.000000 6.000000
    40 6.000208 6.000000 6.000000 6.000000
    41 6.000166 6.000000 6.000000 6.000000
    42 6.000133 6.000000 6.000000 6.000000
    43 6.000106 6.000000 6.000000 6.000000
    44 6.000085 6.000000 6.000000 6.000000
    45 6.000068 6.000000 6.000000 6.000000
    46 6.000054 6.000000 6.000000 6.000000
    47 6.000044 6.000000 6.000000 6.000000
    48 6.000035 6.000000 6.000000 6.000000
    49 6.000028 6.000000 6.000000 6.000000
    50 6.000022 6.000000 6.000000 6.000000
    51 6.000018 6.000000 6.000000 6.000000
    52 6.000014 6.000000 6.000000 6.000000
    53 6.000011 6.000000 6.000000 6.000000
    54 6.000009 6.000000 6.000000 6.000000
    55 6.000007 6.000000 6.000000 6.000000
    56 6.000006 6.000000 6.000000 6.000000
    57 6.000005 6.000000 6.000000 6.000000
    58 6.000004 6.000000 6.000000 6.000000
    59 6.000003 6.000000 6.000000 6.000000
    60 6.000002 6.000000 6.000000 6.000000
    61 6.000002 6.000000 6.000000 6.000000
    62 6.000002 6.000000 6.000000 6.000000
    63 6.000001 6.000000 6.000000 6.000000
    64 6.000001 6.000000 6.000000 6.000000
    65 6.000001 6.000000 6.000000 6.000000
    65 6.000001 6.000000 6.000000 6.000000
    65 6.000000 6.000000 6.000000 6.000000

     | Show Table
    DownLoad: CSV

    Let Γ:[0,1][0,1] be defined by Γx=(1x)2. Then, Γ is an increasing function with the fixed point q=0.381996. Using the initial values x0=w0z0u0=7.000000 and δn,i=γjn,i=11n for j=1,2,3,,r2,n2 for all iterative schemes. The equivalent of the iterative schemes considered for the fixed point q=0.381996 are as shown below in Table 2.

    Table 2.  Numerical example for decreasing function Γx=(1x)2.
    n IH-MANN IH-ISHIKAWA IH-NOOR IH-MULTI-STEP
    1 0.700000 0.700000 0.700000 0.700000
    2 0.483425 0.413628 0.391780 0.385002
    3 0.413628 0.385002 0.382256 0.381994
    4 0.391780 0.382256 0.381975 0.381966
    5 0.385002 0.381994 0.381966 0.381966
    6 0.382904 0.381969 0.381966 0.381966
    7 0.382256 0.381966 0.381966 0.381966
    8 0.382056 0.381966 0.381966 0.381966
    9 0.381994 0.381966 0.381966 0.381966
    10 0.381975 0.381966 0.381966 0.381966
    12 0.381969 0.381966 0.381966 0.381966
    13 0.381967 0.381966 0.381966 0.381966
    14 0.381966 0.381966 0.381966 0.381966
    15 0.381966 0.381966 0.381966 0.381966

     | Show Table
    DownLoad: CSV

    Remark 4.1. (a) Using Table 1, it is observed that for the increasing function Γx=x2+3, the convergence of the implicit multistep-IH iterative scheme (3.1) to the fixed point 6.000000 is equivalent to the convergence of other implicit IH-type [implicit IH-Noor (IIHN) (3.5), implicit IH-Ishikawa (IHII) (3.6) and implicit IH-Mann (IHM) (3.7)] iterative schemes to the same fixed point of 6.000000.

    (b) Using Table 2, it is observed that, for the decreasing function Γx=(1x)2, the convergence of the implicit IH-multistep iterative scheme (3.1) to the fixed point 0.381966 is equivalent to the convergence of other implicit IH-type [implicit IH-Noor (IIHN) (3.5), implicit IH-Ishikawa (IIHI) (3.6) and implicit IH-Mann (IIHM) (3.7)] iterative schemes to the same fixed point of 0.381966.

    Remark 4.2. Despite the remarkable results obtained in the papers studied (and their various inclusions), the implications of the "sum conditions" (that is, the condition that 1r=0αn,r=1,t+1s=0αtn,s=1 and us=0αu1n,t=1, where 123u for each u, αtn,s,αn,0,0 for each t, αtn,s[0,1] and 1 and u are fixed integers for each u) are quite enormous. For instance, the sum condition implies that

    (1) for large u,u1, one has to choose different points of the sequences {αn,i}n=0 that would guarantee instant generation of such a finite family of control sequences such that 1r=0αn,r=1,t+1s=0αtn,s=1andus=0αu1n,t=1, which might be almost impossible and

    (2) one has to make adequate provisions for the computational time and memory space for the computation and storage of the bulky and complex task of generating 1r=0αn,r=1,t+1s=0αtn,s=1andus=0αu1n,t=1, which invariably leads to enormous computational cost.

    Unlike the papers studied, the iterative schemes used to obtain our results do not require sum conditions. Consequently, our iterative schemes are more efficient in application as compared to several other iterative techniques studied in this area.

    Remark 4.3. The following areas are still open:

    (i) The results obtained in this paper are in the setting of real Hilbert spaces. However, there are other spaces more general than Hilbert spaces. Hence, it becomes necessary to ask if Propositions (2.3) and (2.4) could be proved in those other spaces so as to generalize the results in this paper.

    (ii) The results in this paper are for a finite family of a general class of contractive-type maps. Again, is it possible to prove Propositions (2.3) and (2.4) for the case of an infinite family of maps so as to extend the results in this paper?

    (ii) In this paper, the speed of convergence of the iterative schemes was only considered for different IH-type implicit iteration methods. Relating the speed of convergence of the iterative methods studied in the paper to other implicit iterative methods studied in literature is still open.

    In this paper, we studied the set of fixed points and considered iterative schemes of the IH-type in order to obtain approximate fixed points of contractive-type mappings for which we have proven strong convergence theorems without any imposition of sum conditions on the control parameters.

    Further, we showed that IH-Mann, IH-Ishikawa, IH-Noor and IH-multistep iteration techniques defined with the help of contractive-type mappings are equivalent. Also, we demonstrated the rate of convergence for the various iteration schemes considered and discovered that the IH-multistep iterative scheme converges faster than the rest of the iterative schemes for increasing and decreasing functions.

    Finally, an affirmative answer has been provided for Question 1.2 and the numerical examples considered in this paper justified our claim on the equivalence results obtained. These results show that our implicit IH-type hybrid iterative schemes (for which no imposition of any sum condition is required) have better potentials for further applications than some other iterative schemes considered so far in this area.

    The authors declare no conflicts of interest.



    [1] N. Saleem, M. Abbas, Z. Raza, Fixed fuzzy point results of generalized Suzuki type F-contraction mappings in ordered metric spaces, Georgian J. Math., 27 (2020), 307–320. https://doi.org/10.1515/gmj-2017-0048 doi: 10.1515/gmj-2017-0048
    [2] N. Saleem, M. Abbas, B. Ali, Z. Raza, Fixed points of Suzuki-type generalized multivalued (f, θ, L)-almost contractions with applications, Filomat, 33 (2019), 499–518. https://doi.org/10.2298/FIL1902499S doi: 10.2298/FIL1902499S
    [3] A. O. Bosede, H. Akewe, O. F. Bakre, A. S. Wusu, On the equivalence of implicit Kirk-type fixed point iteration schemes for a general class of maps, J. Appl. Math. Phys., 7 (2019), 89944. https://doi.org/10.4236/jamp.2019.71011 doi: 10.4236/jamp.2019.71011
    [4] R. Chugh, P. Malik, V. Kumar, K. L. Teo, On analytical and numerical study of implicit fixed point iterations, Cogent Math., 2 (2015), 1021623. https://doi.org/10.1080/23311835.2015.1021623 doi: 10.1080/23311835.2015.1021623
    [5] K. R. Kazmi, S. H. Rizvi, Implicit iterative method for approximating a common solution of split equilibrium problem and fixed point problem for a nonexpansive semigroup, Arab J. Math. Sci., 20 (2014), 57–75. https://doi.org/10.1016/j.ajmsc.2013.04.002 doi: 10.1016/j.ajmsc.2013.04.002
    [6] Z. Raza, N. Saleem, M. Abbas, Optimal coincidence points of proximal quasi-contraction mappings in non-Archimedean fuzzy metric spaces, J. Nonlinear Sci. Appl., 9 (2016), 3787–3801. http://dx.doi.org/10.22436/jnsa.009.06.28 doi: 10.22436/jnsa.009.06.28
    [7] N. Saleem, M. Rashid, F. Jarad, A. Kalsoom, Convergence of generalized quasi-nonexpansive mappings in hyperbolic space, J. Funct. Spaces, 2022 (2022), 3785584. https://doi.org/10.1155/2022/3785584 doi: 10.1155/2022/3785584
    [8] A. Kalsoom, N. Saleem, H. Işik, T. M. Al-Shami, A. Bibi, H. Khan, Fixed point approximation of monotone nonexpansive mappings in hyperbolic spaces, J. Funct. Spaces, 2021 (2021), 3243020. https://doi.org/10.1155/2021/3243020 doi: 10.1155/2021/3243020
    [9] G. Usurelu, A. Bejenaru, M. Postolache, Newton-like methods and polynomiographic visualization of modified Thakur processes, Int. J. Comput. Math., 98 (2021), 1049–1068. http://dx.doi.org/10.1080/00207160.2020.1802017 doi: 10.1080/00207160.2020.1802017
    [10] K. Gdawiec, W. Kotarski, A. Lisowska, On the robust Newton's method with the Mann iteration and the artistic patterns from its dynamics, Nonlinear Dyn., 104 (2021), 297–331. https://doi.org/10.1007/s11071-021-06306-5 doi: 10.1007/s11071-021-06306-5
    [11] A. Tassaddiq, General escape criteria for the generation of fractals in extended Jungck–Noor orbit, Math. Comput. Simulat., 196 (2022), 1–14. https://doi.org/10.1016/j.matcom.2022.01.003 doi: 10.1016/j.matcom.2022.01.003
    [12] B. E. Rhoade, Fixed point theorems and stability results for fixed point iteration procedures, Indian J. Pure Appl. Math., 24 (1993), 691–703.
    [13] B. E. Rhoade, Fixed point theorems and stability results for fixed point iteration procedures, Indian J. Pure Appl. Math., 21 (1990), 1-9.
    [14] M. O. Osilike, A. Udoemene, A short proof of stability resultsfor fixed point iteration procedures for a class of contractive-type mappings, Indian J. Pure Appl. Math., 30 (1999), 1229–1234.
    [15] J. O. Olaeru, H. Akewe, An extension of Gregus fixed point theorem, Fixed Point Theory Appl., 2007 (2007), 78628. https://doi.org/10.1155/2007/78628 doi: 10.1155/2007/78628
    [16] A. Ratiq, A convergence theorem for Mann fixed point iteration procedure, Appl. Math. E-Note, 6 (2006), 289–293.
    [17] H. Akewe, H. Olaoluwa, On the convergence of modified three-step iteration process for generalized contractive-like operators, Bull. Math. Anal. Appl., 4 (2012), 78–86.
    [18] B. E. Rhoade, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc., 266 (1977), 257–290. http://dx.doi.org/10.2307/1997954 doi: 10.2307/1997954
    [19] B. E. Rhoade, Comments on two fixed point iteration methods, J. Math. Anal. Appl., 56 (1976), 741–750. https://doi.org/10.1016/0022-247X(76)90038-X doi: 10.1016/0022-247X(76)90038-X
    [20] B. E. Rhoade, Fixed point iteration using infinite matrices, Trans. Amer. Math. Soc., 196 (1974), 161–176.
    [21] V. Berinde, Iterative approximation of fixed points, Springer Berlin, Heidelberg, 2007. https://doi.org/10.1007/978-3-540-72234-2
    [22] H. Akewe, Approximation of fixed and common fixed points of generalised contractive-like operators, PhD Thesis, University of Lagos, Nigeria, 2010.
    [23] A. M. Harder, T. L. Hicks, Stability results for fixed point iterative procedures, Math. Japonica, 33 (1988), 693–706.
    [24] A. M. Ostrowski, The round-off stability of iterations, Z. Angew Math. Mech., 47 (1967), 77–81. https://doi.org/10.1002/zamm.19670470202 doi: 10.1002/zamm.19670470202
    [25] V. Berinde, On the stability of some fixed point problems, Bull. Stint. Univ. Bala Mare, Ser. B, 14 (2002), 7–14.
    [26] T. Zamfirescu, Fixed point theorems in metric spaces, Arch. Math., 23 (1972), 292–298. https://doi.org/10.1007/BF01304884 doi: 10.1007/BF01304884
    [27] M. O. Osilike, Stability results for lshikawa fixed point iteration procedure, Indian J. Pure Appl. Math., 26 (1996), 937–941.
    [28] M. O. Olutinwo, Some stability results for two hybrid fixed point iterative algorithms in normed linear space, Mat. Vesn, 61 (2009), 247–256.
    [29] A. Ratiq, On the convergence of the three step iteration process in the class of quasi-contractive operators, Acta. Math. Acad. Paedagog., 22 (2006), 300–309.
    [30] M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl., 251 (2000), 217–229. https://doi.org/10.1006/jmaa.2000.7042 doi: 10.1006/jmaa.2000.7042
    [31] W. A. Kirk, On successive approximations for nonexpansive mappings in Banach spaces, Glasgow Math. J., 12 (1971), 6–9. https://doi.org/10.1017/S0017089500001063 doi: 10.1017/S0017089500001063
    [32] W. R. Mann, Mean value method in iteration, Proc. Amer. Math. Soc., 44 (2000), 506–510. https://doi.org/10.2307/2032162 doi: 10.2307/2032162
    [33] S. Ishikawa, Fixed points by a new iteration methods, Proc. Amer. Math. Soc., 44 (1974), 147–150. https://doi.org/10.1090/S0002-9939-1974-0336469-5 doi: 10.1090/S0002-9939-1974-0336469-5
    [34] C. O. Imoru, M. O. Olatinwo, On the stability of Picard's and Mann's iteration, Carpathian J. Math., 19 (2003), 155–160. https://doi.org/10.1007/BF03059705 doi: 10.1007/BF03059705
    [35] R. Chugh, V. Kummar, Stability of hybrid fixed point iterative algorithm of Kirk-Noor-type in nonlinear spaces for self and nonself operators, Int. J. Contemp. Math. Sci., 7 (2012), 1165–1184.
    [36] R. Chugh, V. Kummar, Strong convergence of SP iterative scheme for quasi-contractive operators, Int. J. Comput. Appl., 31 (2011), 21–27.
    [37] H. Akewe, G. A. Okeeke, A. Olayiwola, Strong convergence and stability of Kirk-multistep-type iterative schemes for contractive-type operators, Fixed Point Theory Appl., 2014 (2014), 45. https://doi.org/10.1186/1687-1812-2014-45 doi: 10.1186/1687-1812-2014-45
    [38] F. O. lsoǵuǵu, C. Izuchukwu, C. C. Okeke, New iteration scheme for approximating a common fixed point of a finite family of mappings, Hindawi J. Math., 2020 (2020), 3287968. https://doi.org/10.1155/2020/3287968 doi: 10.1155/2020/3287968
    [39] I. K. Agwu, D. I. Igbokwe, New iteration algorithm for equilibrium problems and fixed point problems of two finite families of asymptotically demicontractive multivalued mappings, unpublished work.
    [40] Ş. M. Şoltuz, The equivalence of Picard, Mann and Ishikawa iterations dealing with quasi-contractive operators, Math. Commun., 10 (2005), 81–88.
    [41] I. K. Agwu, D. I. Igbokwe, A novel approach for convergence and stability of Jungck-Kirk-type algorithms for common fixed point problems in Hilbert spaces, unpublished work.
    [42] I. K. Agwu, D. I. Igbokwe, Fixed points and stability of new approximation algorithms for contractive-type operators in Hilbert spaces, unpublished work.
    [43] R. Chugh, P. Malik, V. Kumar, On a new faster implicit fixed point iterative scheme in convex metric spaces, J. Funct. Spaces, 2015 (2015), 905834. https://doi.org/10.1155/2015/905834 doi: 10.1155/2015/905834
    [44] M. F. Barnsley, Fractals everywhere, 2 Eds., Academic Press, 1993.
    [45] C. E. Chidume, J. O. Olaleru, Picard iteration process for a general class of contractive mappings, J. Nigerian Math. Soci., 33 (2014), 19–23.
  • This article has been cited by:

    1. Khairul Habib Alam, Yumnam Rohen, Naeem Saleem, Fixed Points of (α, β, F*) and (α, β, F**)-Weak Geraghty Contractions with an Application, 2023, 15, 2073-8994, 243, 10.3390/sym15010243
    2. Huan Zhang, Xiaolan Liu, Jia Deng, Yan Sun, Strong convergence of modified inertial extragradient methods for non-Lipschitz continuous variational inequalities and fixed point problems, 2024, 43, 2238-3603, 10.1007/s40314-023-02582-6
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1742) PDF downloads(76) Cited by(2)

Figures and Tables

Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog