Research article Special Issues

Effect of fractional temporal variation on the vibration of waves on elastic substrates with spatial non-homogeneity

  • Received: 06 March 2022 Revised: 02 May 2022 Accepted: 04 May 2022 Published: 23 May 2022
  • MSC : 73D05, 26A33

  • The current manuscript examines the effect of the fractional temporal variation on the vibration of waves on non-homogeneous elastic substrates by applying the Laplace integral transform and the asymptotic approach. Four different non-homogeneities, including linear and exponential forms, are considered and scrutinized. In the end, it is reported that the fractional temporal variation significantly affects the respective vibrational fields greatly as the vibrations increase with a decrease in the fractional-order $\mu$. Besides, the two approaches employed for the cylindrical substrates are also shown to be in good agreement for very small non-homogeneity parameter $\alpha$. More so, the present study is set to play a vital role in the fields of material science, and non-homogenization processes to state a few.

    Citation: Ahmed SM Alzaidi, Ali M Mubaraki, Rahmatullah Ibrahim Nuruddeen. Effect of fractional temporal variation on the vibration of waves on elastic substrates with spatial non-homogeneity[J]. AIMS Mathematics, 2022, 7(8): 13746-13762. doi: 10.3934/math.2022757

    Related Papers:

  • The current manuscript examines the effect of the fractional temporal variation on the vibration of waves on non-homogeneous elastic substrates by applying the Laplace integral transform and the asymptotic approach. Four different non-homogeneities, including linear and exponential forms, are considered and scrutinized. In the end, it is reported that the fractional temporal variation significantly affects the respective vibrational fields greatly as the vibrations increase with a decrease in the fractional-order $\mu$. Besides, the two approaches employed for the cylindrical substrates are also shown to be in good agreement for very small non-homogeneity parameter $\alpha$. More so, the present study is set to play a vital role in the fields of material science, and non-homogenization processes to state a few.



    加载中


    [1] J. D. Achenbach, Wave propagation in elastic solids, Amsterdam: Elsevier, 1973.
    [2] J. D. Kaplunov, L. Y. Kossovich, E. V. Nolde, Dynamics of thin walled elastic bodies, San Diego: Academic Press, 1998.
    [3] I. V. Andrianov, J. Awrejcewicz, V. V. Danishevs'kyy, A. O. Ivankov, Asymptotic methods in the theory of plates with mixed boundary conditions, Chichester, West Sussex: John Wiley & Sons, 2014.
    [4] W. M. Ewing, W. S. Jardetzky, F. Press, Elastic waves in layered media, New York: McGraw-Hill Book Company, Inc., 1957.
    [5] M. Li, Q. Liu, Z. J. Jia, X. C. Xu, Y. Cheng, Y. F. Zheng, et al., Graphene oxide/hydroxyapatite composite coatings fabricated by electrophoretic nanotechnology for biological applications, Carbon, 67 (2014), 185–197. https://doi.org/10.1016/j.carbon.2013.09.080 doi: 10.1016/j.carbon.2013.09.080
    [6] V. M. Tiainen, Amorphous carbon as a bio-mechanical coating–mechanical properties and biological applications, Diam. Relat. Mater., 10 (2001), 153–160. https://doi.org/10.1016/S0925-9635(00)00462-3 doi: 10.1016/S0925-9635(00)00462-3
    [7] A. E. Green, K. A. Lindsay, Thermoelasticity, J. Elasticity, 2 (1972), 1–7. https://doi.org/10.1007/BF00045689 doi: 10.1007/BF00045689
    [8] M. A. Biot, Thermoelasticity and irreversible thermodynamics, J. Appl. Phys., 27 (1956), 240–253. https://doi.org/10.1063/1.1722351 doi: 10.1063/1.1722351
    [9] F. Ebrahimi, M. R. Barati, A. Dabbagh, Wave propagation in embedded inhomogeneous nanoscale plates incorporating thermal effects, Waves Random Complex Media, 28 (2018), 215–235. https://doi.org/10.1080/17455030.2017.1337281 doi: 10.1080/17455030.2017.1337281
    [10] F. Alsheikh, Electromechanical coupling of Bleustein-Gulyaev wave propagation in rotating prestressed piezoelectric layered materials, Continuum Mech. Thermodyn., 32 (2020), 749–759. https://doi.org/10.1007/s00161-018-0723-x doi: 10.1007/s00161-018-0723-x
    [11] R. I. Nuruddeen, R. Nawaz, Q. M. Z. Zia, Asymptotic approach to anti-plane dynamic problem of asymmetric three-layered composite plate, Math. Methods Appl. Sci., 44 (2021), 10933–10947. https://doi.org/10.1002/mma.7456 doi: 10.1002/mma.7456
    [12] A. Mubaraki, S. Althobaiti, R. I. Nuruddeen, Propagation of surface waves in a rotating coated viscoelastic half-space under the influence of magnetic field and gravitational forces, Fractal Fract., 5 (2021), 1–16. https://doi.org/10.3390/fractalfract5040250 doi: 10.3390/fractalfract5040250
    [13] R. Nawaz, R. I. Nuruddeen, Q. M. Z. Zia, An asymptotic investigation of the dynamics and dispersion of an elastic five-layered plate for anti-plane shear vibration, J. Eng. Math., 128 (2021), 1–12. https://doi.org/10.1007/s10665-021-10133-3 doi: 10.1007/s10665-021-10133-3
    [14] A. M. Abd-Alla, S. M. Abo-Dahab, A. Khan, Rotational effects on magneto-thermoelastic Stoneley, Love and Rayleigh waves in fibre-reinforced anisotropic general viscoelastic media of higher order, Comput. Mater. Con., 53 (2017), 49–72.
    [15] K. Naumenko, V. A. Eremeyev, A layer-wise theory for laminated glass and photovoltaic panels, Compos. Struct., 112 (2014), 283–291. https://doi.org/10.1016/j.compstruct.2014.02.009 doi: 10.1016/j.compstruct.2014.02.009
    [16] A. S. Sayyad, Y. M. Ghugal, Bending, buckling and free vibration of laminated composite and sandwich beams: A critical review of literature, Compos. Struct., 171 (2017), 486–504. https://doi.org/10.1016/j.compstruct.2017.03.053 doi: 10.1016/j.compstruct.2017.03.053
    [17] J. Kaplunov, D. A. Prikazchikov, L. A. Prikazchikov, O. Sergushova, The lowest vibration spectra of multi-component structures with contrast material properties, J. Sound Vibration, 445 (2019), 132–147. https://doi.org/10.1016/j.jsv.2019.01.013 doi: 10.1016/j.jsv.2019.01.013
    [18] A. Mubariki, D. Prikazchikov, A. Kudaibergenov, Explicit model for surface waves on an elastic half-space coated by a thin vertically inhomogeneous layer, In: Perspectives in dynamical systems I: Mechatronics and life sciences, Springer Proceedings in Mathematics & Statistics, Vol. 362, Cham: Springer, 2022,267–275. https://doi.org/10.1007/978-3-030-77306-9_23
    [19] B. Erbaş, J. Kaplunov, A. Nobili, G. Kılıç, Dispersion of elastic waves in a layer interacting with a Winkler foundation, J. Acoust. Soc. Am., 144 (2018), 2918–2925. https://doi.org/10.1121/1.5079640 doi: 10.1121/1.5079640
    [20] A. M. Farhan, A. M. Abd-Alla, Effect of rotation on the surface wave propagation in magneto-thermoelastic materials with voids, J. Ocean Eng. Sci., 3 (2018), 334–342. https://doi.org/10.1016/j.joes.2018.10.003 doi: 10.1016/j.joes.2018.10.003
    [21] L. Debnath, D. Bhatta, Integral transforms and their applications, 2 Eds., New York: Chapman and Hall/CRC, 2006. https://doi.org/10.1201/9781420010916
    [22] M. Yavuz, N. Sene, Approximate solutions of the model describing fluid flow using generalized $\rho$-Laplace transform method and heat balance integral method, Axioms, 9 (2020), 1–18. https://doi.org/10.3390/axioms9040123 doi: 10.3390/axioms9040123
    [23] L. Zada, R. Nawaz, K. S. Nisar, M. Tahir, M. Yavuz, M. K. A. Kaabar, et al., New approximate-analytical solutions to partial differential equations via auxiliary function method, Partial Differ. Equ. Appl. Math., 4 (2021), 100045. https://doi.org/10.1016/j.padiff.2021.100045 doi: 10.1016/j.padiff.2021.100045
    [24] R. I. Nuruddeen, R. Nawaz, Q. M. Z. Zia, Investigating the viscous damping effects on the propagation of Rayleigh waves in a three-layered inhomogeneous plate, Phys. Scripta, 95 (2020), 065224.
    [25] I. A. Abbas, Eigenvalue approach in a three-dimensional generalized thermoelastic interactions with temperature-dependent material properties, Comput. Math. Appl., 68 (2014), 2036–2056. https://doi.org/10.1016/j.camwa.2014.09.016 doi: 10.1016/j.camwa.2014.09.016
    [26] F. Müller, C. Schwab, Finite elements with mesh refinement for elastic wave propagation in polygons, Math. Methods Appl. Sci., 39 (2016), 5027–5042. https://doi.org/10.1002/mma.3355 doi: 10.1002/mma.3355
    [27] A. Gholami, D. D. Ganji, H. Rezazadeh, W. Adel, A. Bekir, Application of modified Mickens iteration procedure to a pendulum and the motion of a mass attached to a stretched elastic wire, Int. J. Nonlinear Sci. Numer. Simul., 2021. https://doi.org/10.1515/ijnsns-2020-0256 doi: 10.1515/ijnsns-2020-0256
    [28] L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci., 2003 (2003), 3413–3442. https://doi.org/10.1155/S0161171203301486 doi: 10.1155/S0161171203301486
    [29] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
    [30] R. I. Nuruddeen, Laplace-based method for the linearized dynamical models in the presence of Hilfer fractional operator, Partial Differ. Equ. Appl. Math., 5 (2022), 100248. https://doi.org/10.1016/j.padiff.2021.100248 doi: 10.1016/j.padiff.2021.100248
    [31] R. I. Nuruddeen, K. S. Aboodh, Analytical solution for time-fractional diffusion equation by Aboodh decomposition method, Int. J. Math. Appl., 5 (2017), 115–122.
    [32] P. Pandey, S. Kumar, J. F. Gómez-Aguilar, Numerical solution of the fractional reaction-advection-diffusion equation in porous media, J. Appl. Comput. Mech., 8 (2022), 84–96. https://doi.org/10.22055/JACM.2019.30946.1796 doi: 10.22055/JACM.2019.30946.1796
    [33] R. I. Nuruddeen, J. F. Gómez-Aguilar, A. G. Ahmad, K. K. Ali, Investigating the dynamics of Hilfer fractional operator associated with certain electric circuit models, Int. J. Circuit Theory Appl., 2022. https://doi.org/10.1002/cta.3293 doi: 10.1002/cta.3293
    [34] M. Uddin, M. Taufiq, Approximation of time fractional Black-Scholes equation via radial kernels and transformations, Fract. Differ. Calculus, 9 (2019), 75–90. https://doi.org/10.7153/fdc-2019-09-06 doi: 10.7153/fdc-2019-09-06
    [35] M. Uddin, Kamran, A. Ali, A localized transform-based meshless method for solving time fractional wave-diffusion equation, Eng. Anal. Bound. Elem., 92 (2018), 108–113. https://doi.org/10.1016/j.enganabound.2017.10.021 doi: 10.1016/j.enganabound.2017.10.021
    [36] M. Uddin, H. Ali, A. Ali, Kernel-based local meshless method for solving multi-dimensional wave equations in irregular domain, Comput. Model. Eng. Sci., 107 (2015), 463–479.
    [37] M. Uddin, K. Kamran, M. Usman, A. Ali, On the Laplace-transformed-based local meshless method for fractional-order diffusion equation, Int. J. Comput. Methods Eng. Sci. Mech., 19 (2018), 221–225. https://doi.org/10.1080/15502287.2018.1472150 doi: 10.1080/15502287.2018.1472150
    [38] Z. Hammouch, M. Yavuz, N. Özdemir, Numerical solutions and synchronization of a variable-order fractional chaotic system, Math. Model. Numer. Simul. Appl., 1 (2021), 11–23. https://doi.org/10.53391/mmnsa.2021.01.002 doi: 10.53391/mmnsa.2021.01.002
    [39] E. K. Akgul, A. Akgül, M. Yavuz, New illustrative applications of integral transforms to financial models with different fractional derivatives, Chaos Solitons Fract., 146 (2021), 110877. https://doi.org/10.1016/j.chaos.2021.110877 doi: 10.1016/j.chaos.2021.110877
    [40] M. Yavuz, N. Sene, Fundamental calculus of the fractional derivative defined with Rabotnov exponential kernel and application to nonlinear dispersive wave model, J. Ocean Eng. Sci., 6 (2021), 196–205. https://doi.org/10.1016/j.joes.2020.10.004 doi: 10.1016/j.joes.2020.10.004
    [41] J. Abate, P. P. Valkó, Multi-precision Laplace transform inversion, Numer. Methods Eng., 60 (2004), 979–993. https://doi.org/10.1002/nme.995 doi: 10.1002/nme.995
    [42] A. Talbot, The accurate numerical inversion of Laplace transforms, IMA J. Appl. Math., 23 (1979), 97–120. https://doi.org/10.1093/imamat/23.1.97 doi: 10.1093/imamat/23.1.97
    [43] A. L. Rabenstein, Introduction to ordinary differential equations, New York: Academic Press, 1972.
    [44] F. Ahmad, F. D. Zaman, Exact and asymptotic solutions of the elastic wave propagation problem in a rod, Int. J. Pure Appl. Math., 27 (2006), 123–127.
    [45] G. Yiğit, A. Şahin, M. Bayram, Modelling of vibration for functionally graded beams, Open Math., 14 (2016), 661–672. https://doi.org/10.1515/math-2016-0057 doi: 10.1515/math-2016-0057
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1236) PDF downloads(84) Cited by(8)

Article outline

Figures and Tables

Figures(6)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog