In this paper, we introduce weighted Morrey-Herz spaces M˙Kα,λq,p(⋅)(w p(⋅)) with variable exponent p(⋅). Then we prove the boundedness of multilinear Calderón-Zygmund singular operators on weighted Lebesgue spaces and weighted Morrey-Herz spaces with variable exponents.
Citation: Yueping Zhu, Yan Tang, Lixin Jiang. Boundedness of multilinear Calderón-Zygmund singular operators on weighted Lebesgue spaces and Morrey-Herz spaces with variable exponents[J]. AIMS Mathematics, 2021, 6(10): 11246-11262. doi: 10.3934/math.2021652
[1] | Yanqi Yang, Qi Wu . Vector valued bilinear Calderón-Zygmund operators with kernels of Dini's type in variable exponents Herz-Morrey spaces. AIMS Mathematics, 2023, 8(11): 25688-25713. doi: 10.3934/math.20231310 |
[2] | Bo Xu . Bilinear θ-type Calderón-Zygmund operators and its commutators on generalized variable exponent Morrey spaces. AIMS Mathematics, 2022, 7(7): 12123-12143. doi: 10.3934/math.2022674 |
[3] | Dazhao Chen . Endpoint estimates for multilinear fractional singular integral operators on Herz and Herz type Hardy spaces. AIMS Mathematics, 2021, 6(5): 4989-4999. doi: 10.3934/math.2021293 |
[4] | Babar Sultan, Mehvish Sultan, Aziz Khan, Thabet Abdeljawad . Boundedness of an intrinsic square function on grand p-adic Herz-Morrey spaces. AIMS Mathematics, 2023, 8(11): 26484-26497. doi: 10.3934/math.20231352 |
[5] | Kieu Huu Dung, Do Lu Cong Minh, Pham Thi Kim Thuy . Commutators of Hardy-Cesàro operators on Morrey-Herz spaces with variable exponents. AIMS Mathematics, 2022, 7(10): 19147-19166. doi: 10.3934/math.20221051 |
[6] | Muhammad Asim, Ghada AlNemer . Boundedness on variable exponent Morrey-Herz space for fractional multilinear Hardy operators. AIMS Mathematics, 2025, 10(1): 117-136. doi: 10.3934/math.2025007 |
[7] | Wanjing Zhang, Suixin He, Jing Zhang . Boundedness of sublinear operators on weighted grand Herz-Morrey spaces. AIMS Mathematics, 2023, 8(8): 17381-17401. doi: 10.3934/math.2023888 |
[8] | Shuhui Yang, Yan Lin . Multilinear strongly singular integral operators with generalized kernels and applications. AIMS Mathematics, 2021, 6(12): 13533-13551. doi: 10.3934/math.2021786 |
[9] | Dazhao Chen . Weighted boundedness for Toeplitz type operator related to singular integral transform with variable Calderón-Zygmund kernel. AIMS Mathematics, 2021, 6(1): 688-697. doi: 10.3934/math.2021041 |
[10] | Ming Liu, Bin Zhang, Xiaobin Yao . Weighted variable Morrey-Herz space estimates for mth order commutators of n−dimensional fractional Hardy operators. AIMS Mathematics, 2023, 8(9): 20063-20079. doi: 10.3934/math.20231022 |
In this paper, we introduce weighted Morrey-Herz spaces M˙Kα,λq,p(⋅)(w p(⋅)) with variable exponent p(⋅). Then we prove the boundedness of multilinear Calderón-Zygmund singular operators on weighted Lebesgue spaces and weighted Morrey-Herz spaces with variable exponents.
In last decades there have been many works on the boundedness for the multilinear singular integral operators in the product of Lebesgue spaces, Morrey type spaces and Herz spaces etc. Let T be a multilinear singular integral operator which is initially defined on the m-fold product of the Schwartz space S(Rn) with values in the space of tempered distributions S′(Rn) such that for x∉∩mi=1suppfi,
T(f1,⋯,fm)(x)=∫(Rn)mK(x,y1,⋯,ym)m∏i=1fi(yi)dy1⋯dym, | (1.1) |
where f1,⋯,fm are in L∞c(Rn), the space of compactly supported bounded functions. The kernel K is a function in (Rn)m+1 away from the diagonal y0=y1=⋯=ym and satisfies the standard estimates
|K(x,y1,⋯,ym)|≤C(|x−y1|+⋯+|x−ym|)−mn, | (1.2) |
and for some ε>0,
|K(x,y1,⋯,ym)−K(x′,y1,⋯,ym)|≤C|x−x′|ε(|x−y1|+⋯+|x−ym|)mn+ε, | (1.3) |
provided that |x−x′|≤12max{|x−y1|,⋯,|x−ym|} and
|K(x,y1,⋯,yi,⋯,ym)−K(x,y1,⋯,y′i,⋯,ym)|≤C|yi−y′i|ε(|x−y1|+⋯+|x−ym|)mn+ε, | (1.4) |
provided that |yi−y′i|≤12max{|x−y1|,⋯,|x−ym|} for all 1≤i≤m.
Such kernels are called Calderón-Zygmund kernel and the collection of such functions is denoted by m−CZK(C,ε) in [1]. Let T be as in (1.1) with an m−CZK(C,ε) kernel. If T is bounded from L p1×⋯×L pm to Lp for some 1<p1,⋯,pm<∞ and 1p=1p1+⋯+1pm, then we say that T is an m−linear Calderón-Zygmund operator. If T is an m−linear Calderón-Zygmund operator, Grafakos and Torres in [1] proved its boundedness from Lq1×⋯×Lqm to Lq for all 1<q1,⋯,qm<∞ and 1q=1q1+⋯+1qm and from L1×⋯×L1 to L1/m,∞. Curbera et al. in [2] obtained its weighted inequalities. Pˊerez and Torres in [3] presented a new proof of a weighted norm inequality for multilinear singular integral of Calderón-Zygmund type and studied an application of certain multilinear commutators. Recently, Tao and Zhang in [4] obtained the boundedness of the multilinear singular integral operators on weighted Morrey-Herz spaces and gave their weak estimates on endpoints.
Function spaces with variable exponents have been intensively studied in the recent years by a significant number of authors, e.g. [5,6,7,8,9,10,11]. The motivation for the increasing interest in such spaces comes not only from theoretical purpose, but also from applications to fluid dynamics, image restoration and PDE with non-standard growth conditions. The results above had been extended to the variable exponent Lebesgue spaces L p(⋅)(Ω) and the variable exponent Morrey spaces Mp(⋅)q(⋅)(Ω) over an open set Ω⊆Rn in [12,13,14]. Lu and Zhu in [15] discussed the boundedness of multilinear Calderón-Zygmund singular operators on Morrey-Herz spaces M˙Kα(⋅),λq,p(⋅)(Rn) and Herz spaces ˙Kα(⋅)q,p(⋅)(Rn) with two variable exponents α(⋅) and p(⋅).
Recently the generalized Muckenhoupt weights with variable exponents have been studied. Cruz-Uribe and Wang in [6] obtained the boundedness of fractional integrals on weighted Lebesgue spaces with variable exponents by applying the extrapolation. Izuki and Noi in [7] proved the the boundedness of fractional integrals on weighted Herz spaces with variable exponents by the theory of Banach functions spaces and Muckenhoupt theory with variable exponents. We refer readers [16,17,18,19,20] for more references about weights in variable exponent spaces.
Motivated by the results above, we give the definition of weighted Morrey-Herz spaces with variable exponents and prove the boundedness of multilinear Calderón-Zygmund singular operators on the product of weighted Lebesgue spaces and weighted Morrey-Herz spaces with variable exponents.
Definition 1. Let p(⋅):Rn→[1,∞) be a measurable function. The Lebesgue space with variable exponent L p(⋅)(Rn) is defined by
L p(⋅)(Rn):={f is measurable:ρp(fλ)<∞ for some constant λ>0}, |
where ρp(f)=∫Rn|f(x)|p(x)dx.
L p(⋅)(Rn) is a Banach space with the norm defined by
‖ |
We denote
p_{-}: = \text{ess}\inf\{p(x): x\in \mathbb{R}^{n}\}, \, p_{+}: = \text{ess}\sup\{p(x): x\in \mathbb{R}^{n}\}. |
The set \mathcal P(\mathbb{R}^{n}) consists of all p(\cdot) satisfying p_{-} > 1 and p_{+} < \infty . p'(\cdot) means the conjugate exponent of p(\cdot) , namely \frac{1}{p(x)}+\frac{1}{p'(x)} = 1 holds. We also note that generalized Hölder's inequality
\int_{\mathbb{R}^{n}}|f(x)g(x)|dx\leq r_{p}\|f\|_{L~~^{p(\cdot)}(\mathbb{R}^{n})}\|g\|_{L~~^{p'(\cdot)}(\mathbb{R}^{n})} |
is true for all f\in L~~^{p(\cdot)}(\mathbb{R}^{n}) and g\in L~~^{p'(\cdot)}(\mathbb{R}^{n}) , where r_{p}: = 1+\frac{1}{p_{-}}-\frac{1}{p_{+}} ([5]).
We say that a function p: \mathbb{R}^{n}\rightarrow \mathbb{R} is locally log-Hölder continuous, if it satisfies
|p(x)-p(y)|\leq \frac{-C}{\log(|x-y|)} \text{for } x, y \in \mathbf R^n, |x-y|\leq\frac{1}{2}. | (2.1) |
If
|p(x)-p_{\infty}|\leq \frac{C}{\log(e+|x|)} \, ~\text{for some } p_{\infty}\ge 1 ~~\text{ and all }~~ x\in \mathbf R^n | (2.2) |
we say p satisfies the log-Hölder decay condition at infinity. The set of p(\cdot) satisfying (2.1) and (2.2) is denoted by LH(\mathbb{R}^{n}) . It is also well known that the Hardy-Littlewood maximal operator M defined by
Mf(x) = \sup\limits_{B:\text{ball}, x\in B}\frac{1}{|B|}\int_{B}|f(y)|dy, |
is bounded on L~~^{p(\cdot)}(\mathbb{R}^{n}) whenever p(\cdot)\in \mathcal P(\mathbb{R}^{n})\cap LH(\mathbb{R}^{n}) .
Let p(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) and w be a weight. The weighted variable exponent Lebesgue space L~~^{p(\cdot)}(w) is the set of all complex-valued measurable functions f such that fw^{\frac{1}{p(\cdot)}}\in L~~^{p(\cdot)}(\mathbb{R}^{n}) . The space L~~^{p(\cdot)}(w) is a Banach space equipped with the norm
\|f\|_{L~~^{p(\cdot)}(w)}: = \|fw^{\frac{1}{p(\cdot)}}\|_{L~~^{p(\cdot)}}. |
Now we define the Muckenhoupt classes. We begin with the classical Muckenhoupt A_{1} weights.
Definition 2. A weight is said to be a Muckenhoupt A_{1} weight if Mw(x)\leq Cw(x) holds for almost every x\in \mathbb{R}^{n} . The set A_{1} consists of all Muckenhoupt A_{1} weights.
The original Muckenhoupt A_{p} class with constant exponent p\in (1, \infty) established by Muckenhoupt [21] can be generalized in terms of a variable exponent as follows.
Definition 3. ([7,20]) Suppose p(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) . A weight w is said to be an A_{p(\cdot)} weight if
\sup\limits_{B:\text{ball}}\frac{1}{|B|}\|w^{\frac{1}{p(\cdot)}}\chi_{B~~}\|_{L~~^{p(\cdot)}}\|w^{-\frac{1}{p(\cdot)}}\chi_{B~~}\|_{L~~^{p^{'}(\cdot)}} < \infty. |
Next we state the monotone property of the class A_{p(\cdot)} .
Lemma 1. ([7] Corollary 1) If p(\cdot), \; q(\cdot)\in \mathcal{P}(\mathbb{R}^{n})\cap LH(\mathbb{R}^{n}) and p(\cdot)\leq q(\cdot) , then we have
A_{1}\subset A_{p(\cdot)}\subset A_{q(\cdot)}. |
Definition 4. ([7]) Given p(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) and a weight w , we say (p(\cdot), w) is an M -pair if the maximal operator M is bounded on both L~~^{p(\cdot)}(w~^{p(\cdot)}) and L~~^{p'(\cdot)}(w^{-p'(\cdot)}).
Lemma 2. If (p(\cdot), w) is an M -pair, then we have that for all balls B in \mathbb{R}^{n} ,
C^{-1}\leq\frac{1}{|B|}\|\chi_{B~~}\|_{L~~^{p(\cdot)}(w~^{p(\cdot)})}\|\chi_{B~~}\|_{L~~^{p'(\cdot)}(w^{-p'(\cdot)})}\leq C. |
We introduce the sharp maximal function
M^{\sharp}f(x): = \sup\limits_{x\in Q}\frac{1}{|Q|}\int_{Q}|f(y)-f_{Q}|dy, |
where the supremum is taken over all cubes Q containing x , as usual, f_{Q} denotes the average of over Q . For \delta > 0 , we denote by M_{\delta}^{\sharp} the operator
M_{\delta}^{\sharp}f = M^{\sharp}(|f|^{\delta})^{1/\delta}. |
Similarly as above, for \delta > 0 , we denote by M_{\delta} the operator M_{\delta}(f) = M(|f|^{\delta})^{1/\delta} .
The next lemma gives an estimate for the norm \|\cdot\|_{L~~^{p(\cdot)}(w~^{p(\cdot)})} in terms of M^{\sharp} .
Lemma 3. If (p(\cdot), w) is an M -pair, then we have that for all f\in L~~^{p(\cdot)}(w~^{p(\cdot)}) ,
\|f\|_{L~~^{p(\cdot)}(w~^{p(\cdot)})}\leq C\|M^{\sharp}f\|_{L~~^{p(\cdot)}(w~^{p(\cdot)})}. |
The two Lemmas above are the generalization of Lemmas 2 and 4 in [22] to the weighted case, which can be found in [16] and [6] respectively.
Lemma 4. Suppose p(\cdot)\in \mathcal{P}(\mathbb{R}^{n})\cap LH(\mathbb{R}^{n}) and w\in A_{p(\cdot)} , then we can take constants \delta_{1}, \delta_2 \in (0, 1) such that
\frac{\|\chi_{E}\|_{(L~~^{p(\cdot)}(w~^{p(\cdot)}))'}}{\|\chi_{B~~}\|_{(L~~^{p(\cdot)}(w~^{p(\cdot)}))'}} = \frac{\|\chi_{E}\|_{L~~^{p'(\cdot)}(w^{-p'(\cdot)})}}{\|\chi_{B~~}\|_{L~~^{p'(\cdot)}(w^{-p'(\cdot)})}}\leq C(\frac{|E|}{|B|})^{\delta_{1}}, | (2.3) |
\frac {\|\chi_E\|_{(L~~^{p(\cdot)}(w~^{p(\cdot)}))'}}{\|\chi_B\|_{(L~~^{p(\cdot)}(w~^{p(\cdot)}))'}}\le C(\frac {|E|}{|B|})^{\delta_2}, | (2.4) |
\frac{\|\chi_{B~~}\|_{L~~^{p(\cdot)}(w~^{p(\cdot)})}}{\|\chi_{E}\|_{L~~^{p(\cdot)}(w~^{p(\cdot)})}}\leq C\frac{|B|}{|E|}, | (2.5) |
for all balls B and all measurable sets E\subset B .
Equations (2.3) and (2.4) are from [7]. (2.5) is the generalization of inequality (6) of Lemma 1 in [23] to the weighted case. Their proofs are similar, we omit it here.
Lemma 5. ([3]) Let T be an m -linear Calderón-Zygmund operator and let 0 < \delta < 1/m . Then, there exists a constant C > 0 such that for any vector function \vec{f} = (f_{1}, \ldots, f_{m}) , where each f_{j} is a smooth function and with compact support, the following inequality holds
M_{\delta}^{\sharp}(T(f_{1}, \ldots, f_{m}))(x)\leq C\prod\limits_{j = 1}^{m}M(f_{j})(x). |
Let E\subset\mathbb{R}^{n} be a measurable set and w a positive and locally integrable function on E . The set L~~^{p(\cdot)}_{\text{loc}}(E, w) consists of all functions f satisfying the following condition: For all compact sets K\subset E , there exists a constant \lambda > 0 such that
\int_{K}|\frac{f(x)}{\lambda}|^{p(x)}w(x)dx < \infty. |
Next we define weighted Morrey-Herz spaces with variable exponents motivated by [7,24]. We use the following notations. For each k\in \mathbb Z , we denote
B_{k} = : \{x\in \mathbb{R}^{n}: |x|\leq 2^{k}\}, C_{k} = : B_{k}\setminus B_{k-1}, \, \text{and} \, \chi_{k} = : \chi_{C_{k}}. |
Definition 5. Let 0 < q < \infty , p(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) , 0\leq\lambda < \infty and \alpha\in\mathbb{R} . The weighted Morrey-Herz space with variable exponents M\dot{K}^{\alpha, \lambda}_{q, p(\cdot)}(w~^{p(\cdot)}) is defined by
M\dot{K}^{\alpha, \lambda}_{q, p(\cdot)}(w~^{p(\cdot)}) = \{f\in L_{\text{loc}}^{p(\cdot)}(\mathbb{R}^{n}\backslash \{0\}, w):\|f\|_{M\dot{K}^{\alpha, \lambda}_{q, p(\cdot)}(w~^{p(\cdot)})} < \infty\}, |
where
\|f\|_{M\dot{K}^{\alpha, \lambda}_{q, p(\cdot)}(w~^{p(\cdot)})} = :\sup\limits_{L\in \mathbb Z}2^{-L\lambda}(\sum\limits_{k = -\infty}^{L}2^{k\alpha q}\|f\chi_{k}\|_{L~~^{p(\cdot)}(w)}^{q})^{\frac{1}{q}}. |
It obviously follows that M\dot{K}^{\alpha, 0}_{q, p(\cdot)}(w~^{p(\cdot)}) coincides with the weighted Herz spaces with variable exponents \dot{K}^{\alpha, q}_{p(\cdot)}(w) defined in [7].
Theorem 1. Let (p_{j}(\cdot), w) be M -pairs, j = 1, 2, \ldots, m, and p(\cdot)\in \mathcal{P}(\mathbb{R}^{n})\cap LH(\mathbb{R}^{n}) satisfy \frac 1{p(x)} = \frac 1{p_1(x)}+\frac 1{p_2(x)}+\cdots +\frac 1{p_m(x)} . Let w be a weight in A_{p_{0}(\cdot)} where p_{0}(\cdot) = \min\{p_{1}(\cdot), \ldots, p_{m}(\cdot)\} . Then, there exists a constant C > 0 so that for all \vec{f} = (f_{1}, \ldots, f_{m}) , where each f_{j} is a smooth function and with compact support, the m -linear Calderón-Zygmund operator T is bounded on the product of weighted variable exponent Lebesgue spaces. Moreover,
\|T(f_{1}, \ldots, f_{m})\|_{L~~^{p(\cdot)}(w~^{p(\cdot)})}\leq C\prod\limits_{j = 1}^{m}\|f_{j}\|_{L~~^{p_{j}(\cdot)}(w^{p_{j}(\cdot)})}. | (3.1) |
Proof. By using Lemma 3, Lemma 5, Hölder's inequality and the boundedness of M on L~~^{p_{j}(\cdot)}(w^{p_{j}(\cdot)}) , we get
\begin{align} &\|T(f_1, \cdots, f_m)\|_{L~~^{p(\cdot)}(w~^{p(\cdot)})} = \|T(f_1, \cdots, f_m)(x)w(x)\|_{L~~^{p(\cdot)}} \\ &\leq C\|M_{\delta}^{\sharp}(T(f_1, \cdots, f_m))(x)w(x)\|_{L~~^{p(\cdot)}}\\ &\leq C\|\prod\limits_{j = 1}^{m}\|M(f_j)(x)w(x)\|_{L~~^{p(\cdot)}} \leq C \prod\limits_{j = 1}^{m}\|M(f_j)w(x)\|_{L~~^{p_j(\cdot)}} \\ & = C \prod\limits_{j = 1}^{m}\|M(f_j)\|_{L~~^{p_j(\cdot)}(w^{p_j(\cdot)})}\leq C\prod\limits_{j = 1}^{m}\|f_{j}\|_{L~~^{p_{j}(\cdot)}(w^{p_j(\cdot)})}. \end{align} |
This yields (3.1).
Theorem 2. Let (p_{j}(\cdot), w) be M -pairs, j = 1, 2, \ldots, m, and p(\cdot)\in \mathcal{P}(\mathbb{R}^{n})\cap LH(\mathbb{R}^{n}) satisfy \frac 1{p(x)} = \frac 1{p_1(x)}+\frac 1{p_2(x)}+\cdots +\frac 1{p_m(x)} . Let w be a weight in A_{p_{0}(\cdot)} where p_{0}(\cdot) = \min\{p_{1}(\cdot), \ldots, p_{m}(\cdot)\} , \delta_{1}\in (0, 1) be the constant appearing in (2.3). Suppose that \lambda = \sum_{i = 1}^m \lambda_i, \, \alpha = \sum_{i = 1}^m\alpha_i, \, 0 < \lambda_i < \alpha_i < n\delta_{1}, \, \frac 1q = \sum_{i = 1}^m\frac 1{q_i}. Then, there exists a constant C > 0 so that for all \vec{f} = (f_{1}, \ldots, f_{m}) , where each f_{j} is a smooth function and with compact support, the m- linear Calderón-Zygmund operator T is bounded on the product of weighted variable exponent Morrey-Herz spaces. Moreover, we have
\|T(\vec f)\|_{M\dot{K}^{\alpha, \lambda}_{q, p(\cdot)~~}(w~^{p(\cdot)})}\leq C\prod\limits_{j = 1}^{m} \|f_{j}\|_{M\dot{K}^{\alpha_{j}, \lambda_{j}}_{q_{j}, p_{j}(\cdot)~~}(w^{p_{j}(\cdot)})}. | (3.2) |
Let \lambda_i = 0, we immediately get the boundedness of the multilinear Calderón-Zygmund integral operator on the product of weighted Herz spaces with variable exponents.
Proof. Without loss of generality, we only consider the case m = 2. Actually, the similar procedure works for all m\in N . When m = 2 , we have
T(f_{1}, f_{2})(x) = \int_{\mathbb R^n}\int_{\mathbb R^n}K(x, y_{1}, y_{2})f_{1}(y_{1})f_{2}(y_{2})dy_{1}dy_{2}. |
Write
f_{i}(x) = \sum\limits_{l_{i} = -\infty}^{\infty}f_{i}(x)\chi_{l_{i}}(x) = :\sum\limits_{l_{i} = -\infty}^{\infty}f_{l_{i}}(x), i = 1, 2. |
L~~^{p(\cdot)}(w~^{p(\cdot)}) is a Banach space, hence we have
\begin{align} \|T(f_{1}, f_{2})\|_{M\dot{K}^{\alpha, \lambda}_{q, p(\cdot)}(w~^{p(\cdot)})}& = \sup\limits_{L\in \mathbb Z}2^{-L\lambda}\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha q}\|T(f_{1}, f_{2})\chi_{k}\|^{q}_{L~~^{p(\cdot)}(w~^{p(\cdot)})}\Big)^{1/q}\\&\leq \sup\limits_{L\in \mathbb Z}2^{-L\lambda}\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha q}\Big\|\sum\limits_{l_{1} = -\infty}^{\infty}\sum\limits_{l_{2} = -\infty}^{\infty}T(f_{l_{1}}, f_{l_{2}}))\chi_{k}\Big\|^{q}_{L~~^{p(\cdot)}(w~^{p(\cdot)})}\Big)^{1/q}\\&\leq C\sum\limits_{i = 1}^{9}I_{i}. \end{align} |
where
I_{1} = \sup\limits_{L\in \mathbb Z}2^{-L\lambda}\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha q}\Big\|\sum\limits_{l_{1} = -\infty}^{k-2}\sum\limits_{l_{2} = -\infty}^{k-2}T(f_{l_{1}}, f_{l_{2}}))\chi_{k}\Big\|^{q}_{L~~^{p(\cdot)}(w~^{p(\cdot)})}\Big)^{1/q}, |
I_{2} = \sup\limits_{L\in \mathbb Z}2^{-L\lambda}\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha q}\Big\|\sum\limits_{l_{1} = -\infty}^{k-2}\sum\limits_{l_{2} = k-1}^{k+1}T(f_{l_{1}}, f_{l_{2}}))\chi_{k}\Big\|^{q}_{L~~^{p(\cdot)}(w~^{p(\cdot)})}\Big)^{1/q}, |
I_{3} = \sup\limits_{L\in \mathbb Z}2^{-L\lambda}\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha q}\Big\|\sum\limits_{l_{1} = -\infty}^{k-2}\sum\limits_{l_{2} = k+2}^{\infty}T(f_{l_{1}}, f_{l_{2}}))\chi_{k}\Big\|^{q}_{L~~^{p(\cdot)}(w~^{p(\cdot)})}\Big)^{1/q}, |
I_{4} = \sup\limits_{L\in \mathbb Z}2^{-L\lambda}\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha q}\Big\|\sum\limits_{l_{1} = k-1}^{k+1}\sum\limits_{l_{2} = -\infty}^{k-2}T(f_{l_{1}}, f_{l_{2}}))\chi_{k}\Big\|^{q}_{L~~^{p(\cdot)}(w~^{p(\cdot)})}\Big)^{1/q}, |
I_{5} = \sup\limits_{L\in \mathbb Z}2^{-L\lambda}\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha q}\Big\|\sum\limits_{l_{1} = k-1}^{k+1}\sum\limits_{l_{2} = k-1}^{k+1}T(f_{l_{1}}, f_{l_{2}}))\chi_{k}\Big\|^{q}_{L~~^{p(\cdot)}(w~^{p(\cdot)})}\Big)^{1/q}, |
I_{6} = \sup\limits_{L\in \mathbb Z}2^{-L\lambda}\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha q}\Big\|\sum\limits_{l_{1} = k-1}^{k+1}\sum\limits_{l_{2} = k+2}^{\infty}T(f_{l_{1}}, f_{l_{2}}))\chi_{k}\Big\|^{q}_{L~~^{p(\cdot)}(w~^{p(\cdot)})}\Big)^{1/q}, |
I_{7} = \sup\limits_{L\in \mathbb Z}2^{-L\lambda}\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha q}\Big\|\sum\limits_{l_{1} = k+2}^{\infty}\sum\limits_{l_{2} = -\infty}^{k-2}T(f_{l_{1}}, f_{l_{2}}))\chi_{k}\Big\|^{q}_{L~~^{p(\cdot)}(w~^{p(\cdot)})}\Big)^{1/q}, |
I_{8} = \sup\limits_{L\in \mathbb Z}2^{-L\lambda}\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha q}\Big\|\sum\limits_{l_{1} = k+2}^{\infty}\sum\limits_{l_{2} = k-1}^{k+1}T(f_{l_{1}}, f_{l_{2}}))\chi_{k}\Big\|^{q}_{L~~^{p(\cdot)}(w~^{p(\cdot)})}\Big)^{1/q}, |
I_{9} = \sup\limits_{L\in \mathbb Z}2^{-L\lambda}\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha q}\Big\|\sum\limits_{l_{1} = k+2}^{\infty}\sum\limits_{l_{2} = k+2}^{\infty}T(f_{l_{1}}, f_{l_{2}}))\chi_{k}\Big\|^{q}_{L~~^{p(\cdot)}(w~^{p(\cdot)})}\Big)^{1/q}. |
Because of the symmetry of f_{1} and f_{2} , we see that the estimate of I_{2} is analogous to that of I_{4} , the estimate of I_{3} is similar to that of I_{7} and the estimate of I_{6} is similar to that of I_{8} . We will estimate I_{1}-I_{3}, I_{5}, I_{6} and I_{9} respectively.
(i) To estimate I_{1} , we note l_{i}\leq k-2 for i = 1, 2 , and
|x-y_{i}|\geq ||x|-|y_{i}|| > 2^{k-1}-2^{l_{i}} > 2^{k-2}, \text{for} x\in C_{k}, y_{i}\in C_{l_{i}}. |
Thus, for x\in C_{k} , we get
\begin{align} |T(f_{l_{1}}, f_{l_{2}})(x)|&\leq C \int_{\mathbb R^n}\int_{\mathbb R^n}\frac{|f_{l_{1}}(y_{1})||f_{l_{2}}(y_{2})|}{(|x-y_{1}|+|x-y_{2}|)^{2n}}dy_{1}dy_{2} \\&\leq C2^{-2kn}\int_{\mathbb R^n}|f_{l_{1}}(y_{1})|dy_{1}\int_{\mathbb R^n}|f_{l_{2}}(y_{2})|dy_{2}. \end{align} |
Applying the generalized Hölder's inequality to the last two integrals, we obtain
\begin{align} &\Big\|\sum\limits_{l_{1} = -\infty}^{k-2}\sum\limits_{l_{2} = -\infty}^{k-2}T(f_{l_{1}}, f_{l_{2}})\chi_{k}\Big\|_{L~~^{p(\cdot)}(w~^{p(\cdot)})} \\&\leq C\sum\limits_{l_{1} = -\infty}^{k-2}\sum\limits_{l_{2} = -\infty}^{k-2}2^{-2kn}\|f_{l_{1}}\|_{L~~^{p_{1}(\cdot)}(w^{p_{1}(\cdot)})}\|\chi_{l_{1}}\|_{(L~~^{p_{1}(\cdot)}(w^{p_{1}(\cdot)}))'} \\&\cdot\|f_{l_{2}}\|_{L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)})}\|\chi_{l_{2}}\|_{(L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)}))'}\|\chi_{k}\|_{L~~^{p(\cdot)}(w~^{p(\cdot)})}. \end{align} |
By \frac{1}{p(x)} = \frac{1}{p_{1}(x)}+\frac{1}{p_{2}(x)} , using the generalized Hölder's inequality and Lemmas 2 and 4 , we get
\begin{align} &\|\chi_{l_{1}}\|_{(L~~^{p_{1}(\cdot)}(w^{p_{1}(\cdot)}))'}\|\chi_{l_{2}}\|_{(L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)}))'}\|\chi_{k}\|_{L~~^{p(\cdot)}(w~^{p(\cdot)})} \\ &\leq \|\chi_{B~~_{l_{1}}}\|_{(L~~^{p_{1}(\cdot)}(w^{p_{1}(\cdot)}))'}\|\chi_{B~~_{l_{2}}}\|_{(L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)}))'}\|\chi_{B~~_{k}}\|_{L~~^{p(\cdot)}(w~^{p(\cdot)})} \\ &\leq C \|\chi_{B~~_{l_{1}}}\|_{(L~~^{p_{1}(\cdot)}(w^{p_{1}(\cdot)}))'}\|\chi_{B~~_{l_{2}}}\|_{(L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)}))'}\|\chi_{B~~_{k}}\|_{L~~^{p_{1}(\cdot)}(w^{p_{1}(\cdot)})}\|\chi_{B~~_{k}}\|_{L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)})} \\ &\leq C\|\chi_{B~~_{l_{1}}}\|_{(L~~^{p_{1}(\cdot)}(w^{p_{1}(\cdot)}))'}\|\chi_{B~~_{l_{2}}}\|_{(L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)}))'}|B_{k}|\|\chi_{B~~_{k}}\|^{-1}_{(L~~^{p_{1}(\cdot)}(w^{p_{1}(\cdot)}))'}|B_{k}|\|\chi_{B~~_{k}}\|^{-1}_{(L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)}))'} \\ &\leq C2^{2kn}\Big(\frac{|B_{l_{1}}|}{|B_{k}|}\Big)^{\delta_{1}}\Big(\frac{|B_{l_{2}}|}{|B_{k}|}\Big)^{\delta_{1}}\\ & = C2^{2kn}2^{(l_{1}-k)n\delta_{1}}2^{(l_{2}-k)n\delta_{1}}. \end{align} |
Therefore, we arrive at the inequality
\Big\|\sum\limits_{l_{1} = -\infty}^{k-2}\sum\limits_{l_{2} = -\infty}^{k-2}T(f_{l_{1}}, f_{l_{2}})\chi_{k}\Big\|_{L~~^{p(\cdot)}(w~^{p(\cdot)})}\leq C\prod\limits_{i = 1}^{2}\sum\limits_{l_{i} = -\infty}^{k-2}2^{(l_{i}-k)n\delta_{1}}\|f_{l_{i}}\|_{L~~^{p_{i}(\cdot)}(w^{p_{i}(\cdot)})}. |
Since \frac{1}{q} = \frac{1}{q_{1}}+\frac{1}{q_{2}} , we have
\begin{align} I_{1}&\leq C\sup\limits_{L\in \mathbb Z}2^{-L\lambda}\Big\{\sum\limits_{k = -\infty}^{L}2^{k\alpha q}\Big(\prod\limits_{i = 1}^{2}\sum\limits_{l_{i} = -\infty}^{k-2}2^{(l_{i}-k)n\delta_{1}}\|f_{l_{i}}\|_{L~~^{p_{i}(\cdot)}(w^{p_{i}(\cdot)})}\Big)^{q}\Big\}^{\frac{1}{q}} \\&\leq C\prod\limits_{i = 1}^{2}\sup\limits_{L\in \mathbb Z}2^{-L\lambda_{i}}\Big\{\sum\limits_{k = -\infty}^{L}\Big(\sum\limits_{l_{i} = -\infty}^{k-2}2^{(l_{i}-k)(n\delta_{1}-\alpha_{i})}2^{l_{i}\alpha_{i}}\|f_{l_{i}}\|_{L~~^{p_{i}(\cdot)}(w^{p_{i}(\cdot)})}\Big)^{q_{i}}\Big\}^{\frac{1}{q_{i}}} \\&: = I_{11}I_{12}. \end{align} |
We consider the two cases 0 < q_{i}\leq 1 and 1 < q_{i} < \infty . When 0 < q_{i}\leq 1 , we apply inequality
(\sum\limits_{h = 1}^{\infty}a_{h})^{q_{i}}\leq \sum\limits_{h = 1}^{\infty}a_{h}^{q_{i}}, \, (a_{1}, a_{2}\ldots\geq 0), | (3.3) |
and obtain
\begin{align} I_{1i}&\leq C\sup\limits_{L\in \mathbb Z}2^{-L\lambda_{i}}\Big\{\sum\limits_{k = -\infty}^{L} \sum\limits_{l_{i} = -\infty}^{k-2}2^{(l_{i}-k)(n\delta_{1}-\alpha_{i})q_{i}}2^{l_{i}\alpha_{i}q_{i}}\|f_{l_{i}}\|_{L~~^{p_{i}(\cdot)}(w^{p_{i}(\cdot)})}^{q_{i}}\Big\}^{\frac{1}{q_{i}}} \\& = C\sup\limits_{L\in \mathbb Z}2^{-L\lambda_{i}}\Big\{\sum\limits_{l_{i} = -\infty}^{L-2}2^{l_{i}\alpha_{i}q_{i}}\|f_{l_{i}}\|_{L~~^{p_{i}(\cdot)}(w^{p_{i}(\cdot)})}^{q_{i}} \sum\limits_{k = l_{i}+2}^{L}2^{(l_{i}-k)(n\delta_{1}-\alpha_{i})q_{i}}\Big\}^{\frac{1}{q_{i}}} \\&\leq C\sup\limits_{L\in \mathbb Z}2^{-L\lambda_{i}}\Big\{\sum\limits_{l_{i} = -\infty}^{L-2}2^{l_{i}\alpha_{i}q_{i}}\|f_{l_{i}}\|_{L~~^{p_{i}(\cdot)}(w^{p_{i}(\cdot)})}^{q_{i}}\Big\}^{\frac{1}{q_{i}}} \\&\leq C \|f_{i}\|_{M\dot{K}^{\alpha_{i}(\cdot), \lambda_{i}}_{q_{i}, p_{i}(\cdot)}(w^{p_{i}(\cdot)})}. \end{align} |
When 1 < q_{i} < \infty , by Hölder's inequality we obtain
\begin{align} I_{1i}& = C\sup\limits_{L\in \mathbb Z}2^{-L\lambda_{i}}\Big\{\sum\limits_{k = -\infty}^{L}\Big(\sum\limits_{l_{i} = -\infty}^{k-2}2^{(l_{i}-k)(n\delta_{1}-\alpha_{i})}2^{l_{i}\alpha_{i}}\|f_{l_{i}}\|_{L~~^{p_{i}(\cdot)}(w^{p_{i}(\cdot)})}\Big)^{q_{i}}\Big\}^{\frac{1}{q_{i}}} \\&\leq C\sup\limits_{L\in \mathbb Z}2^{-L\lambda_{i}}\Big\{\sum\limits_{k = -\infty}^{L} \Big(\sum\limits_{l_{i} = -\infty}^{k-2}2^{(l_{i}-k)(n\delta_{1}-\alpha_{i})\frac{q_{i}}{2}}2^{l_{i}\alpha_{i}q_{i}}\|f_{l_{i}}\|_{L~~^{p_{i}(\cdot)}(w^{p_{i}(\cdot)})}^{q_{i}}\Big) \\&\times\Big(\sum\limits_{l_{i} = -\infty}^{k-2}2^{(l_{i}-k)(n\delta_{1}-\alpha_{i})\frac{q'_{i}}{2}}\Big)^{\frac{q_{i}}{q'_{i}}}\Big\}^{\frac{1}{q_{i}}}\\ &\leq C\sup\limits_{L\in \mathbb Z}2^{-L\lambda_{i}}\Big\{\sum\limits_{k = -\infty}^{L} \Big(\sum\limits_{l_{i} = -\infty}^{k-2}2^{(l_{i}-k)(n\delta_{1}-\alpha_{i})\frac{q_{i}}{2}}2^{l_{i}\alpha_{i}q_{i}}\|f_{l_{i}}\|_{L~~^{p_{i}(\cdot)}(w^{p_{i}(\cdot)})}^{q_{i}}\Big)\Big\}^{\frac{1}{q_{i}}} \\& = C\sup\limits_{L\in \mathbb Z}2^{-L\lambda_{i}}\Big\{\sum\limits_{l_{i} = -\infty}^{L-2}2^{l_{i}\alpha_{i}q_{i}}\|f_{l_{i}}\|_{L~~^{p_{i}(\cdot)}(w^{p_{i}(\cdot)})}^{q_{i}} \sum\limits_{k = l_{i}+2}^{L}2^{(l_{i}-k)(n\delta_{1}-\alpha_{i})\frac{q_{i}}{2}}\Big\}^{\frac{1}{q_{i}}} \\ &\leq C\sup\limits_{L\in \mathbb Z}2^{-L\lambda_{i}}\Big\{\sum\limits_{l_{i} = -\infty}^{L-2}2^{l_{i}\alpha_{i}q_{i}}\|f_{l_{i}}\|_{L~~^{p_{i}(\cdot)}(w^{p_{i}(\cdot)})}^{q_{i}}\Big\}^{\frac{1}{q_{i}}} \\&\leq C \|f_{i}\|_{M\dot{K}^{\alpha_{i}, \lambda_{i}}_{q_{i}, p_{i}(\cdot)}(w^{p_{i}(\cdot)})}. \end{align} |
Therefore, for any 0 < q_{i} < \infty , we could obtain
I_{1}\leq C\|f_{1}\|_{M\dot{K}^{\alpha_{1}, \lambda_{1}}_{q_{1}, p_{1}(\cdot)}(w^{p_{1}(\cdot)})} \|f_{2}\|_{M\dot{K}^{\alpha_{2}, \lambda_{2}}_{q_{2}, p_{2}~~(\cdot)}(w^{p_{2}(\cdot)})}. |
(ii) To estimate I_{2} , we have l_{1}\leq k-2 , and k-1\leq l_{2}\leq k+1 , then
|x-y_{1}|+|x-y_{2}|\geq |x-y_{1}|\geq ||x|-|y_{1}|| > 2^{k-2}, \text{for} ~~x\in C_{k}, y_{i}\in C_{l_{i}}, i = 1, 2. |
From the inequality above, we obtain
\begin{align} &\Big\|\sum\limits_{l_{1} = -\infty}^{k-2}\sum\limits_{l_{2} = k-1}^{k+1}T(f_{l_{1}}, f_{l_{2}})\chi_{k}\Big\|_{L~~^{p(\cdot)}(w~^{p(\cdot)})}\\ &\leq C\sum\limits_{l_{1} = -\infty}^{k-2}\sum\limits_{l_{2} = k-1}^{k+1}2^{(l_{1}-k)n\delta_{1}}\|f_{l_{1}}\|_{L~~^{p_{1}(\cdot)}(w^{p_{1}(\cdot)})} \frac{\|\chi_{B~~_{l_{2}}}\|_{(L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)}))'}}{\|\chi_{B~~_{k}}\|_{(L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)}))'}}\|f_{l_{2}}\|_{L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)})}. \end{align} |
By Lemma 4, we have
if l_{2} = k-1 , \frac{\|\chi_{B~~_{l_{2}}}~~\|_{(L~~^{p_{2}~(\cdot)~~}(w^{p_{2}(\cdot)~~}))'~~}~~}{\|\chi_{B~~_{k}}\|_{(L~~^{p_{2}~(\cdot)~~}(w^{p_{2}(\cdot)}~~))'}} \leq C\Big(\frac{|B_{l_{2}}|}{|B_{k}|}\Big)^{\delta_{1}} = C2^{(l_{2}-k)n\delta_{1}} = C2^{-n\delta_{1}} ,
if l_{2} = k , \frac{\|\chi_{B~~_{l_{2}}}~~\|_{(L~~^{p_{2}~(\cdot)~~}(w^{p_{2}(\cdot)~~}))'~~}~~}{\|\chi_{B~~_{k}}\|_{(L~~^{p_{2}~(\cdot)~~}(w^{p_{2}(\cdot)}~~))'}} = 1 ,
if l_{2} = k+1 , \frac{\|\chi_{B~~_{l_{2}}}~~\|_{(L~~^{p_{2}~(\cdot)~~}(w^{p_{2}(\cdot)~~}))'~~}~~}{\|\chi_{B~~_{k}}\|_{(L~~^{p_{2}~(\cdot)~~}(w^{p_{2}(\cdot)}~~))'}}\leq C\frac{|B_{l_{2}}|}{|B_{k}|} = C2^{(l_{2}-k)n} = C2^{n} .
Combing the estimates above, we arrive the inequality
\frac{\|\chi_{B~~_{l_{2}}}\|_{(L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)}))'}}{\|\chi_{B~~_{k}}\|_{(L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)}))'}}\leq C, \, \text{for}~~ k-1\leq l_{2}\leq k+1, |
where C is independent of l_{2} and k .
For I_{2} , we get
\begin{align} I_{2}&\leq C\sup\limits_{L\in \mathbb Z}2^{-L\lambda}\Big\{\sum\limits_{k = -\infty}^{L}2^{k\alpha q}\Big(\sum\limits_{l_{1} = -\infty}^{k-2}\sum\limits_{l_{2} = k-1}^{k+1}2^{(l_{1}-k)n\delta_{1}}\|f_{l_{1}}\|_{L~~^{p_{1}(\cdot)}(w^{p_{1}(\cdot)})}\|f_{l_{2}}\|_{L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)})}\Big)^{q}\Big\}^{\frac{1}{q}} \\&\leq C\sup\limits_{L\in \mathbb Z}2^{-L\lambda_{1}}\Big\{\sum\limits_{k = -\infty}^{L}\Big(\sum\limits_{l_{1} = -\infty}^{k-2}2^{(l_{1}-k)(n\delta_{1}-\alpha_{1})}2^{l_{1}\alpha_{1}}\|f_{l_{1}}\|_{L~~^{p_{1}(\cdot)}(w^{p_{1}(\cdot)})}\Big)^{q_{1}}\Big\}^{\frac{1}{q_{1}}} \\ &\times \sup\limits_{L\in \mathbb Z}2^{-L\lambda_{2}}\Big\{\sum\limits_{k = -\infty}^{L}\Big(\sum\limits_{l_{2} = k-1}^{k+1}2^{k\alpha_{2}}\|f_{l_{2}}\|_{L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)})}\Big)^{q_{2}}\Big\}^{\frac{1}{q_{2}}} \\ & = :CI_{21}I_{22} . \end{align} |
Note that
I_{21} = I_{11}\leq C\|f_{1}\|_{M\dot{K}^{\alpha_{1}, \lambda_{1}}_{q_{1}, p_{1}(\cdot)}(w^{p_{1}(\cdot)})}. |
\begin{align} I_{22}& = \sup\limits_{L\in \mathbb Z}2^{-L\lambda_{2}}\Big\{\sum\limits_{k = -\infty}^{L}2^{k\alpha_{2}q_{2}}\Big(\sum\limits_{l_{2} = k-1}^{k+1}\|f_{l_{2}}\|_{L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)})}\Big)^{q_{2}}\Big\}^{\frac{1}{q_{2}}} \\&\leq C\sup\limits_{L\in \mathbb Z}2^{-L\lambda_{2}}\Big\{\sum\limits_{k = -\infty}^{L}2^{k\alpha_{2}q_{2}}\|f_{2}\chi_{2^{k-1}\leq|\cdot|\leq 2^{k+1}}(\cdot)\|_{L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)})}^{q_{2}}\Big\}^{\frac{1}{q_{2}}}\\&\leq C\sup\limits_{L\in \mathbb Z}2^{-L\lambda_{2}}\Big\{\sum\limits_{k = -\infty}^{L+1}2^{k\alpha_{2}q_{2}}\|f_{2}\chi_{k}\|_{L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)})}^{q_{2}}\Big\}^{\frac{1}{q_{2}}} \\&\leq C\|f_{2}\|_{M\dot{K}^{\alpha_{2}, \lambda_{2}}_{q_{2}, p_{2}~~(\cdot)}(w^{p_{2}(\cdot)})}. \end{align} |
(iii) To estimate I_{3} , for x\in C_{k}, y_{i}\in C_{l_{i}} and l_{1}\leq k-2 , l_{2}\geq k+2 , we have
|x-y_{1}|\geq |x|-|y_{1}| > 2^{k-2}, |x-y_{2}|\geq |y_{2}|-|x| > 2^{l_{2}-2}. |
Thus, for x\in C_{k} , we get
|T(f_{l_{1}}, f_{l_{2}}(x)| \leq C2^{-kn}\int_{\mathbb R^n}|f_{l_{1}}(y_{1})|dy_{1}2^{-l_{2}n}\int_{\mathbb R^n}|f_{l_{2}}(y_{2})|dy_{2}. |
By Hölder's inequality, Lemmas 2 and 4 , we obtain
\begin{align} &\Big\|\sum\limits_{l_{1} = -\infty}^{k-2}\sum\limits_{l_{2} = k+2}^{\infty}T(f_{l_{1}}, f_{l_{2}})\chi_{k}\Big\|_{L~~^{p(\cdot)}(w~^{p(\cdot)})} \\&\leq C\sum\limits_{l_{1} = -\infty}^{k-2}\sum\limits_{l_{2} = k+2}^{\infty}2^{(k-l_{2})n} \frac{\|\chi_{B~~_{l_{1}}}\|_{(L~~^{p_{1}(\cdot)}(w^{p_{1}(\cdot)}))'}}{\|\chi_{B~~_{k}}\|_{(L~~^{p_{1}(\cdot)}(w^{p_{1}(\cdot)}))'}} \frac{\|\chi_{B~~_{l_{2}}}\|_{(L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)}))'}}{\|\chi_{B~~_{k}}\|_{(L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)}))'}} \|f_{l_{1}}\|_{L~~^{p_{1}(\cdot)}(w^{p_{1}(\cdot)})}\|f_{l_{2}}\|_{L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)})} \\&\leq C\sum\limits_{l_{1} = -\infty}^{k-2}\sum\limits_{l_{2} = k+2}^{\infty}2^{(k-l_{2})n}\Big(\frac{|B_{l_{1}}|}{|B_{k}|}\Big)^{\delta_{1}}\frac{|B_{l_{2}}|}{|B_{k}|} \|f_{l_{1}}\|_{L~~^{p_{1}(\cdot)}(w^{p_{1}(\cdot)})}\|f_{l_{2}}\|_{L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)})}\\&\leq C\sum\limits_{l_{1} = -\infty}^{k-2}\sum\limits_{l_{2} = k+2}^{\infty}2^{(l_{1}-k)n\delta_{1}} \|f_{l_{1}}\|_{L~~^{p_{1}(\cdot)}(w^{p_{1}(\cdot)})}\|f_{l_{2}}\|_{L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)})}. \end{align} |
For I_{3} , we get
\begin{align} I_{3}&\leq C\sup\limits_{L\in \mathbb Z}2^{-L\lambda}\Big\{\sum\limits_{k = -\infty}^{L}2^{k\alpha q}\Big(\sum\limits_{l_{1} = -\infty}^{k-2}\sum\limits_{l_{2} = k+2}^{\infty}2^{(l_{1}-k)n\delta_{1}}\|f_{l_{1}}\|_{L~~^{p_{1}(\cdot)}(w^{p_{1}(\cdot)})}\|f_{l_{2}}\|_{L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)})}\Big)^{q}\Big\}^{\frac{1}{q}} \\&\leq C\sup\limits_{L\in \mathbb Z}2^{-L\lambda_{1}}\Big\{\sum\limits_{k = -\infty}^{L}\Big(\sum\limits_{l_{1} = -\infty}^{k-2}2^{(l_{1}-k)(n\delta_{1}-\alpha_{1})}2^{l_{1}\alpha_{1}}\|f_{l_{1}}\|_{L~~^{p_{1}(\cdot)}(w^{p_{1}(\cdot)})}\Big)^{q_{1}}\Big\}^{\frac{1}{q_{1}}} \\ &\times \sup\limits_{L\in \mathbb Z}2^{-L\lambda_{2}}\Big\{\sum\limits_{k = -\infty}^{L}\Big(\sum\limits_{l_{2} = k+2}^{\infty}2^{k\alpha_{2}}\|f_{l_{2}}\|_{L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)})}\Big)^{q_{2}}\Big\}^{\frac{1}{q_{2}}} \\ & = :CI_{31}I_{32} . \end{align} |
Note that
I_{31} = I_{21} = I_{11}\leq C\|f_{1}\|_{M\dot{K}^{\alpha_{1}, \lambda_{1}}_{q_{1}, p_{1}(\cdot)}(w^{p_{1}(\cdot)})}. |
As for I_{32} , we write
\begin{align} I_{32}& = \sup\limits_{L\in \mathbb Z}2^{-L\lambda_{2}}\Big\{\sum\limits_{k = -\infty}^{L}2^{k\alpha_{2}q_{2}}\Big(\sum\limits_{l_{2} = k+2}^{\infty}\|f_{l_{2}}\|_{L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)})}\Big)^{q_{2}}\Big\}^{\frac{1}{q_{2}}} \\&\leq \sup\limits_{L\in \mathbb Z}2^{-L\lambda_{2}}\Big\{\sum\limits_{k = -\infty}^{L}\Big(\sum\limits_{l_{2} = k+2}^{L-1} 2^{(k-l_{2})\alpha_{2}}2^{l_{2}\alpha_{2}}\|f_{l_{2}}\|_{L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)})}\Big)^{q_{2}}\Big\}^{\frac{1}{q_{2}}} \\&+\sup\limits_{L\in \mathbb Z}2^{-L\lambda_{2}}\Big\{\sum\limits_{k = -\infty}^{L}\Big(\sum\limits_{l_{2} = L}^{\infty} 2^{(k-l_{2})\alpha_{2}}2^{l_{2}\alpha_{2}}\|f_{l_{2}}\|_{L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)})}\Big)^{q_{2}}\Big\}^{\frac{1}{q_{2}}} \\& = :I^{1}_{32}+I^{2}_{32}. \end{align} |
Now, we estimate I^{1}_{32} and I^{2}_{32} respectively. For I^{1}_{32} , using similar methods as that for I_{1i} . Observing that \alpha_{2} > 0 , we consider the following two cases:
When 0 < q_{2}\leq 1 , by (3.3) , it follows that
\begin{align} I^{1}_{32}&\leq C\sup\limits_{L\in \mathbb Z}2^{-L\lambda_{2}}\Big\{\sum\limits_{k = -\infty}^{L}\sum\limits_{l_{2} = k+2}^{L-1} 2^{(k-l_{2})\alpha_{2}q_{2}}2^{l_{2}\alpha_{2}q_{2}}\|f_{l_{2}}\|_{L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)})}^{q_{2}}\Big\}^{\frac{1}{q_{2}}} \\& = C\sup\limits_{L\in \mathbb Z}2^{-L\lambda_{2}}\Big\{ \sum\limits_{l_{2} = -\infty}^{L-1}2^{l_{2}\alpha_{2}q_{2}}\|f_{l_{2}}\|_{L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)})}^{q_{2}}\sum\limits_{k = -\infty}^{l_{2}-2}2^{(k-l_{2})\alpha_{2}q_{2}}\Big\}^{\frac{1}{q_{2}}} \\&\leq C\sup\limits_{L\in \mathbb Z}2^{-L\lambda_{2}}\Big\{ \sum\limits_{l_{2} = -\infty}^{L-1}2^{l_{2}\alpha_{2}q_{2}}\|f_{l_{2}}\|_{L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)})}^{q_{2}}\Big\}^{\frac{1}{q_{2}}} \\&\leq C\|f_{2}\|_{M\dot{K}^{\alpha_{2}, \lambda_{2}}_{q_{2}, p_{2}~~(\cdot)}(w^{p_{2}(\cdot)})}. \end{align} |
When 1 < q_{2} < \infty , we use Hölder's inequality and obtain
\begin{align} I^{1}_{32}&\leq C\sup\limits_{L\in \mathbb Z}2^{-L\lambda_{2}}\Big\{\sum\limits_{k = -\infty}^{L}\Big(\sum\limits_{l_{2} = k+2}^{L-1} 2^{(k-l_{2})\alpha_{2}\frac{q_{2}}{2}}2^{l_{2}\alpha_{2}q_{2}}\|f_{l_{2}}\|_{L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)}}^{q_{2}}\Big) \\&\times\Big(\sum\limits_{l_{2} = k+2}^{L-1} 2^{(k-l_{2})\alpha_{2})\frac{q'_{2}}{2}}\Big)^{\frac{q_{2}}{q'_{2}}}\Big\}^{\frac{1}{q_{2}}} \\&\leq C\sup\limits_{L\in \mathbb Z}2^{-L\lambda_{2}}\Big\{\sum\limits_{k = -\infty}^{L}\Big(\sum\limits_{l_{2} = k+2}^{L-1} 2^{(k-l_{2})\alpha_{2}\frac{q_{2}}{2}}2^{l_{2}\alpha_{2}q_{2}}\|f_{l_{2}}\|_{L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)}}^{q_{2}}\Big)\Big\}^{\frac{1}{q_{2}}} \\& = C\sup\limits_{L\in \mathbb Z}2^{-L\lambda_{2}}\Big\{ \sum\limits_{l_{2} = -\infty}^{L-1}2^{l_{2}\alpha_{2}q_{2}}\|f_{l_{2}}\|_{L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)})}^{q_{2}}\sum\limits_{k = -\infty}^{l_{2}-2}2^{(k-l_{2})\alpha_{2}\frac{q_{2}}{2}}\Big\}^{\frac{1}{q_{2}}} \\&\leq C\|f_{2}\|_{M\dot{K}^{\alpha_{2}, \lambda_{2}}_{q_{2}, p_{2}~~(\cdot)}(w^{p_{2}(\cdot)})}. \end{align} |
For I^{2}_{32} , when 0 < q_{2}\leq 1 , by the fact that 0 < \lambda_{2} < \alpha_{2} , we have
\begin{align} I^{2}_{32}&\leq C\sup\limits_{L\in \mathbb Z}2^{-L\lambda_{2}}\Big\{\sum\limits_{k = -\infty}^{L}\sum\limits_{l_{2} = L}^{\infty} 2^{(k-l_{2})\alpha_{2}q_{2}}2^{l_{2}\alpha_{2}q_{2}}\|f_{l_{2}}\|_{L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)})}^{q_{2}}\Big\}^{\frac{1}{q_{2}}} \\&\leq C\sup\limits_{L\in \mathbb Z}2^{-L\lambda_{2}}\Big\{\sum\limits_{k = -\infty}^{L}\sum\limits_{l_{2} = L}^{\infty} 2^{(k-l_{2})\alpha_{2}q_{2}}2^{l_{2}\lambda_{2}q_{2}}2^{-l_{2}\lambda_{2}q_{2}}\sum\limits_{j = -\infty}^{l_{2}}2^{j\alpha_{2}q_{2}}\|f_{2j}\|_{L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)})}^{q_{2}}\Big\}^{\frac{1}{q_{2}}} \\ &\leq C\sup\limits_{L\in \mathbb Z}2^{-L\lambda_{2}}\Big\{\sum\limits_{k = -\infty}^{L}\sum\limits_{l_{2} = L}^{\infty} 2^{(k-l_{2})\alpha_{2}q_{2}}2^{l_{2}\lambda_{2}q_{2}}\|f_{2}\|_{M\dot{K}^{\alpha_{2}, \lambda_{2}}_{q_{2}, p_{2}~~(\cdot)}(w^{p_{2}(\cdot)})}^{q_{2}}\Big\}^{\frac{1}{q_{2}}} \\ & = C\sup\limits_{L\in \mathbb Z}2^{-L\lambda_{2}}\Big\{\sum\limits_{k = -\infty}^{L}2^{k\alpha_{2}q_{2}} \sum\limits_{l_{2} = L}^{\infty}2^{l_{2}(\lambda_{2}-\alpha_{2})q_{2}}\|f_{2}\|_{M\dot{K}^{\alpha_{2}, \lambda_{2}}_{q_{2}, p_{2}~~(\cdot)}(w^{p_{2}(\cdot)})}^{q_{2}}\Big\}^{\frac{1}{q_{2}}} \\& = C\sup\limits_{L\in \mathbb Z}2^{-L\lambda_{2}}\Big\{2^{L\alpha_{2}q_{2}}2^{L(\lambda_{2}-\alpha_{2})q_{2}}\|f_{2}\|_{M\dot{K}^{\alpha_{2}, \lambda_{2}}_{q_{2}, p_{2}~~(\cdot)}(w^{p_{2}(\cdot)})}^{q_{2}}\Big\}^{\frac{1}{q_{2}}} \\& = \|f_{2}\|_{M\dot{K}^{\alpha_{2}, \lambda_{2}}_{q_{2}, p_{2}~~(\cdot)}(w^{p_{2}(\cdot)})}. \end{align} |
When 1 < q_{2} < \infty , because \alpha_{2}-\lambda_{2} > 0 , we have
\begin{align} &I^{2}_{32} = \sup\limits_{L\in \mathbb Z}2^{-L\lambda_{2}}\Big\{\sum\limits_{k = -\infty}^{L}\Big(\sum\limits_{l_{2} = L}^{\infty}2^{l_{2}\alpha_{2}}\|f_{l_{2}}\|_{L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)})} 2^{\frac{(k-l_{2})(\alpha_{2}+\lambda_{2})}{2}}2^{\frac{(k-l_{2})(\alpha_{2}-\lambda_{2})}{2}}\Big)^{q_{2}}\Big\}^{\frac{1}{q_{2}}} \\&\leq C\sup\limits_{L\in \mathbb Z}2^{-L\lambda_{2}}\Big\{\sum\limits_{k = -\infty}^{L}\Big(\sum\limits_{l_{2} = L}^{\infty}2^{l_{2}\alpha_{2}q_{2}}\|f_{l_{2}}\|_{L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)})}^{q_{2}} 2^{\frac{(k-l_{2})(\alpha_{2}+\lambda_{2})q_{2}}{2}})\\&\times \Big(\sum\limits_{l_{2} = L}^{\infty}2^{\frac{(k-l_{2})(\alpha_{2}-\lambda_{2})q'_{2}}{2}}\Big)^{\frac{q_{2}}{q'_{2}}}\Big\}^{\frac{1}{q_{2}}} \\&\leq C\sup\limits_{L\in \mathbb Z}2^{-L\lambda_{2}}\Big\{\sum\limits_{k = -\infty}^{L}\sum\limits_{l_{2} = L}^{\infty}2^{l_{2}\alpha_{2}q_{2}}\|f_{l_{2}}\|_{L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)})}^{q_{2}} 2^{\frac{(k-l_{2})(\alpha_{2}+\lambda_{2})q_{2}}{2}}\Big\}^{\frac{1}{q_{2}}} \\&\leq C\sup\limits_{L\in \mathbb Z}2^{-L\lambda_{2}}\Big\{\sum\limits_{k = -\infty}^{L}\sum\limits_{l_{2} = L}^{\infty}2^{\frac{(k-l_{2})(\alpha_{2}+\lambda_{2})q_{2}}{2}} 2^{l_{2}\lambda_{2}q_{2}}2^{-l_{2}\lambda_{2}q_{2}}\sum\limits_{j = -\infty}^{l_{2}}2^{j\alpha_{2}q_{2}}\|f_{2j}\|_{L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)})}^{q_{2}}\Big\}^{\frac{1}{q_{2}}} \\&\leq C\sup\limits_{L\in \mathbb Z}2^{-L\lambda_{2}}\Big\{\sum\limits_{k = -\infty}^{L}\sum\limits_{l_{2} = L}^{\infty}2^{\frac{(k-l_{2})(\alpha_{2}+\lambda_{2})q_{2}}{2}} 2^{l_{2}\lambda_{2}q_{2}}\|f_{2}\|_{M\dot{K}^{\alpha_{2}, \lambda_{2}}_{q_{2}, p_{2}~~(\cdot)}(w^{p_{2}(\cdot)})}^{q_{2}}\Big\}^{\frac{1}{q_{2}}} \\& = C\sup\limits_{L\in \mathbb Z}2^{-L\lambda_{2}}\Big\{\sum\limits_{k = -\infty}^{L}2^{k\lambda_{2}q_{2}}\sum\limits_{l_{2} = L}^{\infty}2^{\frac{(k-l_{2})(\alpha_{2}-\lambda_{2})q_{2}}{2}} \|f_{2}\|_{M\dot{K}^{\alpha_{2}, \lambda_{2}}_{q_{2}, p_{2}~~(\cdot)}(w^{p_{2}(\cdot)})}^{q_{2}}\Big\}^{\frac{1}{q_{2}}} \\&\leq C\sup\limits_{L\in \mathbb Z}2^{-L\lambda_{2}}\Big\{\sum\limits_{k = -\infty}^{L}2^{k\lambda_{2}q_{2}} \|f_{2}\|_{M\dot{K}^{\alpha_{2}, \lambda_{2}}_{q_{2}, p_{2}~~(\cdot)}(w^{p_{2}(\cdot)})}^{q_{2}}\Big\}^{\frac{1}{q_{2}}} \\&\leq C\|f_{2}\|_{M\dot{K}^{\alpha_{2}, \lambda_{2}}_{q_{2}, p_{2}~~(\cdot)}(w^{p_{2}(\cdot)})}. \end{align} |
Therefore we get
I_{3}\leq C\|f_{1}\|_{M\dot{K}^{\alpha_{1}, \lambda_{1}}_{q_{1}, p_{1}(\cdot)}(w^{p_{2}(\cdot)})} \|f_{2}\|_{M\dot{K}^{\alpha_{2}, \lambda_{2}}_{q_{2}, p_{2}~~(\cdot)}(w^{p_{2}(\cdot)})}. |
(iv) To estimate the term I_{5} , by Theorem 1 , the L~~^{p(\cdot)}(w~^{p(\cdot)}) - boundedness of T , we note that
\|T(f_{l_{1}}, f_{l_{2}})\|_{L~~^{p(\cdot)}(w~^{p(\cdot)})}\leq C\|f_{l_{1}}\|_{L~~^{p_{1}(\cdot)}(w^{p_{1}(\cdot)})}\|f_{l_{2}}\|_{L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)})}. |
Since \frac{1}{q} = \frac{1}{q_{1}}+\frac{1}{q_{2}} , we have
\begin{align} I_{5}&\leq C\sup\limits_{L\in \mathbb Z}2^{-L\lambda}\Big\{\sum\limits_{k = -\infty}^{L}2^{k\alpha q}\Big(\prod\limits_{i = 1}^{2}\sum\limits_{l_{i} = k-1}^{k+1}\|f_{l_{i}}\|_{L~~^{p_{i}(\cdot)}(w^{p_{i}(\cdot)})}\Big)^{q}\Big\}^{\frac{1}{q}} \\&\leq C\sup\limits_{L\in \mathbb Z}\prod\limits_{i = 1}^{2}2^{-L\lambda_{i}}\Big\{\sum\limits_{k = -\infty}^{L}\Big(\sum\limits_{l_{i} = k-1}^{k+1}2^{k\alpha_{i}}\|f_{l_{i}}\|_{L~~^{p_{i}(\cdot)}(w^{p_{i}(\cdot)})}\Big)^{q_{i}}\Big\}^{\frac{1}{q_{i}}} \\&\leq C\sup\limits_{L\in \mathbb Z}\prod\limits_{i = 1}^{2}2^{-L\lambda_{i}}\Big\{\sum\limits_{k = -\infty}^{L+1}2^{k\alpha_{i}q_{i}}\|f_{i}\chi_{k}\|_{L~~^{p_{i}(\cdot)}(w^{p_{i}(\cdot)})}^{q_{i}}\Big\}^{\frac{1}{q_{i}}} \\&\leq C\|f_{1}\|_{M\dot{K}^{\alpha_{1}, \lambda_{1}}_{q_{1}, p_{1}(\cdot)}(w^{p_{1}(\cdot)})} \|f_{2}\|_{M\dot{K}^{\alpha_{2}, \lambda_{2}}_{q_{2}, p_{2}~~(\cdot)}(w^{p_{2}(\cdot)})}. \end{align} |
(v) To estimate the term I_{6} , for C_{k} , y_{i}\in C_{l_{i}} , k-1\leq l_{1}\leq k+1 , l_{2}\geq k+2 , we have
|T(f_{l_{1}}, f_{l_{2}}(x)| \leq C2^{-kn}\int_{\mathbb R^n}|f_{l_{1}}(y_{1})|dy_{1}2^{-l_{2}n}\int_{\mathbb R^n}|f_{l_{2}}(y_{2})|dy_{2}. |
By the generalized Hölder's inequality, Lemmas 2 and 4 , we obtain
\begin{align} &\Big\|\sum\limits_{l_{1} = k-1}^{k+1}\sum\limits_{l_{2} = k+2}^{\infty}T(f_{l_{1}}, f_{l_{2}})\chi_{k}\Big\|_{L~~^{p(\cdot)}(w~^{p(\cdot)})} \\&\leq C\sum\limits_{l_{1} = k-1}^{k+1}\sum\limits_{l_{2} = k+2}^{\infty}2^{(k-l_{2})n} \frac{\|\chi_{B~~_{l_{1}}}\|_{(L~~^{p_{1}(\cdot)}(w^{p_{1}(\cdot)}))'}}{\|\chi_{B~~_{k}}\|_{(L~~^{p_{1}(\cdot)}(w^{p_{1}(\cdot)}))'}} \frac{\|\chi_{B~~_{l_{2}}}\|_{(L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)}))'}}{\|\chi_{B~~_{k}}\|_{(L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)}))'}} \|f_{l_{1}}\|_{L~~^{p_{1}(\cdot)}(w^{p_{1}(\cdot)})}\|f_{l_{2}}\|_{L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)})} \\&\leq C\sum\limits_{l_{1} = k-1}^{k+1}\sum\limits_{l_{2} = k+2}^{\infty}2^{(k-l_{2})n}\frac{|B_{l_{2}}|}{|B_{k}|} \|f_{l_{1}}\|_{L~~^{p_{1}(\cdot)}(w^{p_{1}(\cdot)})}\|f_{l_{2}}\|_{L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)})}\\&\leq C\sum\limits_{l_{1} = k-1}^{k+1}\sum\limits_{l_{2} = k+2}^{\infty} \|f_{l_{1}}\|_{L~~^{p_{1}(\cdot)}(w^{p_{1}(\cdot)})}\|f_{l_{2}}\|_{L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)})} , \end{align} |
where
\frac{\|\chi_{B~~_{l_{1}}}\|_{(L~~^{p_{1}(\cdot)}(w^{p_{1}(\cdot)}))'}}{\|\chi_{B~~_{k}}\|_{(L~~^{p_{1}(\cdot)}(w^{p_{1}(\cdot)}))'}}\leq C, \, \text{for} k-1\leq l_{1}\leq k+1, |
with the constant C independent of l_{1} and k .
Hence
\begin{align} I_{6}&\leq C\sup\limits_{L\in \mathbb Z}2^{-L\lambda}\Big\{\sum\limits_{k = -\infty}^{L}2^{k\alpha q}\Big(\sum\limits_{l_{1} = k-1}^{k+1}\sum\limits_{l_{2} = k+2}^{\infty}\|f_{l_{1}}\|_{L~~^{p_{1}(\cdot)}(w^{p_{1}(\cdot)})}\|f_{l_{2}}\|_{L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)})}\Big)^{q}\Big\}^{\frac{1}{q}} \\&\leq C\sup\limits_{L\in \mathbb Z}2^{-L\lambda_{1}}\Big\{\sum\limits_{k = -\infty}^{L}\Big(\sum\limits_{l_{1} = k-1}^{k+1}2^{k\alpha_{1}}\|f_{l_{1}}\|_{L~~^{p_{1}(\cdot)}(w^{p_{1}(\cdot)})}\Big)^{q_{1}}\Big\}^{\frac{1}{q_{1}}} \\&\times \sup\limits_{L\in \mathbb Z}2^{-L\lambda_{2}}\Big\{\sum\limits_{k = -\infty}^{L}\Big(\sum\limits_{l_{2} = k+2}^{\infty}2^{k\alpha_{2}}\|f_{l_{2}}\|_{L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)})}\Big)^{q_{2}}\Big\}^{\frac{1}{q_{2}}} \\&: = CI_{61}I_{62}. \end{align} |
Here the estimate of I_{61} is equal to that of I_{22} and I_{62} = I_{32}.
(vi) Finally to estimate the term I_{9} , we note l_{2}\geq k+2 and |x-y_{i}| > 2^{l_{i}-2} , \, for x\in C_{k} , y_{i}\in C_{l_{i}} ,
|T(f_{l_{1}}, f_{l_{2}}(x)| \leq C2^{-l_{1}n}\int_{\mathbb R^n}|f_{l_{1}}(y_{1})|dy_{1}2^{-l_{2}n}\int_{\mathbb R^n}|f_{l_{2}}(y_{2})|dy_{2}. |
Applying Hölder's inequality to the last integral, we obtain
\begin{align} &\Big\|\sum\limits_{l_{1} = k+2}^{\infty}\sum\limits_{l_{2} = k+2}^{\infty}T(f_{l_{1}}, f_{l_{2}})\chi_{k}\Big\|_{L~~^{p(\cdot)}(w~^{p(\cdot)}))} \\&\leq C\sum\limits_{l_{1} = k+2}^{\infty}\sum\limits_{l_{2} = k+2}^{\infty}2^{(k-l_{1})n}2^{(k-l_{2})n} \frac{\|\chi_{B~~_{l_{1}}}\|_{(L~~^{p_{1}(\cdot)}(w^{p_{1}(\cdot)}))'}}{\|\chi_{B~~_{k}}\|_{(L~~^{p_{1}(\cdot)}(w^{p_{1}(\cdot)}))'}} \frac{\|\chi_{B~~_{l_{2}}}\|_{(L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)}))'}}{\|\chi_{B~~_{k}}\|_{(L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)}))'}} \\&\times \|f_{l_{1}}\|_{L~~^{p_{1}(\cdot)}(w^{p_{1}(\cdot)})}\|f_{l_{2}}\|_{L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)})} \\&\leq C \sum\limits_{l_{1} = k+2}^{\infty}\sum\limits_{l_{2} = k+2}^{\infty} 2^{(k-l_{1})n}\frac{|B_{l_{1}}|}{|B_{k}|}2^{(k-l_{2})n}\frac{|B_{l_{2}}|}{|B_{k}|} \|f_{l_{1}}\|_{L~~^{p_{1}(\cdot)}(w^{p_{1}(\cdot)})}\|f_{l_{2}}\|_{L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)})}\\&\leq C\sum\limits_{l_{1} = k+2}^{\infty}\sum\limits_{l_{2} = k+2}^{\infty}\|f_{l_{1}}\|_{L~~^{p_{1}(\cdot)}(w^{p_{1}(\cdot)})}\|f_{l_{2}}\|_{L~^{p_{2}(\cdot)}(w^{p_{2}(\cdot)})}. \end{align} |
Thus
\begin{align} I_{9}&\leq C\sup\limits_{L\in \mathbb Z}2^{-L\lambda}\Big\{\sum\limits_{k = -\infty}^{L}2^{k\alpha q}\Big(\prod\limits_{i = 1}^{2}\sum\limits_{l_{i} = k+2}^{\infty}\|f_{l_{i}}\|_{L~~^{p_{i}(\cdot)}(w^{p_{i}(\cdot)})}\Big)^{q}\Big\}^{\frac{1}{q}} \\&\leq C\sup\limits_{L\in \mathbb Z}\prod\limits_{i = 1}^{2}2^{-L\lambda_{i}}\Big\{\sum\limits_{k = -\infty}^{L}\Big(\sum\limits_{l_{i} = k+2}^{\infty}2^{k\alpha_{i}}\|f_{l_{i}}\|_{L~~^{p_{i}(\cdot)}(w^{p_{i}(\cdot)})}\Big)^{q_{i}}\Big\}^{\frac{1}{q_{i}}} \\& = :CI_{91}I_{92}\leq C\|f_{1}\|_{M\dot{K}^{\alpha_{1}, \lambda_{1}}_{q_{1}, p_{1}(\cdot)}(w^{p_{1}(\cdot)})} \|f_{2}\|_{M\dot{K}^{\alpha_{2}, \lambda_{2}}_{q_{2}, p_{2}~~(\cdot)}(w^{p_{2}(\cdot)})}, \end{align} |
where the estimate of I_{9i} (i = 1, 2) is equal to that of I_{32} .
Combining all the estimates for I_{i} together (i = 1, 2, \cdots, 9) , we get
\|T(f_{1}, f_{1})\|_{M\dot{K}^{\alpha, \lambda}_{q, p(\cdot)}(w~^{p(\cdot)})}\leq C\prod\limits_{j = 1}^{m} \|f_{j}\|_{M\dot{K}^{\alpha_{j}, \lambda_{j}}_{q_{j}, p_{j}(\cdot)}(w^{p_{j}(\cdot)})}. |
Consequently, we have proved the Theorem 2.
In this paper we define the Muckenhoupt weights with variable exponent and introduce weighted Morrey-Herz spaces M\dot K^{\alpha, \lambda}_{q, p(\cdot)}(w~^{p(\cdot)}) with variable exponent p(\cdot) . We investigate the boundedness of multi-linear Calder´on-Zygmund operator on weighted Lebesgue spaces and weighted Morrey-Herz spaces with variable exponents. The results we obtain are the generalization of these in the references, and they could be applied more widely.
The authors thank the referees for their valuable comments which helped to improve the paper. The work was supported by NNSF of China grants (11771223).
The authors declare no conflict of interest.
[1] |
L. Grafakos, R. H. Torres, Multilinear Calderón-Zygmund theory, Adv. Math., 165 (2002), 124-164. doi: 10.1006/aima.2001.2028
![]() |
[2] |
G. P. Curbera, J. García-Cuerva, J. M. Martell, C. Pérez, Extrapolation with weights, rearrangement-invariant function spaces, modular inequalities and applications to singular integrals, Adv. Math., 203 (2006), 256-318. doi: 10.1016/j.aim.2005.04.009
![]() |
[3] |
C. Pérez, R. H. Torres, Sharp maximal function estimates for multinear singular integrals, Contemp. Math., 320 (2003), 1-9. doi: 10.1090/conm/320/05594
![]() |
[4] | X. X. Tao, H. H. Zhang, On the boundedness of multilinear operators on weighted Herz-Morrey spaces, Taiwan. J. Math., 15 (2011), 1527-1543. |
[5] |
O. Kováčik, J. Rákosník, On spaces L~~^{p(x)} and W^{k, p(x)}, Czech. Math. J., 41 (1991), 592-618. doi: 10.21136/CMJ.1991.102493
![]() |
[6] | D. Cruz-Uribe, L. A. D. Wang, Extrapolation and weighted norm inequalities in the variable Lebesgue spaces, Trans. Am. Math. Soc., 369 (2017), 1205-1235. |
[7] |
M. Izuki, T. Noi, Boundedness of fractional integral on weighted Herz spaces with variable exponent, J. Inequal. Appl., 2016 (2016), 199. doi: 10.1186/s13660-016-1142-9
![]() |
[8] |
D. C. Yang, C. Q. Zhuo, W. Yuan, Besov-type spaces with variable smoothness and integrability, J. Funct. Anal., 269 (2015), 1840-1898. doi: 10.1016/j.jfa.2015.05.016
![]() |
[9] |
D. C. Yang, C. Q. Zhuo, W. Yuan, Triebel-Lizorkin type spaces with variable exponents, Banach J. Math. Anal., 9 (2015), 146-202. doi: 10.15352/bjma/09-4-9
![]() |
[10] |
X. J. Yan, D. C. Yang, W. Yuan, C. Q. Zhuo, Variable weak Hardy spaces and their applications, J. Funct. Anal., 271 (2016), 2822-2887. doi: 10.1016/j.jfa.2016.07.006
![]() |
[11] |
L. W. Wang, L. S. Shu, Higher order commutators of fractional integrals on Morrey type spaces with variable exponents, Math. Nachr., 291 (2018), 1437-1449. doi: 10.1002/mana.201600438
![]() |
[12] |
A. W. Huang, J. S. Xu, Multilinear singular integrals and commutators in variable exponent Lebesgue spaces, Appl. Math. J. Chin. Univ., 25 (2010), 69-77. doi: 10.1007/s11766-010-2167-3
![]() |
[13] |
X. X. Tao, X. Yu, H. H. Zhang, Multilinear Calderón Zygmund operators on variable exponent Morrey spaces over domains, Appl. Math. J. Chin. Univ., 26 (2011), 187-197. doi: 10.1007/s11766-011-2704-8
![]() |
[14] |
Z. W. Fu, S. Z. Lu, H. B. Wang, L. G. Wang, Singular integral operators with rough kernels on central Morrey spaces with variable exponent, Ann. Acad. Sci. Fenn. Math., 44 (2019), 505-522. doi: 10.5186/aasfm.2019.4431
![]() |
[15] |
Y. Lu, Y. P. Zhu, Boundedness of multilinear Calderón-Zygmund singular operators on Morrey-Herz spaces with variable exponents, Acta Math. Sin.-English Ser., 30 (2014), 1180-1194. doi: 10.1007/s10114-014-3410-2
![]() |
[16] |
D. Cruz-Uribe, L. Diening, P. Hästö, The maximal operator on weighted variable Lebesgue spaces, Fractional Calculus Appl. Anal., 14 (2011), 361-374. doi: 10.2478/s13540-011-0023-7
![]() |
[17] |
D. Cruz-Uribe, A. Fiorenza, C. J. Neugebauer, Weighted norm inequalities for the maximal operator on variable Lebesgue spaces, J. Math. Anal. Appl., 394 (2012), 744-760. doi: 10.1016/j.jmaa.2012.04.044
![]() |
[18] |
A. Lerner, On a dual property of the maximal operator on weighted variable Lp spaces, Contemp. Math., 693 (2017), 283-300. doi: 10.1090/conm/693/13932
![]() |
[19] | L. Diening, P. Hästö, Muckenhoupt weights in variable exponent spaces, 2008. Available from: https://www.researchgate.net/publication/228779582. |
[20] | M. Izuki, T. Noi, An intrinsic square function on weighted Herz spaces with variable exponent, 2016. Available from: https://arXiv.org/abs/1606.01019. |
[21] |
B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Am. Math. Soc., 165 (1972), 207-226. doi: 10.1090/S0002-9947-1972-0293384-6
![]() |
[22] |
M. Izuki, Commutators of fractional integrals on Lebesgue and Herz spaces with variable exponent, Rend. Circ. Mat. Palermo, 59 (2010), 461-472. doi: 10.1007/s12215-010-0034-y
![]() |
[23] |
M. Izuki, Boundedness of commutators on Herz spaces with variable exponent, Rend. Circ. Mat. Palermo, 59 (2010), 199-213. doi: 10.1007/s12215-010-0015-1
![]() |
[24] | M. Izuki, Fractional integrals on Herz-Morrey spaces with variable exponent, Hiroshima Math. J., 40 (2010), 343-355. |
1. | Kieu Huu Dung, Do Lu Cong Minh, Pham Thi Kim Thuy, Commutators of Hardy-Cesàro operators on Morrey-Herz spaces with variable exponents, 2022, 7, 2473-6988, 19147, 10.3934/math.20221051 | |
2. | Mitsuo Izuki, Takahiro Noi, Yoshihiro Sawano, Extrapolation to two-weighted Herz spaces with three variable exponents, 2024, 9, 2662-2009, 10.1007/s43036-024-00333-w |