Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Monotonicity, convexity and inequalities involving zero-balanced Gaussian hypergeometric function

  • Received: 04 January 2022 Revised: 16 April 2022 Accepted: 21 April 2022 Published: 26 April 2022
  • MSC : 33C05, 26D20

  • We generalize several monotonicity and convexity properties as well as sharp inequalities for the complete elliptic integrals to the zero-balanced Gaussian hypergeometric function F(a,b;a+b;x).

    Citation: Li Xu, Lu Chen, Ti-Ren Huang. Monotonicity, convexity and inequalities involving zero-balanced Gaussian hypergeometric function[J]. AIMS Mathematics, 2022, 7(7): 12471-12482. doi: 10.3934/math.2022692

    Related Papers:

    [1] Abdelkader Moumen, Amin Benaissa Cherif, Fatima Zohra Ladrani, Keltoum Bouhali, Mohamed Bouye . Fourth-order neutral dynamic equations oscillate on timescales with different arguments. AIMS Mathematics, 2024, 9(9): 24576-24589. doi: 10.3934/math.20241197
    [2] Petr Hasil, Michal Veselý . Conditionally oscillatory linear differential equations with coefficients containing powers of natural logarithm. AIMS Mathematics, 2022, 7(6): 10681-10699. doi: 10.3934/math.2022596
    [3] Yibing Sun, Yige Zhao . Oscillatory and asymptotic behavior of third-order neutral delay differential equations with distributed deviating arguments. AIMS Mathematics, 2020, 5(5): 5076-5093. doi: 10.3934/math.2020326
    [4] A. A. El-Gaber, M. M. A. El-Sheikh, M. Zakarya, Amirah Ayidh I Al-Thaqfan, H. M. Rezk . On the oscillation of solutions of third-order differential equations with non-positive neutral coefficients. AIMS Mathematics, 2024, 9(11): 32257-32271. doi: 10.3934/math.20241548
    [5] Mohammed Ahmed Alomair, Ali Muhib . On the oscillation of fourth-order canonical differential equation with several delays. AIMS Mathematics, 2024, 9(8): 19997-20013. doi: 10.3934/math.2024975
    [6] Duoduo Zhao, Kai Zhou, Fengming Ye, Xin Xu . A class of time-varying differential equations for vibration research and application. AIMS Mathematics, 2024, 9(10): 28778-28791. doi: 10.3934/math.20241396
    [7] Shaimaa Elsaeed, Osama Moaaz, Kottakkaran S. Nisar, Mohammed Zakarya, Elmetwally M. Elabbasy . Sufficient criteria for oscillation of even-order neutral differential equations with distributed deviating arguments. AIMS Mathematics, 2024, 9(6): 15996-16014. doi: 10.3934/math.2024775
    [8] Fawaz Khaled Alarfaj, Ali Muhib . Second-order differential equations with mixed neutral terms: new oscillation theorems. AIMS Mathematics, 2025, 10(2): 3381-3391. doi: 10.3934/math.2025156
    [9] Maged Alkilayh . Nonlinear neutral differential equations of second-order: Oscillatory properties. AIMS Mathematics, 2025, 10(1): 1589-1601. doi: 10.3934/math.2025073
    [10] Elmetwally M. Elabbasy, Amany Nabih, Taher A. Nofal, Wedad R. Alharbi, Osama Moaaz . Neutral differential equations with noncanonical operator: Oscillation behavior of solutions. AIMS Mathematics, 2021, 6(4): 3272-3287. doi: 10.3934/math.2021196
  • We generalize several monotonicity and convexity properties as well as sharp inequalities for the complete elliptic integrals to the zero-balanced Gaussian hypergeometric function F(a,b;a+b;x).



    Functional differential equations arise widely in many fields such as mathematical biology, economy, physics, or biology, see [16,19,28,40]. This explains the great interest in the qualitative properties of these kinds of equations. Oscillation phenomena appear in various models from real world applications; see, e.g., the papers [12,35,38] for models from mathematical biology where oscillation and/or delay actions may be formulated by means of cross-diffusion terms. As a part of this approach, the oscillation theory of this type of equation has been extensively developed, see [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45]. In particular, the oscillation criteria of first-order differential equations with deviating arguments have numerous applications in the study of higher-order functional differential equations (e.g., one can study the oscillatory behavior of higher-order functional differential equations by relating oscillation of these equations to that of associated first-order functional differential equations); see, e.g., the papers [13,36,37].

    Recently, there has been great interest in studying the oscillation of all solutions of the first-order delay differential equation

    x(t)+b(t)x(τ(t))=0,tt0, (1.1)

    and its dual advanced equation

    x(t)c(t)x(σ(t))=0,tt0, (1.2)

    where b,c,τ,σC([t0,),[0,)) such that τ(t)t, limt τ(t)=, and σ(t)t. In most of these works, the delay (advanced) function is assumed to be nondecreasing, see [14,16,29,31,32,33,34,42,45] and the references therein. As shown in [8], the oscillation character of Eq (1.1) with nonmontone delay, is not an easy extension to the oscillation problem for the nondecreasing delay case. Many authors [1,3,5,6,7,8,9,10,11,15,20,25,27,39,43] have developed and generalized the methods used to study the oscillation of equations (1.1) and (1.2) with monotone delays and to study this property for the nonmonotone case. Only a few works, however, dealt with the oscillation of equations (1.1) and (1.2) with oscillatory coefficients. For example, [16,44] studied the oscillation of Eq (1.1) where the delay function τ(t) is assumed to be nondecreasing and constant (i.e., τ(t)=tα, α>0), respectively. Also, Kulenovic and Grammatikopoulos [29] studied the oscillation of a first-order nonlinear functional differential equation that contains both equations (1.1) and (1.2). The authors obtained liminf and limsup oscillation criteria for the case when the coefficient function does not need to be nonnegative. However, the delay (advanced) and the coefficient functions are assumed to be nondecreasing (for limsup conditions) and nonnegative on a sequence of intervals {(rn,sn)}n0 such that limn (snrn)= (for liminf conditions), respectively.

    Our aim in this work is to obtain oscillation criteria for equations (1.1) and (1.2) where b(t) and c(t) are continuous functions on [t0,). We relax the nonnegative restriction on the coefficient functions b(t) and c(t). To accomplish this goal, using the ideas of [27], we develop and enhance the work of Kwong [30]. This procedure leads to new sufficient oscillation criteria that improve and generalize those mentioned in [16,29,44].

    From now on, we assume that b(t) and c(t) are only continuous functions on [t0,).

    Let Λ(t) and Λi(t), tt0, iN be defined as follows (see [27]):

    Λ(t)=max{ut: τ(u)t},Λ1(t)=Λ(t),Λi(t)=Λ(t)Λi1(t), i=2,3, . (2.1)

    Also, we define the function g(t) and the sequence {Qn(v,u)}n=0, τ(v)uv, as follows:

    g(t)=suput τ(u),tt0 (2.2)

    and

    Q0(v,u)=1,Qn(v,u)=exp(vub(ζ)Qn1(ζ,τ(ζ))dζ),nN.

    The proofs of our main results are essentially based on the following lemma.

    Lemma 2.1. Let nN0, T>t0, TT and x(t) be a solution of Eq (1.1) such that x(t)>0 for all tT. If b(t)0 on [T,T1], T1Λn+2(T), then

    x(u)x(v)Qn(v,u),τ(v)uv,for  v[Λn+2(T),T1]. (2.3)

    Proof. It follows from Eq (1.1) that x(t)0 on [Λ1(T),T1]. Therefore,

    x(u)x(v)1=Q0(v,u),τ(v)uv, for v[Λ2(T),T1].

    Dividing Eq (1.1) by x(t) and integrating from u to v, τ(v)uv, we obtain

    x(u)x(v)=exp(vub(ζ)x(τ(ζ))x(ζ)dζ). (2.4)

    Since x(t)0 on [Λ1(T),T1], we get

    x(u)x(v)exp(vub(ζ)dζ)=exp(vub(ζ)Q0(ζ,τ(ζ))dζ)=Q1(v,u),τ(v)uv

    for v[Λ3(T),T1] and consequently, for uζv, we have

    x(τ(ζ))x(ζ)Q1(ζ,τ(ζ)),τ(v)uv for v[Λ4(T),T1].

    Substituting in (2.4), we get

    x(u)x(v)exp(vub(ζ)Q1(ζ,τ(ζ))dζ)=Q2(v,u) for v[Λ4(T),T1].

    Repeating this argument n times, we obtain

    x(u)x(v)exp(vub(ζ)Qn1(ζ,τ(ζ))dζ)=Qn(v,u) for t[Λn+2(T),T1].

    The proof of the lemma is complete.

    Let {Tk}k0 be a sequence of real numbers such that limk Tk= and

    b(t)0 for t[Tk,Λn+4(Tk)], for all  kN for some nN0. (2.5)

    Also, we define the sequence {βn}n1, βn>1 for all nN as follows:

    Qn(t,g(t))>βn,t[g(Λn+3(Tk)),Λn+3(Tk)] for all  kN0 for some nN. (2.6)

    Theorem 2.1. Let nN such that (2.5) and (2.6) are satisfied. If

    Λn+4(Tk)g(Λn+4(Tk))b(ζ)Qn+1(g(ζ),τ(ζ)) dζln(βn+1)+1βn+1for all   kN0,

    then every solution of Eq (1.1) is oscillatory.

    Proof. Assume, for the sake of contradiction, that x(t) is an eventually positive solution of Eq (1.1). Then there exists a sufficiently large T>t0 such that x(t)>0 for t>T. Suppose that Tk1{Tk}k0 such that Tk1>T. In view of (2.3), (2.5) and (2.6), it follows that

    x(g(Λn+4(Tk1)))x(Λn+4(Tk1))Qn+1(Λn+4(Tk1),g(Λn+4(Tk1)))>βn+1>1.

    Then there exists t(g(Λn+4(Tk1)),Λn+4(Tk1)) such that

    x(g(Λn+4(Tk1)))x(t)=βn+1. (2.7)

    Integrating Eq (1.1) from t to t, we get

    x(Λn+4(Tk1))x(t)+Λn+4(Tk1)tb(ζ)x(τ(ζ))dζ=0. (2.8)

    It is easy to see that

    x(τ(ζ))=x(g(ζ))exp(g(ζ)τ(ζ)b(ζ1)x(τ(ζ1))x(ζ1)dζ1). (2.9)

    Substituting in (2.8), we have

    x(Λn+4(Tk1))x(t)+Λn+4(Tk1)tb(ζ)exp(g(ζ)τ(ζ)b(ζ1)x(τ(ζ1))x(ζ1)dζ1)x(g(ζ))dζ=0.

    Since x(t)0 on [Λ1(Tk1),Λn+4(Tk1)], it follows that

    x(Λn+4(Tk1))x(t)+x(g(Λn+4(Tk1)))Λn+4(Tk1)tb(ζ)exp(g(ζ)τ(ζ)b(ζ1)x(τ(ζ1))x(ζ1)dζ1)dζ0.

    By (2.3) and ζ1[Λn+2(Tk1),Λn+3(Tk1)] for τ(ζ)<ζ1<g(ζ), g(Λn+4(Tk1))<ζ<Λn+4(Tk1), we get

    Λn+4(Tk1)tb(ζ)exp(g(ζ)τ(ζ)b(ζ1)Qn(ζ1,τ(ζ1))dζ1)dζx(t)x(g(Λn+4(Tk1)))x(Λn+4(Tk1))x(g(Λn+4(Tk1)))<1βn+1. (2.10)

    Dividing Eq (1.1) by x(t) and integrating from g(Λn+4(Tk1)) to t, we obtain

    tg(Λn+4(Tk1))x(ζ)x(ζ)dζ=tg(Λn+4(Tk1))b(ζ) x(τ(ζ))x(ζ)dζ.

    Using (2.9), we get

    ln(x(g(Λn+4(Tk1)))x(t))=tg(Λn+4(Tk1))b(ζ) x(g(ζ)))x(ζ)exp(g(ζ)τ(ζ)b(ζ1)x(τ(ζ1))x(ζ1)dζ1)dζ.

    From this, (2.3) and (2.6), we get

    tg(Λn+4(Tk1))b(ζ)Qn+1(ζ,g(ζ)) exp(g(ζ)τ(ζ)b(ζ1)Qn(ζ1,τ(ζ1))dζ1)dζln(x(g(Λn+4(Tk1)))x(t)).

    It follows from (2.6) and (2.7) that

    tg(Λn+4(Tk1))b(ζ) exp(g(ζ)τ(ζ)b(ζ1)Qn(ζ1,τ(ζ1))dζ1)dζln(βn+1)βn+1.

    Combining this and (2.10) we get

    Λn+4(Tk1)g(Λn+4(Tk1))b(ζ) exp(g(ζ)τ(ζ)b(ζ1)Qn(ζ1,τ(ζ1))dζ1)dζ<ln(βn+1)+1βn+1,

    that is

    Λn+4(Tk)g(Λn+4(Tk))b(ζ)Qn+1(g(ζ),τ(ζ)) dζ<ln(βn+1)+1βn+1.

    The proof of the theorem is complete.

    Theorem 2.2. Let nN0 such that (2.5) is satisfied. If

    Λn+4(Tk)g(Λn+4(Tk))b(ζ)Qn+1(g(Λn+4(Tk)),τ(ζ))dζ1for all kN0, (2.11)

    then every solution of Eq (1.1) is oscillatory.

    Proof. Let x(t) be an eventually positive solution of Eq (1.1). Then the exists T>t0 such that x(t)>0 for all tT. It is not difficult to prove that

    x(Λn+4(Tk1))x(g(Λn+4(Tk1)))+x(g(Λn+4(Tk1)))Λn+4(Tk1)g(Λn+4(Tk1))b(ζ)exp(g(Λn+4(Tk1))τ(ζ)b(ζ1)x(τ(ζ1))x(ζ1)dζ1)dζ=0,

    where Tk1{Tk} such that Tk1>T. Using (2.3), we get

    x(Λn+4(Tk1))+x(g(Λn+4(Tk1)))(Λn+4(Tk1)g(Λn+4(Tk1))b(ζ)exp(g(Λn+4(Tk1))τ(ζ)b(ζ1)Qn(ζ1,τ(ζ1))dζ1)dζ1)0.

    Using the positivity of x(Λn+4(Tk1)) we have

    Λn+4(Tk1)g(Λn+4(Tk1))b(ζ)exp(g(Λn+4(Tk1))τ(ζ)b(ζ1)Qn(ζ1,τ(ζ1))dζ1)dζ<1.

    Then

    Λn+4(Tk)g(Λn+4(Tk))b(ζ)Qn+1(g(Λn+4(Tk)),τ(ζ))dζ<1,

    which contradicts (2.11). The proof of the theorem is complete.

    Remark 2.1.

    ● (1) It should be noted that the monotonicity of the delay function τ(t) is required in many previous works to study the oscillation of Eq (1.1) with oscillating coefficients; see, for example, [16,29,44]. In this work, the sequence {Λi(t)}i0 plays a central role in the derivation of our results. In fact the delay function τ(t) does not need to be monotone. Therefore, our results substantially improve and generalize [29, Theroems 6, 7] for Eq (1.1). Furthermore, using our approach, many previous oscillation studies for Eq (1.1) with monotone delays can be used to study the oscillation of Eq (1.1) with general delays (the delay does not need to be monotone) and oscillating coefficients.

    (2) There are numerous lower bounds for the quotient x(τ(t))x(t), where x(t) is a positive solution of Eq (1.1) with a nonnegative continuous function b(t), see [6,16,22,24,42]. For example, [22], Lemma 1] and Lemma 2.1 can be used instead of Lemma 2.1 to improve our results in the case where b(t) is a nonnegative continuous function. In this case, the adjusted version of the results improves Theorems 2.1 and 2.2. Even in the case where τ(t) is nondecreasing, the improvement is substantial.

    Similar results for the (dual) advanced differential equation (1.2) can be obtained easily. The details of the proofs are omitted since they are quite similar to Eq (1.1).

    We will use the following notation:

    h(t)=infut σ(u),tt0 (2.12)
    Ω1(t)=Ω(t),Ωi(t)=Ω(t)Ωi1(t), tt0, i=2,3,, (2.13)

    where

    Ω(t)=min{t0ut: σ(u)t}.

    Also, we define the sequence {Rn(u,v)}n=0, vuσ(v) as follows:

    R0(u,v)=1,Rn(u,v)=exp(uvb(ζ)Rn1(σ(ζ),ζ)dζ),nN.

    In order to obtain the oscillation criteria for Eq (1.2) we need the following conditions:

    Let the sequence {Tk}k0 be a sequence of real numbers such that limk Tk= and

    c(t)0 for t[Ωn+4(Tk),Tk] for all kN0 for some nN. (2.14)

    Also, we define the sequence {γn}n1, γn>1 for all nN as follows:

    Rn(h(t),t)>γn,t[Ωn+3(Tk),h(Ωn+3(Tk))] for all kN0 for some nN. (2.15)

    Theorem 2.3. Let nN such that (2.14) and (2.15) are satisfied. If

    h(Ωn+4   (Tk))Ωn+4   (Tk)c(ζ)Rn+1(σ(ζ),h(ζ))dζln(γn+1)+1γn+1   for all  kN0,

    then every solution of Eq (1.2) is oscillatory.

    Theorem 2.4. Let nN0 such that (2.14) is satisfied. If

    h(Ωn+4  (Tk))Ωn+4  (Tk)c(ζ)Rn+1(σ(ζ),h(Ωn+4(Tk)))dζ1for all   kN0,

    then every solution of Eq (1.2) is oscillatory.

    Example 3.1. Consider the delay differential equation

    x(t)+b(t)x(τ(t))=0,t1, (3.1)

    where bC([1,),R) such that

    b(t)=η>0 for t[3rk,3rk+645121] for all kN0,

    {rk}k0 is a sequence of positive integers such that rk+1>rk+215121 and limk rk=, and

    τ(t)={t1 if t[3l,3l+2],t+6l+3 if t[3l+2,3l+2.1],119t23l53 if t[3l+2.1,3l+3],lN0.

    In view of (2.1) and (2.2), it is easy to see that

    g(t)={t1 if t[3l,3l+2],3l+1 if t[3l+2,3l+2411],119t23l53 if t[3l++2411,3l+3],lN0

    and

    Λ(t)={t+1 if t[3l,3l+0.9],911t+611l+1511 if t[3l+0.9,3l+2],t+1 if t[3l+2,3l+3],lN0,

    respectively.

    Letting Tk=3rk, kN0, so Λ5(Tk)=3rk+645121, and hence

    b(t)=η for t[Tk,Λ5(Tk)] for all kN0. (3.2)

    It is obvious that g(Λ5(Tk))=3rk+4611 and

    t1.2τ(t)g(t)t1 for all t1.

    Therefore,

    Q2(t,g(t))=exp(tg(t)b(ζ)exp(ζτ(ζ)b(ζ1)dζ1)dζ)exp(tt1b(ζ)exp(ζζ1b(ζ1)dζ1)dζ)exp(ηexp(η))

    for t[3rk+4611,3rk+645121]. Denote β2=exp(ηexp(η))>1. Then

    Q2(t,g(t))>β2 for t[g(Λ5(Tk)),Λ5(Tk)] for all kN0. (3.3)

    Also,

    Λ5(Tk)g(Λ5(Tk))b(ζ)Q2(g(ζ),τ(ζ))dζ=3rk+6451213rk+4611b(ζ)exp(g(ζ)τ(ζ)Q1(ζ1,τ(ζ1))b(ζ1))dζ=117121η+20(exp(110ηexp(η))1)exp(η)11>0.707

    for all η0.61 and kN0 and

    (1+ln(β2)β2)<0.691 for all η0.61 and kN0.

    It is obvious that

    Λ5(Tk)g(Λ5(Tk))b(ζ)Q2(g(ζ),τ(ζ))dζ>(1+ln(β2)β2) for all η0.61 and kN0.

    In view of this, (3.2) and (3.3), all conditions of Theorem 2.1 with n=1 are satisfied for all η0.61. Therefore all solutions of Eq (3.1) are oscillatory for η0.61.

    However, if we assume that ak=3rk and bk=3rk+645121, then bkak=645121<. It follows that [29,Theorem 3] cannot be applied to Eq (3.1). Note also that since τ is not monotone, [29,Theorem 6] cannot be applied to this example.

    Example 3.2. Consider the advanced differential equation

    x(t)c(t)x(σ(t))=0,t0, (3.4)

    where cC([0,),R) such that

    c(t)={δ(1+sin(9πt)) for t[4rk689,4rk419],(αδ)(9t36rk+41)+δ for t[4rk419,4rk409],α for t[4rk409,4rk+103],kN0, (3.5)

    where α,δ0 and {rk}k0 is a sequence of positive integers such that rk+1>rk+4918 and limk rk=, and

    σ(t)={t+3 if t[4l,4l+2],t+8l+7 if t[4l+2,4l+3],3t8l5 if t[4l+3,4l+4],lN0.

    In view of (2.12) and (2.13), it follows that

    h(t)={t+3 if t[4l,4l+2],4l+5 if t[4l+2,4l+103],3t8l5 if t[4l+103,4l+4],lN0

    and

    Ω(t)={t3 if t[4l,4l+1],13t+83l1 if t[4l+1,4l+3],t3 if t[4l+3,4l+4],lN0,

    respectively.

    Clearly,

    t+1h(t)σ(t)t+3, for all t1.

    If we assume that Tk=4rk+103, kN0, then Ω4(Tk)=4rk689. It follows from (3.5) that

    c(t)0 for t[Ω4(Tk),Tk] for all  kN0.

    Thus

    h(Ω4(Tk))Ω4(Tk)c(ζ)R1(h(Ω4(Tk)),τ(ζ))dζ4rk4194rk689c(ζ)dζ=4rk4194rk689δ(1+sin(9πζ))dζ=δ(2+27π)9π1, for all δ9π2+27π and kN0.

    Therefore all conditions of Theorem 2.4 with n=0 are satisfied for all δ9π2+27π, and hence Eq (3.4) is oscillatory for δ9π2+27π.

    The authors extend their appreciation to the Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number (IF-PSAU- 2022/01/22323).

    The authors declare that they have no competing of interests regarding the publication of this paper.



    [1] G. E. Andrews, R. Askey, R. Roy, Special functions, Encyclopedia of Mathematics and ite Applications, Cambridge University Press, 1999.
    [2] H. Alzer, K. Richards, A note on a function involving complete elliptic integrals: Monotonicity, convexity, inequalities, Anal. Math., 41 (2015), 133–139. http://dx.doi.org/10.1007/s10476-015-0201-7 doi: 10.1007/s10476-015-0201-7
    [3] M. Abramowitz, I. A. Stegun, Handbook of mathematical functions with formulas, graphs and mathematical tables, New York: Dover Publications, Inc., 1965.
    [4] G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Conformal invariants, inequalities, and quasiconformal mappings, New York: John Wiley & Sons, 1997.
    [5] G. D. Anderson, S. L. Qiu, M. K. Vamanamurthy, Elliptic integral inequalities, with applications, Constr. Approx., 14 (1998), 195–207. http://dx.doi.org/10.1007/s003659900070 doi: 10.1007/s003659900070
    [6] G. D. Anderson, S. L. Qiu, M. K. Vamanamurthy, M. Vuorinen, Generalized elliptic integrals and modular equations, Pacific J. Math., 192 (2000), 1–37. http://dx.doi.org/10.2140/pjm.2000.192.1 doi: 10.2140/pjm.2000.192.1
    [7] R. Balasubramanian, S. Ponnusamy, M. Vuorinen, Functional inequalities for quotients of hypergeometric functions, J. Math. Anal. Appl., 218 (1998), 256–268. https://doi.org/10.1006/jmaa.1997.5776 doi: 10.1006/jmaa.1997.5776
    [8] Y. C. Han, C. Y. Cai, T. R. Huang, Monotonicity, convexity properties and inequalities involving Gaussian hypergeometric functions with applications, AIMS Math., 7 (2022), 4974–4991. http://dx.doi.org/10.3934/math.2022277 doi: 10.3934/math.2022277
    [9] W. A. Day, On monotonicity of the relaxation functions of viscoelastic materials, Proc. Cambridge Philos. Soc., 67 (1970), 503–508. https://doi.org/10.1017/S0305004100045771 doi: 10.1017/S0305004100045771
    [10] J. F. C. Kingman, An introduction to probability theory and its applications, J. R. Stat. Soc. Ser. A, 135 (1972), 430. https://doi.org/10.2307/2344620 doi: 10.2307/2344620
    [11] T. R. Huang, S. L. Qiu, X. Y. Ma, Monotonicity properties and Inequalities for the generalized elliptic integral of the first of kind, J. Math. Anal. Appl., 469 (2019), 95–116. http://dx.doi.org/10.1016/j.jmaa.2018.08.061 doi: 10.1016/j.jmaa.2018.08.061
    [12] T. R. Huang, S. Y. Tan, X. H.Zhang, Monotonicity, convexity, and inequalities for the generalized elliptic integrals, J. Inequal. Appl., 2017 (2017), 278. http://dx.doi.org/10.1186/s13660-017-1556-z doi: 10.1186/s13660-017-1556-z
    [13] T. R. Huang, L. Chen, S. Y. Tan, Y. M. Chu, Monotonicity, Convexity and Bounds Involving the Beta and Ramanujan R-function, J. Math. Inequal., 15 (2021), 615–628. http://dx.doi.org/10.7153/jmi-2021-15-45 doi: 10.7153/jmi-2021-15-45
    [14] T. R. Huang, S. Y. Tan, X. Y. Ma, Y. M. Chu, Monotonicity properties and bounds for the complete p-elliptic integrals, J. Inequal. Appl., 2018 (2018), 239. http://dx.doi.org/10.1186/s13660-018-1828-2 doi: 10.1186/s13660-018-1828-2
    [15] S. Ponnusamy, M. Vuorinen, Asymptotic expansions and inequalities for hypergeometric function, Mathematika, 44 (1997), 278–301. http://dx.doi.org/10.1112/S0025579300012602 doi: 10.1112/S0025579300012602
    [16] S. L. Qiu, X. Y. Ma, Y. M. Chu, Sharp Landen transformation inequalities for hypergeometric functions, with applications, J. Math. Anal. Appl., 474 (2019), 1306–1337. https://doi.org/10.1016/j.jmaa.2019.02.018 doi: 10.1016/j.jmaa.2019.02.018
    [17] S. Simiˊc, M. Vuorinen, Landen inequalities for zero-balanced hypergeometric functions, Abstr. Appl. Anal., 2012 (2012), 932061. https://doi.org/10.1155/2012/932061 doi: 10.1155/2012/932061
    [18] Y. Q. Song, P. G. Zhou, Y. M. Chu, Inequalities for the Gaussian hypergeometric function, Sci. China Math., 57 (2014), 2369–2380. https://doi.org/10.1007/s11425-014-4858-3 doi: 10.1007/s11425-014-4858-3
    [19] Y. L. Luke, Book review, In: J. Wimp, Sequence transformations and their applications, SIAM Review, 24 (1982), 489–490. https://doi.org/10.1137/1024115
    [20] M. K. Wang, Y. M. Chu, Landen inequalities for a class of hypergeometric functions with applications, Math. Inequal. Appl., 21 (2018), 521–537. https://doi.org/10.7153/mia-2018-21-38 doi: 10.7153/mia-2018-21-38
    [21] M. K. Wang, Y. M. Chu, Y. P. Jiang, Ramanujan's cubic transformation inequalities for zero-balanced hypergeometric functions, Rocky Mountain J. Math., 46 (2016), 679–691. https://doi.org/10.1216/RMJ-2016-46-2-679 doi: 10.1216/RMJ-2016-46-2-679
    [22] M. K. Wang, W. Zhang, Y. M. Chu, Monotonicity, convexity and inequalities involving the generalized elliptic integrals, Acta. Math. Sci., 39 (2019), 1440–1450. https://doi.org/10.1007/s10473-019-0520-z doi: 10.1007/s10473-019-0520-z
    [23] T. H. Zhao, M. K. Wang, W. Zhang, Y. M. Chu, Quadratic transformation inequalities for Gaussian hypergeometric function, J. Inequal. Appl., 2018 (2018), 251. https://doi.org/10.1186/s13660-018-1848-y doi: 10.1186/s13660-018-1848-y
    [24] T. H. Zhao, M. K. Wang, Y. M. Chu, A sharp double inequality involving generalized complete elliptic integral of the first kind, AIMS Math., 5 (2020), 4512–4528. https://doi.org/10.3934/math.2020290 doi: 10.3934/math.2020290
    [25] T. H. Zhao, Z. Y. He, Y. M. Chu, On some refinements for inequalities involving zero-balanced hypergeometric function, AIMS Math., 5 (2020), 6479–6495. https://doi.org/10.3934/math.2020418 doi: 10.3934/math.2020418
    [26] S. S. Zhou, G. Farid, C. Y. Jung, Convexity with respect to strictly monotone function and Riemann-Liouville fractional Fejér-Hadamard inequalities, AIMS Math., 6 (2021), 6975–6985. https://doi.org/10.3934/math.2021409 doi: 10.3934/math.2021409
    [27] X. H. Zhang, Monotonicity and functional inequalities for the complete p-elliptic integrals, J. Math. Anal. Appl., 453 (2017), 942–953. https://doi.org/10.1016/j.jmaa.2017.04.025 doi: 10.1016/j.jmaa.2017.04.025
  • This article has been cited by:

    1. Nurten Kılıç, Özkan Öcalan, Mustafa Kemal Yıldız, An improved oscillation theorem for nonlinear delay differential equations, 2024, 478, 00963003, 128852, 10.1016/j.amc.2024.128852
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2218) PDF downloads(79) Cited by(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog