Loading [MathJax]/jax/output/SVG/jax.js
Research article

Boundedness of fractional integrals on grand weighted Herz spaces with variable exponent

  • Received: 21 August 2022 Revised: 22 September 2022 Accepted: 22 September 2022 Published: 12 October 2022
  • MSC : Primary 46E30, Secondary 47B38

  • In this paper, we introduce grand weighted Herz spaces with variable exponent and prove the boundedness of fractional integrals on these spaces.

    Citation: Babar Sultan, Mehvish Sultan, Mazhar Mehmood, Fatima Azmi, Maryam Ali Alghafli, Nabil Mlaiki. Boundedness of fractional integrals on grand weighted Herz spaces with variable exponent[J]. AIMS Mathematics, 2023, 8(1): 752-764. doi: 10.3934/math.2023036

    Related Papers:

    [1] Babar Sultan, Mehvish Sultan, Qian-Qian Zhang, Nabil Mlaiki . Boundedness of Hardy operators on grand variable weighted Herz spaces. AIMS Mathematics, 2023, 8(10): 24515-24527. doi: 10.3934/math.20231250
    [2] Babar Sultan, Mehvish Sultan, Aziz Khan, Thabet Abdeljawad . Boundedness of an intrinsic square function on grand p-adic Herz-Morrey spaces. AIMS Mathematics, 2023, 8(11): 26484-26497. doi: 10.3934/math.20231352
    [3] Mehvish Sultan, Babar Sultan, Ahmad Aloqaily, Nabil Mlaiki . Boundedness of some operators on grand Herz spaces with variable exponent. AIMS Mathematics, 2023, 8(6): 12964-12985. doi: 10.3934/math.2023653
    [4] Wanjing Zhang, Suixin He, Jing Zhang . Boundedness of sublinear operators on weighted grand Herz-Morrey spaces. AIMS Mathematics, 2023, 8(8): 17381-17401. doi: 10.3934/math.2023888
    [5] Javeria Younas, Amjad Hussain, Hadil Alhazmi, A. F. Aljohani, Ilyas Khan . BMO estimates for commutators of the rough fractional Hausdorff operator on grand-variable-Herz-Morrey spaces. AIMS Mathematics, 2024, 9(9): 23434-23448. doi: 10.3934/math.20241139
    [6] Samia Bashir, Babar Sultan, Amjad Hussain, Aziz Khan, Thabet Abdeljawad . A note on the boundedness of Hardy operators in grand Herz spaces with variable exponent. AIMS Mathematics, 2023, 8(9): 22178-22191. doi: 10.3934/math.20231130
    [7] Yueping Zhu, Yan Tang, Lixin Jiang . Boundedness of multilinear Calderón-Zygmund singular operators on weighted Lebesgue spaces and Morrey-Herz spaces with variable exponents. AIMS Mathematics, 2021, 6(10): 11246-11262. doi: 10.3934/math.2021652
    [8] Dazhao Chen . Endpoint estimates for multilinear fractional singular integral operators on Herz and Herz type Hardy spaces. AIMS Mathematics, 2021, 6(5): 4989-4999. doi: 10.3934/math.2021293
    [9] Ming Liu, Bin Zhang, Xiaobin Yao . Weighted variable Morrey-Herz space estimates for mth order commutators of ndimensional fractional Hardy operators. AIMS Mathematics, 2023, 8(9): 20063-20079. doi: 10.3934/math.20231022
    [10] Jie Sun, Jiamei Chen . Weighted estimates for commutators associated to singular integral operator satisfying a variant of Hörmander's condition. AIMS Mathematics, 2023, 8(11): 25714-25728. doi: 10.3934/math.20231311
  • In this paper, we introduce grand weighted Herz spaces with variable exponent and prove the boundedness of fractional integrals on these spaces.



    During the previous decade, there was a vast boom of research in the so-called variable exponent spaces because they can be used to model electrorheological fluids, image restoration, and continuum medium mechanics see, for instance, [9,10,11,12,13,14,17,18,21,31,32]. Consequently, over hundred scholars have contributed to the study of function spaces and related differential equations, so the theory of function spaces advanced quickly. For the time being, the theory of such variable exponent Lebesgue, Orlicz, Sobolev and Lorentz function spaces is widely developed, cf. [3,4,7,8,19,20,29,33,34]. The first generalization of variable exponent Herz spaces was established in [14]. The most general results were obtained in [1], where α was a variable. In [28], variable parameters were used to define continual Herz spaces, and the boundedness of sublinear operators (including the maximal function and Calderón-Zygmund singular operators)was proved in these spaces.

    Boundedness of other operators, such as Riesz potential operators and the Marcinkiewicz integral, as proved in [22,27]. The concept of Morrey spaces Lp,λ was introduced by C. Morrey in 1938 (see [23]) in order to study regularity questions which appear in the calculus of variations.They describe local regularity more precisely than Lebesgue spaces and are widely used in not only harmonic analysis but also partial differential equations. In [22], Meskhi introduced the idea of grand Morrey spaces Lr),θ,λ and derived the boundedness of a class of integral operators (Hardy-Littlewood maximal functions, Calderón-Zygmund singular integrals and potentials) in these spaces. Muckenhoupt [24] has established the theory on weights called the Muckenhoupt Ap theory in the study of weighted function spaces and greatly developed real analysis. Recently, a generalization of the Muceknhoupt weights in terms of variable exponents has been studied in [2,5]. Weighted norm inequalities for the maximal operator on variable Lebesgue spaces were proved in [5]. Boundedness of the fractional integrals on variable weighted Lebesgue spaces by using the extrapolation theorem can be checked in [6,35].

    Rafeiro et al. [25,26] established the idea of grand variable Herz spaces ˙Kα(),p),θq()(Rn) and derived the boundedness of the sublinear operators and the Marcinkiewicz integral on ˙Kα(),p),θq()(Rn). Inspired by the concept, in this article we introduce the concept of grand weighted Herz spaces with variable exponent and prove the boundedness of the fractional integral operator in these spaces. There are four sections in this article. The first section is dedicated to the introduction, and the second section contains some basic definitions and lemmas. In the third section, we introduce the concept of grand weighted Herz spaces with variable exponent, and the boundedness of the fractional integral operator on grand weighted Herz spaces with variable exponent is proved in the last section.

    For this section, we refer to [8,13,15,25,27,28,30].

    Assume that GRn is an open set, and p():G[1,) is a real-valued measurable function. Let the following condition holds:

    1p(G)p+(G)<, (2.1)

    where

    ⅰ) p:=essinfgGp(g),

    ⅱ) p+:=esssupgGp(g).

    Lebesgue space Lp()(G) is the space of measurable functions f on G such that,

    ILp()(f)=G|f(g)|p(g)dg<,

    and the norm is defined as

    fLp()(G)=essinf{γ>0:ILp()(fγ)1}.

    This is the Banach function space and p(g)=p(g)p(g)1 denotes the conjugate exponent of p(g).

    Next, we will define the space Lp()loc(G) as,

    Lp()loc(G):={κ:κLp()(K)forallcompactsubsetsKG}.

    Now, to define the log-condition,

    |η(z1)η(z2)|Cln|z1z2|,|z1z2|12,z1,z2G, (2.2)

    where C=C(η)>0 does not depend on z1,z2.

    For the decay condition: Let η(1,), such that

    |η(z1)η|Cln(e+|z1|), (2.3)
    |η(z1)η0|Cln|z1|,|z1|12. (2.4)

    Equation (2.4) holds for η0(1,) in the case of homogenous Herz spaces. We adopted the following notations in this paper:

    (ⅰ) The Hardy-Littlewood maximal operator M for fL1loc(G) is defined as

    Mf(g):=supt>0tnD(g,r)|f(g)|dg(gG),

    where D(g,t):={yG:|gy|<t}.

    (ⅱ) The set P(G) is the collection of all p() satisfying p>1 and p+<.

    (ⅲ) A weight is a locally integrable and positive function which is defined on Rn, and it can be written as ω(G):=Gω(g)dg for a weight w and measurable set G.

    (ⅳ) The set of p() satisfying (2.3) and (2.4) is represented by LH(Rn).

    C is a constant which is independent of the main parameters involved, and its value varies from line to line.

    Lemma 2.1 (Generalized Hölder's inequality). Assume that G is a measurable subset of Rn, and 1p(G)p+(G). Then,

    fgLr()(G)CfLp()(G)gLq()(G)

    holds, where fLp()(G), gLq()(G), and 1r(z)=1p(z)+1q(z) for every zG.

    We adopted the following notations in this subsection:

    (a) χk=χRk.

    (b) Rk=DkDk1.

    (c) Dk=D(0,2k)={xRn:|x|<2k} for all kZ.

    (d) Rt,τ:=D(0,τ)D(0,t).

    Definition 2.2. Let r[1,), αR and s()P(Rn). The homogenous Herz space ˙Kα,rs()(Rn) is defined by

    ˙Kα,rs()(Rn)={fLs()loc(Rn{0}):f˙Kα,rs()(Rn)<}, (2.5)

    where

    f˙Kα,rs()(Rn)=(k=k=2kαfχkrLs())1r.

    Definition 2.3. Let r[1,), αR and s()P(Rn). The non-homogenous Herz space Kα,rs()(Rn) is defined by

    Kα,rs()(Rn)={fLs()loc(Rn{0}):fKα,rs()(Rn)<}, (2.6)

    where

    fKα,rs()(Rn)=(k=k=2kαfχkrLs())1r+fLs()(D(0,1)).

    Let r()P(Rn), and w is a weight. The weighted Lebesgue space Lr() is the set of all complex-valued measurable functions f such that fw1r()Lr()(Rn). Lr()(w) is a Banach space its norm is given by

    fLr()(w):=fw1r()Lr(),

    where r() is the conjugate exponent of r() given by 1r()+1r()=1. Next we will define Muckenhoupt classes by starting with classical Muckenhoupt weights.

    Definition 2.4. Suppose r()P(Rn). A weight w is called an Ar() weight if

    supD:ball1|D|w1r()χDLr()w1r()χDLr()<. (2.7)

    The set Ar() consists of all Ar() weights.

    Now, we shall give the definitions of the Muckenhoupt classes Ar with r=1,.

    Definition 2.5. (ⅰ) A weight w is called a Muckenhoupt A1 weight if Mw(z)w(z) holds for almost every zRn. The set A1 consists of all Muckenhoupt A1 weights. For every wA1,

    [w]A1:=supD:ball(1|D|Dw(z)dz.w1L(D)).

    Then a finite value of [w]A1 is called an A1 constant.

    (ⅱ) A weight is called a Muckenhoupt A weight if the weight belongs to the following set:

    A:=1<r<Ar.

    Definition 2.6. Suppose r()P(Rn). A weight is called an Ar() weight if

    supD:ball|D|PDwχDL1w1χDLr()/r()<, (2.8)

    where PD:=(1|D|D1r(z)dz)1 is the harmonic average of r() over D. The set Ar() consists of all Ar() weights.

    Definition 2.7. Let 0<α<n and r1(),r2()P(Rn) such that 1r2(z)1r1(z)αn. A weight w is called an A(r1(),r2()) weight if

    wχDLr2()w1χDLr1()|D|1αn,

    holds for all balls DRn.

    Lemma 2.8. Assume that G is a Banach function space, and the Hardy-Littlewood maximal operator M is weakly bounded on G, that is,

    χ(Mg>λ)Gλ1gG, (2.9)

    is true for all gG and all λ>0. Then, we have

    supD:ball1|D|χDGχDG<. (2.10)

    Lemma 2.9. [16] Let X be a Banach function space, and M is bounded on the associate space X. Then, there exists a constant δ(0,1) such that for all measurable sets ED and for all balls DRn,

    χEXχDX(|E||D|)δ.

    Let r2()P(Rn)LH(Rn), wr2()Ar2(), wr2()Ar2() and δ1,δ2(0,1).

    χELr2()(wr2())χDLr2()(wr2())=χELr2()(wr2())χDLr2()(wr2())(|E||D|)δ1. (2.11)
    χELr2()(wr2())χDLr2()(wr2())(|E||D|)δ2. (2.12)

    For more details, see [16].

    In this section, first we will define grand Herz spaces and then introduce the concept of grand weighted Herz spaces with variable exponent.

    Definition 3.1. [25] Let α()L(Rn), r[1,), s:Rn[1,), θ>0. A grand Herz spaces with variable exponent ˙Kα(),r),θs()(Rn) is defined by

    ˙Kα(),r),θs()(Rn)={fLs()loc(Rn{0}):f˙Kα(),r),θs()(Rn)<},

    where

    f˙Kα(),r),θs()(Rn)=supδ>0(δθkZ2kα()r(1+ϵ)fχkr(1+δ)Ls())1r(1+δ)=supδ>0δθr(1+δ)f˙Kα,r),θs()(Rn).

    Now, we will define a variable exponent weighted Lebesgue space.

    Definition 3.2. [16] Let ΩRn be a measurable set, and w is a positive and locally integrable function on Ω. Lr()loc(Ω,w) is the class of all functions f which satisfy the following condition: For all compact sets EΩ, there is a constant λ>0 such that

    E|f(z)λ|r(z)w(z)dz<.

    Definition 3.3. Let q()P(Rn), 0<r<, αR, θ>0. The homogeneous grand weighted Herz spaces with variable exponent ˙Kα,r),θq()(w) is the collection of Lq()loc(Rn/({0},w) is such that,

    ˙Kα,r),θq()(w):={Lq()loc(Rn/({0},w)):f˙Kα,r),θq()(w)<}, (3.1)

    where

    f˙Kα,r),θq()(w)=supδ>0(δθkZ2kαr(1+δ)fχkr(1+δ)Lq()(w))1r(1+δ).

    Non-homogeneous grand weighted Herz spaces can be defined in a similar way.

    Definition 4.1. Fractional integrals are given by the following.

    Let 0<ζ<n, and then the fractional integral operator Iζ is defined by

    Iζf(z1):=Rnf(z2)|z1z2|nζdz2. (4.1)

    Theorem 4.2. [16] Let r1()P(Rn)LH(Rn), 0<ζ<n/r1+ and σ:=(n/ζ). Define r2() by 1/r2()=1/r1()ζ/n. Then, for all weights w such that (r2()/σ,wσ) is an M-pair, Iζ is bounded from Lr1()(wr1()) to Lr2()(wr2()).

    Theorem 4.3. Let 1<r<, q2()P(Rn)LH(Rn), wq2()A1, δ1,δ2(0,1) be the constants appearing in (2.11) and (2.12), respectively. α and ζ are such that

    (i) nδ1<α<nδ2ζ.

    (ii) 0<ζ<n(δ1+δ2).

    Define q1() by 1/q2()=1/q1()ζ/n. Then, the fractional integral operator Iζ is a bounded operator from ˙Kα,r),θq2()(wq2()) to ˙Kα,r),θq1()(wq1().

    Proof. Let f˙Kα,r),θq2()(wq2()), and fj:=fχj for any jZ. Then, f=j=fj, and we have

    Iζf˙Kα,r),θq2()(wq2())=supδ>0(δθkZ2kαr(1+δ)χkIζfr(1+δ)Lq2()(wq2()))1r(1+δ)=supδ>0(δθkZ2kαr(1+δ)j=χk(Iζfj)r(1+δ)Lq2()(wq2()))1r(1+δ)supδ>0(δθkZ2kαr(1+δ)jk2χk(Iζfj)r(1+δ)Lq2()(wq2()))1r(1+δ)+supδ>0(δθkZ2kαr(1+δ)k+1j=k1χk(Iζfj)r(1+δ)Lq2()(wq2()))1r(1+δ)+supδ>0(δθkZ2kαr(1+δ)jk+2χk(Iζfj)r(1+δ)Lq2()(wq2()))1r(1+δ)=:E1+E2+E3.

    Operator Iζ is bounded on weighted Lebesgue space, so for E2,

    E2supδ>0(δθkZ2kαr(1+δ)k+1j=k1χk(Iζfj)r(1+δ)Lq2()(wq2()))1r(1+δ)supδ>0(δθkZ2kαr(1+δ)k+1j=k1(fχj)r(1+δ)Lq1()(wq1()))1r(1+δ)supδ>0(δθkZ2kαr(1+δ)(fχk)r(1+δ)Lq1()(wq1()))1r(1+δ)f˙Kα,r),θq1()(wq1()).

    For E1, by using the size condition and Hölder's inequality,

    |Iζ(fj)(z1)|χk(z1)χk(z1)Rn|z1z2|ζn|fj(z2)|dz22k(ζn)fjLq1()(wq1())χj(Lq1()(wq1())).χk(z1).

    By using Lemma (2.8), we get

    (Iζfj)χkLq2()(wq2())2kζfjLq1()(wq1())χjL(q1()(wq1()))2knχDkLq2()(wq2())2kζfjLq1()(wq1())χj(Lq1()(wq1()))χDk1(Lq2()(wq2())).

    By using (2.12), we have

    (Iζfj)χkLq2()(wq2())2kζfjLq1()(wq1())χj(Lq1()(wq1()))χDk1(Lq2()(wq2()))=2kζfjLq1()(wq1())χj(Lq1()(wq1()))χDk1(Lq2()(wq2()))χDj(Lq2()(wq2()))χDk(Lq2()(wq2()))2kζ2nδ2(jk)fjLq1()(wq1())χj(Lq1()(wq1()))χDj1(Lq2()(wq2())).

    By the boundednesss of Iζ:Lq1()(wq1())Lq2()(wq2()), and the inequality 2jζχDj(IζfDj)(x), we have

    χDjLq2()(wq2())2jζIζχBjLq2()(wq2())2jζχDjLq1()(wq1()).

    By using Lemma (2.8) again, we obtain

    χDjLq2()(wq2())2jζχDjLq1()(wq1())2j(nζ)χDj1(Lq1()(wq1()))2j(nζ)χj1(Lq1()(wq1())).

    By using the above inequalities, we get

    (Iζfj)χkLq2()(wq2())2kζ2nδ2(jk)2j(nζ)fjLq1()(wq1())χDj1Lq2()(wq2())χDj1(Lq2()(wq2()))=2(ζnδ2)(kj)fjLq1()(wq1())(2jnχDjLq2()(wq2())χDj(Lq2()(wq2())))12(ζnδ2)(kj)fjLq1()(wq1()).

    It is known that ζnδ2+α<0, so we will consider two cases: 1<r(1+δ)< and 0<r(1+δ)1. By considering, the first case, 1<r(1+δ)<, and by applying Hölder's inequality, we get

    E1supδ>0(δθk=2kαr(1+δ)(k2j=χkIζ(fj)Lq2()(wq2()))r(1+δ))1r(1+δ)supδ>0(δθk=(2αjk2j=2(ζnδ2+α)(kj)fjLq1()(wq1()))r(1+δ))1r(1+δ)supδ>0[δθk=(k2j=2αjr(1+δ)fjr(1+δ)Lq1()(wq1())2(ζnδ2+α)(kj)r(1+δ)/2)×(k2j=2(ζnδ2+α)(kj)(r(1+δ))/2)r(1+δ)(r(1+δ))]1r(1+δ)supδ>0(δθk=k2j=2αjr(1+δ)fjr(1+δ)Lq1()(wq1())2(ζnδ2+α)(kj)r(1+δ)/2)1r(1+δ)supδ>0(δθj=2αjr(1+δ)fjr(1+δ)Lq1()(wq1())kj22(ζnδ2+α)(kj)r(1+δ)/2)1r(1+δ)supδ>0(δθl=2αjr(1+δ)fjr(1+δ)Lq1()(wq1()))1r(1+δ)f˙Kα,r),θq1()(wq1()).

    For 0<r(1+δ)1, we get

    E1supδ>0(δθk=(2αjk2j=2(ζnδ2+α)(kj)fjLq1()(wq1()))r(1+δ))1r(1+δ)supδ>0(δθk=k2j=2αjr(1+δ)fjr(1+δ)Lq1()(wq1())2(ζnδ2+α)(kj)r(1+δ))1r(1+δ)supδ>0(δθj=2αjr(1+δ)fjr(1+δ)Lq1()(wq1())kj22(ζnδ2+α)(kj)r(1+δ))1r(1+δ)supδ>0(δθl=2αjr(1+δ)fjr(1+δ)Lq1()(wq1()))1r(1+δ)f˙Kα,r),θq1()(wq1()).

    Now, we will estimate E3, by using the size condition, and Hölder's inequality, for j,kZ with jk+2, We have

    |Iζ(fj)(z1)|χk(z1)χk(z1)Dj|z1z2|ζn|fj(z2)|dz22j(ζn)fjLq1()(wq1())χjLq1()(wq1()).χk(z1).

    By taking the Lp2()(wp2())-norm, we have

    (Iζfj)χkLq2()(wq2())2j(n+ζ)fjLq1()(wq1())χjLq1()(wq1())χkLq2()(wq2())2j(n+ζ)fjLq1()(wq1())χjLq1()(wq1())χjLq2()(wq2())χkLq2()(wq2())χjLq2()(wq2())2j(n+ζ)2nδ1(kj)fjLq1()(wq1())χjLq1()(wq1())χjLq2()(wq2()).

    By the definition of A(p1(),p2()), we obtain

    χjLq1()(wq1())χjLq2()(wq2())χDjLq1()(wq1())χDjLq2()(wq2())w1χDjLq1()wχDjLq2()2jn(1ζ/n).

    Hence, we have

    (Iζfj)χkLq2()(wq2())2j(n+ζ)2nδ1(kj)fjLq1()(wq1())χjLq1()(wq1())χjLq2()(wq2())2j(n+ζ)2nδ1(kj)2jn(1ζ/n)fjLq1()(wq1())2nδ1(kj)fjLq1()(wq1()).

    Therefore, we get

    E3=supδ>0(δθkZ2kαr(1+δ)jk+2χk(Iζfj)r(1+δ)Lq2()(wq2()))1r(1+δ)supδ>0(δθkZ2kαr(1+δ)jk+22nδ1(kj)fjr(1+δ)Lq1()(wq1()))1r(1+δ)supδ>0(δθkZ(jk+22(α+nδ1)(kj)2αjfjLq1()(wq1()))r(1+δ))1r(1+δ).

    For α+nδ1>0, we will consider the two cases: 1<r(1+δ)< and 0<r(1+δ)1. Now, by considering the first case, 1<r(1+δ)<, and by using Hölder's inequality, we have

    E3supδ>0(δθkZ(jk+22(α+nδ1)(kj)2αjfjLq1()(wq1()))r(1+δ))1r(1+δ)supδ>0[δθk=(jk+22αjr(1+δ)fjr(1+δ)Lq1()(wq1())2(nδ1+α)(kj)r(1+δ)/2)×(jk+22(nδ1+α)(kj)(r(1+δ))/2)r(1+δ)(r(1+δ))]1r(1+δ)supδ>0(δθk=jk+22αjr(1+δ)fjr(1+δ)Lq1()(wq1())2(nδ1+α)(kj)r(1+δ)/2)1r(1+δ)supδ>0(δθj=2αjr(1+δ)fjr(1+δ)Lq1()(wq1())kj22(nδ1+α)(kj)r(1+δ)/2)1r(1+δ)supδ>0(δθj=2αjr(1+δ)fjr(1+δ)Lq1()(wq1()))1r(1+δ)f˙Kα,r),θq1()(wq1()).

    For 0<r(1+δ)1, we get

    E3supδ>0(δθkZ(jk+22(α+nδ1)(kj)2αjfjLq1()(wq1()))r(1+δ))1r(1+δ)supδ>0(δθk=jk+22αjr(1+δ)fjr(1+δ)Lq1()(wq1())2(nδ1+α)(kj)r(1+δ))1r(1+δ)supδ>0(δθj=2αjr(1+δ)fjr(1+δ)Lq1()(wq1())kj22(nδ1+α)(kj)r(1+δ))1r(1+δ)supδ>0(δθj=2αjr(1+δ)fjr(1+δ)Lq1()(wq1()))1r(1+δ)f˙Kα,r),θq1()(wq1()),

    which completes the proof.

    In this work, we have introduced a new type of space called grand weighted Herz spaces with variable exponents, and we have proved the boundedness of the fractional integrals on those spaces. This spaces will open the door for many future research work in this field.

    The authors F. Azmi and N. Mlaiki would like to thank Prince Sultan University for paying the publication fees for this work through TAS LAB.

    The authors declare no conflicts of interest.



    [1] A. Almeida, D. Drihem, Maximal, potential and singular type operators on Herz spaces with variable exponents, J. Math. Anal. Appl., 394 (2012), 965–974. https://doi.org/10.1016/j.jmaa.2012.04.043 doi: 10.1016/j.jmaa.2012.04.043
    [2] D. Cruz-Uribe, L. Diening, P. Hästö, The maximal operator on weighted variable Lebesgue spaces, Fract. Calc. Appl. Anal., 14 (2011), 361–374. https://doi.org/10.2478/s13540-011-0023-7 doi: 10.2478/s13540-011-0023-7
    [3] D. Cruz-Uribe, A. Fiorenza, J. M. Martell, C. Pérez, The boundedness of classical operators on variable Lp spaces, Ann. Acad. Sci. Fenn. Math., 31 (2006), 239–264. https://doi.org/10.1146/annurev.energy.31.020105.100323 doi: 10.1146/annurev.energy.31.020105.100323
    [4] D. Cruz-Uribe, A. Fiorenza, Variable Lebesgue spaces: Foundations and harmonic analysis, Applied and Numerical Harmonic Analysis, Heidelberg: Birkhäuser Basel, 2013. https://doi.org/10.1007/978-3-0348-0548-3
    [5] D. Cruz-Uribe, A Fiorenza, C. J. Neugebauer, Weighted norm inequalities for the maximal operator on variable Lebesgue spaces, J. Math. Anal. Appl., 394 (2012), 744–760. https://doi.org/10.1016/j.jmaa.2012.04.044 doi: 10.1016/j.jmaa.2012.04.044
    [6] D. Cruz-Uribe, L. A. Wang, Extrapolation and weighted norm inequalities in the variable Lebesgue spaces, Trans. Amer. Math. Soc., 369 (2017), 1205–1235. https://doi.org/10.1090/tran/6730 doi: 10.1090/tran/6730
    [7] L. Diening, P. Hästö, A. Nekvinda, Open problems in variable exponent Lebesgue and Sobolev spaces, Fsdona04 Proc., 2004, 38–58.
    [8] L. Diening, P. Harjulehto, P. Hästö, M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Springer, 2011. https://doi.org/10.1007/978-3-642-18363-8
    [9] H. G. Feichtinger, F. Weisz, Herz spaces and summability of Fourier transforms, Math. Nachr., 281 (2008), 309–324. https://doi.org/10.1002/mana.200510604 doi: 10.1002/mana.200510604
    [10] L. Grafakos, X. Li, D. Yang, Bilinear operators on Herz-type Hardy spaces, Trans. Amer. Math. Soc., 350 (1998), 1249–1275. https://doi.org/10.1090/S0002-9947-98-01878-9 doi: 10.1090/S0002-9947-98-01878-9
    [11] E. Hernández, D. Yang, Interpolation of Herz spaces and applications, Math. Nachr., 205 (1999), 69–87. https://doi.org/10.1002/mana.3212050104 doi: 10.1002/mana.3212050104
    [12] C. S. Herz, Lipschitz spaces and Bernstein's theorem on absolutely convergent Fourier transforms, J. Math. Mech., 18 (1968), 283–323. https://doi.org/10.1512/iumj.1969.18.18024 doi: 10.1512/iumj.1969.18.18024
    [13] M. Izuki, Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization, Anal. Math., 36 (2010), 33–50. https://doi.org/10.1007/s10476-010-0102-8 doi: 10.1007/s10476-010-0102-8
    [14] M. Izuki, Boundedness of vector-valued sublinear operators on Herz-Morrey spaces with variable exponents, Math. Sci. Res. J., 13 (2009), 243–253.
    [15] M. Izuki, T. Noi, An intrinsic square function on weighted Herz spaces with variable exponents, arXiv, 2016. https://doi.org/10.48550/arXiv.1606.01019
    [16] M. Izuki, T. Noi, Boundedness of fractional integrals on weighted Herz spaces with variable exponents, J. Inequal. Appl., 2016 (2016), 199.
    [17] R. Johnson, Lipschitz spaces, Littlewood-Paley spaces, and convoluteurs, Proc. Lond. Math. Soc., 3 (1974), 127–141. https://doi.org/10.1112/plms/s3-29.1.127
    [18] R. Johnson, Temperatures, Riesz potentials, and the Lipschitz spaces of Herz, Proc. Lond. Math. Soc., 3 (1973), 290–316. https://doi.org/10.1112/plms/s3-27.2.290 doi: 10.1112/plms/s3-27.2.290
    [19] V. Kokilashvili, S. Samko, On Sobolev theorem for Riesz-type potentials in Lebesgue spaces with variable exponents, Z. Anal. Anwend., 22 (2003), 899–910. https://doi.org/10.4171/zaa/1178 doi: 10.4171/zaa/1178
    [20] V. M. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Integral operators in non-standard function spaces, Vol. 1, Variable Exponent Lebesgue and Amalgam Spaces Birkhäuser Cham, 2016. https://doi.org/10.1007/978-3-319-21015-5
    [21] Y. Komori, Notes on singular integrals on some inhomogeneous Herz spaces, Taiwan. J. Math., 8 (2004), 547–556. https://doi.org/10.11650/twjm/1500407672 doi: 10.11650/twjm/1500407672
    [22] A. Meskhi, H. Rafeiro, M. A. Zaighum, On the boundedness of Marcinkiewicz integrals on continual variable exponent Herz spaces, Georgian Math. J., 26 (2019), 105–116. https://doi.org/10.1515/gmj-2017-0050 doi: 10.1515/gmj-2017-0050
    [23] C. B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 43 (1938), 126–166. https://doi.org/10.2307/1989904 doi: 10.2307/1989904
    [24] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207–226.
    [25] H. Nafis, H. Rafeiro, M. Zaighum, A note on the boundedness of sublinear operators on grand variable Herz spaces, J. Inequal. Appl., 2020 (2020), 1. https://doi.org/10.1186/s13660-019-2265-6 doi: 10.1186/s13660-019-2265-6
    [26] H. Nafis, H. Rafeiro, M. A. Zaighum, Boundedness of the Marcinkiewicz integral on grand Herz spaces, J. Math. Inequal., 15 (2021), 739–753. http://dx.doi.org/10.7153/jmi-2021-15-52 doi: 10.7153/jmi-2021-15-52
    [27] H. Rafeiro, S. Samko, Riesz potential operator in continual variable exponents Herz spaces, Math. Nachr., 288 (2015), 465–475. https://doi.org/10.1002/mana.201300270 doi: 10.1002/mana.201300270
    [28] S. Samko, Variable exponent Herz spaces, Mediterr. J. Math., 10 (2013), 2007–2025. https://doi.org/10.1007/s00009-013-0285-x doi: 10.1007/s00009-013-0285-x
    [29] S. Umarkhadzhiev, The boundedness of the Riesz potential operator from generalized grand Lebesgue spaces to generalized grand Morrey spaces, In: M. Bastos, A. Lebre, S. Samko, I. Spitkovsky, Operator theory, operator algebras and applications, Vol. 242, Birkhäuser, Basel, 2014,363–373. https://doi.org/10.1007/978-3-0348-0816-3_22
    [30] J. L. Wu, W. J. Zhao, Boundedness for higher order commutators of fractional integrals on variable exponent Herz–Morrey spaces, Mediterr. J. Math., 14 (2017), 198. https://doi.org/10.1007/s00009-017-1002-y doi: 10.1007/s00009-017-1002-y
    [31] S. Polidoro, M. A Ragusa, Harnack inequality for hypoelliptic ultraparabolic equations with a singular lower order term, Rev. Mat. Iberoamericana, 24 (2008), 1011–1046.
    [32] M. A. Ragusa, Homogeneous Herz spaces and regularity results, Nonlinear Anal.: Theory Methods Appl., 71 (2009), e1909–e1914. https://doi.org/10.1016/j.na.2009.02.075 doi: 10.1016/j.na.2009.02.075
    [33] A. Scapellato, Regularity of solutions to elliptic equations on Herz spaces with variable exponents, Bound. Value Probl., 2019 (2019), 2. https://doi.org/10.1186/s13661-018-1116-6 doi: 10.1186/s13661-018-1116-6
    [34] A. Scapellato, Homogeneous Herz spaces with variable exponents and regularity results, Electron. J. Qual. Theory Differ. Equ., 2018 (2018), 1–11. https://doi.org/10.14232/ejqtde.2018.1.82 doi: 10.14232/ejqtde.2018.1.82
    [35] A. Abdalmonem, A. Scapellato, Fractional operators with homogeneous kernels in weighted Herz spaces with variable exponent, J. Appl. Anal., 101 (2022), 1953–1962. https://doi.org/10.1080/00036811.2020.1789602 doi: 10.1080/00036811.2020.1789602
  • This article has been cited by:

    1. Babar Sultan, Fatima M. Azmi, Mehvish Sultan, Tariq Mahmood, Nabil Mlaiki, Nizar Souayah, Boundedness of Fractional Integrals on Grand Weighted Herz–Morrey Spaces with Variable Exponent, 2022, 6, 2504-3110, 660, 10.3390/fractalfract6110660
    2. Mehvish Sultan, Babar Sultan, Ahmad Aloqaily, Nabil Mlaiki, Boundedness of some operators on grand Herz spaces with variable exponent, 2023, 8, 2473-6988, 12964, 10.3934/math.2023653
    3. Babar Sultan, Mehvish Sultan, Aziz Khan, Thabet Abdeljawad, Boundedness of commutators of variable Marcinkiewicz fractional integral operator in grand variable Herz spaces, 2024, 2024, 1029-242X, 10.1186/s13660-024-03169-3
    4. Babar Sultan, Mehvish Sultan, Sobolev-type theorem for commutators of Hardy operators in grand Herz spaces, 2024, 76, 1027-3190, 1052, 10.3842/umzh.v76i7.7546
    5. Babar SULTAN, Mehvish SULTAN, Ferit GÜRBÜZ, BMO estimate for the higher order commutators of Marcinkiewicz integral operator on grand Herz-Morrey spaces, 2023, 72, 1303-5991, 1000, 10.31801/cfsuasmas.1328691
    6. Wanjing Zhang, Suixin He, Jing Zhang, Boundedness of sublinear operators on weighted grand Herz-Morrey spaces, 2023, 8, 2473-6988, 17381, 10.3934/math.2023888
    7. Samia Bashir, Babar Sultan, Amjad Hussain, Aziz Khan, Thabet Abdeljawad, A note on the boundedness of Hardy operators in grand Herz spaces with variable exponent, 2023, 8, 2473-6988, 22178, 10.3934/math.20231130
    8. Mehvish Sultan, Babar Sultan, Estimate for the Intrinsic Square Function on p-Adic Herz Spaces with Variable Exponent, 2024, 16, 2070-0466, 82, 10.1134/S2070046624010072
    9. Babar Sultan, Mehvish Sultan, Ilyas Khan, On Sobolev theorem for higher commutators of fractional integrals in grand variable Herz spaces, 2023, 126, 10075704, 107464, 10.1016/j.cnsns.2023.107464
    10. Mehvish Sultan, Babar Sultan, Aziz Khan, Thabet Abdeljawad, Boundedness of Marcinkiewicz integral operator of variable order in grand Herz-Morrey spaces, 2023, 8, 2473-6988, 22338, 10.3934/math.20231139
    11. Babar Sultan, Mehvish Sultan, Aziz Khan, Thabet Abdeljawad, Boundedness of an intrinsic square function on grand p-adic Herz-Morrey spaces, 2023, 8, 2473-6988, 26484, 10.3934/math.20231352
    12. Babar Sultan, Mehvish Sultan, Boundedness of commutators of rough Hardy operators on grand variable Herz spaces, 2024, 36, 0933-7741, 717, 10.1515/forum-2023-0152
    13. M. Sultan, B. Sultan, A. Hussain, Grand Herz–Morrey Spaces with Variable Exponent, 2023, 114, 0001-4346, 957, 10.1134/S0001434623110305
    14. Babar Sultan, Mehvish Sultan, Qian-Qian Zhang, Nabil Mlaiki, Boundedness of Hardy operators on grand variable weighted Herz spaces, 2023, 8, 2473-6988, 24515, 10.3934/math.20231250
    15. Babar Sultan, Mehvish Sultan, Sobolev-Type Theorem for Commutators of Hardy Operators in Grand Herz Spaces, 2024, 0041-5995, 10.1007/s11253-024-02381-0
    16. Ming Liu, Binhua Feng, Grand weighted variable Herz-Morrey spaces estimate for some operators, 2025, 17, 2836-3310, 290, 10.3934/cam.2025012
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2280) PDF downloads(139) Cited by(16)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog