This paper is concerned with a fourth-order differential operator with eigenparameter dependent boundary conditions. We prove that each of the eigenvalues of the problem can be embedded in a continuous eigenvalue branch. Furthermore, the differential expressions of the eigenvalues with respect to each of parameters are given.
Citation: Jianfang Qin, Kun Li, Zhaowen Zheng, Jinming Cai. Eigenvalues of fourth-order differential operators with eigenparameter dependent boundary conditions[J]. AIMS Mathematics, 2022, 7(5): 9247-9260. doi: 10.3934/math.2022512
[1] | Kun Li, Peng Wang . Properties for fourth order discontinuous differential operators with eigenparameter dependent boundary conditions. AIMS Mathematics, 2022, 7(6): 11487-11508. doi: 10.3934/math.2022640 |
[2] | Hai-yan Zhang, Ji-jun Ao, Fang-zhen Bo . Eigenvalues of fourth-order boundary value problems with distributional potentials. AIMS Mathematics, 2022, 7(5): 7294-7317. doi: 10.3934/math.2022407 |
[3] | Haixia Lu, Li Sun . Positive solutions to a semipositone superlinear elastic beam equation. AIMS Mathematics, 2021, 6(5): 4227-4237. doi: 10.3934/math.2021250 |
[4] | Tao Wang, Jijun Ao, Anton Zettl . A class of dissipative differential operators of order three. AIMS Mathematics, 2021, 6(7): 7034-7043. doi: 10.3934/math.2021412 |
[5] | Anwar Ahmad, Dumitru Baleanu . On two backward problems with Dzherbashian-Nersesian operator. AIMS Mathematics, 2023, 8(1): 887-904. doi: 10.3934/math.2023043 |
[6] | Jinming Cai, Shuang Li, Kun Li . Matrix representations of Atkinson-type Sturm-Liouville problems with coupled eigenparameter-dependent conditions. AIMS Mathematics, 2024, 9(9): 25297-25318. doi: 10.3934/math.20241235 |
[7] | Mukhamed Aleroev, Hedi Aleroeva, Temirkhan Aleroev . Proof of the completeness of the system of eigenfunctions for one boundary-value problem for the fractional differential equation. AIMS Mathematics, 2019, 4(3): 714-720. doi: 10.3934/math.2019.3.714 |
[8] | Yuanqiang Chen, Jihui Zheng, Jing An . A Legendre spectral method based on a hybrid format and its error estimation for fourth-order eigenvalue problems. AIMS Mathematics, 2024, 9(3): 7570-7588. doi: 10.3934/math.2024367 |
[9] | Batirkhan Turmetov, Valery Karachik . On solvability of some inverse problems for a nonlocal fourth-order parabolic equation with multiple involution. AIMS Mathematics, 2024, 9(3): 6832-6849. doi: 10.3934/math.2024333 |
[10] | Zhanbing Bai, Wen Lian, Yongfang Wei, Sujing Sun . Solvability for some fourth order two-point boundary value problems. AIMS Mathematics, 2020, 5(5): 4983-4994. doi: 10.3934/math.2020319 |
This paper is concerned with a fourth-order differential operator with eigenparameter dependent boundary conditions. We prove that each of the eigenvalues of the problem can be embedded in a continuous eigenvalue branch. Furthermore, the differential expressions of the eigenvalues with respect to each of parameters are given.
Sturm-Liouville problem originates from various fields such as physics, engineering, finance and medicine, and it has been widely researched [1,2]. Nowadays, differential equations with boundary conditions depending on eigenparameter are also widely used in acoustic scattering, quantum mechanics theory and so on. Particularly, more and more researchers have paid close attention to Sturm-Liouville problems with boundary conditions depending on eigenparameter, the distribution of eigenvalues, asymptotic of eigenvalues and eigenfunctions, oscillation theory and inverse spectral theory of such problrm are deeply researched, and many results are obtained. Up to now, it has become an important research topic and has made great progress [3,4,5,6,7]. In recent years, the fourth-order differential operators with eigenparameter dependent boundary conditions appear in elastic beam models, the heat conduct problem and so on are also gained great progress. For more details, we refer the readers to [8,9,10,11].
In the last two decades, the dependence of eigenvalues on coefficients and parameters of differential operator has attracted lots of the attention by many researchers. In [12], Kong and Zettl obtained that the eigenvalues of regular Sturm-Liouville problems are differentiable functions with respect to all the data and they gave expressions for their derivatives. Later, this problem was extended to Sturm-Liouville operators with discontiuity, third-order and fourth-order differential operators etc. [13,14,15,16,17,18]. Recently, Zhang and Li in [19] showed that the eigenvalues of Sturm-Liouville problems with eigenparameter dependent boundary conditions are differentiable functions of all the data. In [20], Zinsou considered the dependence of eigenvalues of a general fourth-order differential equation with transmission conditions and obtained similar results. These results provide a theoretical support for the numerical calculation of eigenvalues and eigenfunctions [21,22].
Inspired by the above mentioned results, a natural question is that whether similar results still true for fourth-order boundary value problems when eigenparameter appear in the the boundary conditions? In this paper, we give a confirm answer. As we know, the problems with spectral parameter arise from several physical or other applied problems, for instance, the free bending vibrations of rod [23,24]. Therefore, in this paper, we try to discuss the dependence of eigenvalues of fourth-order differential equations with eigenparameter dependent boundary conditions. It is worth mentioning that we consider such a problem with both endpoints depending on the spectral parameter μ. Compared with the problem with spectral parameter at one end, the inner product and space constructed are different, and it is more troublesome in the process of deriving the differential expression of the eigenvalues with respect to the coefficient matrix of the boundary conditions with spectral parameter. The main result is that each of the eigenvalues of the fourth-order boundary value problem can be embedded in a continuous eigenvalue branch. Furthermore, we obtain the differential expression of the eigenvalues with respect to all data in the sense of ordinary or Fréchet derivatives.
The rest of this paper is organized as follows. In Section 2, we introduce a fourth-order boundary value problems and define a new self-adjoint operator F such that the eigenvalues of such a problem coincide with those of F. In Section 3, we discuss the continuity of the eigenvalues and eigenfunctions. In Section 4, we give the differential expressions of the eigenvalues with respect to each of parameters.
We consider the fourth-order differential equation
lf:=(p(x)f″(x))″−(q(x)f′(x))′+q0(x)f(x)=μw(x)f(x), | (2.1) |
on [a,b], with eigenparameter dependent boundary conditions at endpoints
l1f:=μf(a)−f[3](a)=0, | (2.2) |
l2f:=μf[1](a)+f[2](a)=0, | (2.3) |
l3f:=μ(τ1f(b)−γ1f[3](b))−(τ2f(b)−γ2f[3](b))=0, | (2.4) |
l4f:=μ(β1f[1](b)−α1f[2](b))+(β2f[1](b)−α2f[2](b))=0, | (2.5) |
where −∞<a<b<+∞, μ∈C is the spectral parameter,
1p,q,q0,w∈L1[a,b],p,w>0a.e. on[a,b], | (2.6) |
αi,βi,γi,τi∈R,i=1,2,ρ1=|τ1τ2γ1γ2|>0,ρ2=|β1β2α1α2|>0. | (2.7) |
Note that the quasi-derivatives associated to (2.1) are
f[0]=f,f[1]=f′,f[2]=pf″,f[3]=(pf″)′−qf′. | (2.8) |
Let the weighted Hilbert space be defined as
H1=L2w[a,b]={f|f(x)is absolutely continuous and∫ba|f(x)|2w(x)dx<+∞} |
with inner product ⟨f,g⟩1=∫baf(x)ˉg(x)w(x)dx for any f,g∈H1. We define a new Hilbert space
H=H1⊕C4 |
with the inner product
⟨F,G⟩=⟨f,g⟩1+f1ˉg1+f2ˉg2+1ρ1f3ˉg3+1ρ2f4ˉg4, |
for F=(f,f1,f2,f3,f4)T,G=(g,g1,g2,g3,g4)T∈H. Define an operator F as
F(ff(a)f[1](a)τ1f(b)−γ1f[3](b)β1f[1](b)−α1f[2](b))=(w−1[(pf″)″−(qf′)′+q0f]f[3](a)−f[2](a)τ2f(b)−γ2f[3](b)α2f[2](b)−β2f[1](b)), |
with the domain
D(F)={(f,f1,f2,f3,f4)T∈H| w−1[(pf″)″−(qf′)′+q0f]∈L2w[a,b],f,f[1],f[2],f[3]∈AC[a,b],f1=f(a),f2=f[1](a),f3=τ1f(b)−γ1f[3](b),f4=β1f[1](b)−α1f[2](b)}. |
Lemma 2.1. The operator F is a self-adjoint operator in H.
Proof. The proof is similar to that of [25], the equation we considered is more complicated and the derivatives in boundary conditions are quasi-derivatives, here we omit the details.
Lemma 2.2. [25]The spectrum of F consists of isolated eigenvalues, which coincide with those of the fourth-order boundary value problems (2.1)–(2.5). Furthermore, all the eigenvalues are real-valued.
Let χ1(x,μ),χ2(x,μ),χ3(x,μ),χ4(x,μ) be the linearly independent solutions of Eq (2.1) satisfying the initial conditions
(χ1(a,μ)χ2(a,μ)χ3(a,μ)χ4(a,μ)χ[1]1(a,μ)χ[1]2(a,μ)χ[1]3(a,μ)χ[1]4(a,μ)χ[2]1(a,μ)χ[2]2(a,μ)χ[2]3(a,μ)χ[2]4(a,μ)χ[3]1(a,μ)χ[3]2(a,μ)χ[3]3(a,μ)χ[3]4(a,μ))=(1000010000100001). | (3.1) |
We define their Wronskian as
Φ(x,μ):=(χ1(x,μ)χ2(x,μ)χ3(x,μ)χ4(x,μ)χ[1]1(x,μ)χ[1]2(x,μ)χ[1]3(x,μ)χ[1]4(x,μ)χ[2]1(x,μ)χ[2]2(x,μ)χ[2]3(x,μ)χ[2]4(x,μ)χ[3]1(x,μ)χ[3]2(x,μ)χ[3]3(x,μ)χ[3]4(x,μ)). |
Lemma 3.1. The number μ is an eigenvalue of operator F if and only if
Δ(μ)=det(M+NΦ(b,μ))=0, |
where
M=(μ00−10μ1000000000),N=(00000000τ1μ−τ200−(γ1μ−γ2)0β1μ+β2−(α1μ+α2)0). |
Proof. By [26,Theorem 1.8], we see that boundary value problems (2.1)–(2.5) is well-posed. Let μ be an eigenvalue of (2.1)–(2.5), then there exists a non-trivial solution
f(x,μ)=c1χ1(x,μ)+c2χ2(x,μ)+c3χ3(x,μ)+c4χ4(x,μ), |
of (2.1), where c1,c2,c3,c4 are not all zero. Since f(x,μ) satisfies the boundary conditions (2.2)–(2.5), we have
M(c1(χ1(a)χ[1]1(a)χ[2]1(a)χ[3]1(a))+c2(χ2(a)χ[1]2(a)χ[2]2(a)χ[3]2(a))+c3(χ3(a)χ[1]3(a)χ[2]3(a)χ[3]3(a))+c4(χ4(a)χ[1]4(a)χ[2]4(a)χ[3]4(a)))+N(c1(χ1(b)χ[1]1(b)χ[2]1(b)χ[3]1(b))+c2(χ2(b)χ[1]2(b)χ[2]2(b)χ[3]2(b))+c3(χ3(b)χ[1]3(b)χ[2]3(b)χ[3]3(b))+c4(χ4(b)χ[1]4(b)χ[2]4(b)χ[3]4(b)))=0. |
By the initial condition (3.1), we have
(M+NΦ(b,μ))(c1,c2,c3,c4)T=0. | (3.2) |
Since not all c1,c2,c3,c4 are zero, we get that det(M+NΦ(b,μ))=0.
On the other hand, if Δ(μ)=0, then Eq (3.2) has non-zero solution c1,c2,c3,c4. Let
f(x,μ)=c1χ1(x,μ)+c2χ2(x,μ)+c3χ3(x,μ)+c4χ4(x,μ), |
then f(x,μ) satisfies (2.1)–(2.5) and thus μ is an eigenvalue. This completes the proof.
Now, we consider the Banach space
B:=L1[a,b]⊕L1[a,b]⊕L1[a,b]⊕L1[a,b]⊕R8 |
with norm
‖ξ‖:=∫ba1|p|dx+∫ba|q|dx+∫ba|q0|dx+∫ba|w|dx+|γ1|+|γ2|+|τ1|+|τ2|+|α1|+|α2|+|β1|+|β2|, |
for any ξ=(1p,q,q0,w,γ1,γ2,τ1,τ2,α1,α2,β1,β2)∈B. Let
Ω={τ∈B|(2.6),(2.7)hold}. |
Theorem 3.1. Let ˜ξ=(1˜p,˜q,˜q0,˜w,~γ1,~γ2,~τ1,~τ2,~α1,~α2,~β1,~β2)∈Ω and μ(˜ξ) be an isolated eigenvalue of (2.1)–(2.5) with ˜ξ. Then μ is continuous on ˜ξ. That is, given any ε>0, there exists a δ>0 such that the problems (2.1)–(2.5) has exactly an isolated eigenvalue μ(ξ) satisfying
|μ(ξ)−μ(˜ξ)|<ε, |
if ξ=(1p,q,q0,w,γ1,γ2,τ1,τ2,α1,α2,β1,β2) satisfies
|ξ−˜ξ|=∫ba|1p−1˜p|dx+∫ba|q−˜q|dx+∫ba|q0−~q0|dx+∫ba|w−˜w|dx+|γ1−~γ1|+|γ2−~γ2|+|τ1−~τ1|+|τ2−~τ2|+|α1−~α1|+|α2−~α2|+|β1−~β1|+|β2−~β2|<δ. |
Proof. By Lemma 3.1, μ(˜ξ) is an eigenvalue of (2.1)–(2.5) if and only if Δ(˜ξ,μ(˜ξ))=0. For any ξ∈Ω, Δ(ξ,μ) is an entire function of μ and is continuous on ξ (see [27,Theorems 2.7 and 2.8]). It is easy seen that Δ(˜ξ,μ) is not a constant in μ because μ(˜ξ) is an isolated eigenvalue. Therefore, there exists ρ0>0 such that Δ(˜ξ,μ)≠0 for μ∈Sρ0:={μ∈C:|μ−μ(˜ξ)|=ρ0}. By the continuity of the roots of an equation as a function of parameters (see [28,(9.17.4)]), the statement follows.
By a normalized eigenvector (m,m1,m2,m3,m4)T∈H, we mean m satisfies the problems (2.1)–(2.5), m1=m(a),m2=m[1](a),m3=τ1m(b)−γ1m[3](b),m4=β1m[1](b)−α1m[2](b), and
‖(m,m1,m2,m3,m4)T‖2=⟨(m,m1,m2,m3,m4)T,(m,m1,m2,m3,m4)T⟩=∫bamˉmwdx+m1¯m1+m2¯m2+1ρ1m3¯m3+1ρ2m4¯m4=1. |
Now we give a result for normalized eigenfunctions.
Theorem 3.2. Assume that μ(ξ) is an eigenvalue of (2.1)–(2.5) with ξ∈Ω and (m,m1,m2,m3,m4)T∈H is the corresponding normalized eigenvector for μ(ξ). Then there exists a normalized eigenvector (n,n1,n2,n3,n4)T∈H for μ(˜ξ) with ˜ξ∈Ω, which is specified in Theorem 3.1, such that
n(x)→m(x),n[1](x)→m[1](x),n[2](x)→m[2](x),n[3](x)→m[3](x),n1(x)→m1(x),n2(x)→m2(x),n3(x)→m3(x),n4(x)→m4(x), | (3.3) |
as ˜ξ→ξ both uniformly on [a,b].
Proof. (i) We know that μ(ξ) is an isolated eigenvalue of multiplicity j(j=1,2,3,4) for all ξ in some neighborhood N of ˜ξ in Ω. Suppose μ(ξ) is simple. Let (f(x,ξ),f1(ξ),f2(ξ),f3(ξ),f4(ξ))T be an eigenvector for μ(ξ) with
‖f(x,ξ)‖=∫baf(x,ξ)ˉf(x,ξ)wdx=1. |
By Theorem 3.1, there exists μ(˜ξ) such that
μ(˜ξ)→μ(ξ)as˜ξ→ξ. |
Define the boundary condition matrix as
(M,N)(ξ)=(μ(ξ)00−100000μ(ξ)1000000000τ1μ(ξ)−τ200−(γ1μ(ξ)−γ2)00000β1μ(ξ)+β2−(α1μ(ξ)+α2)0), |
then
(M,N)(˜ξ)→(M,N)(ξ)as˜ξ→ξ. |
By Theorem 3.2 of [12], we can obtain an eigenfunction f(x,˜ξ) for μ(˜ξ) such that ‖f(x,˜ξ)‖=1 and
f(x,˜ξ)→f(x,ξ),f[1](x,˜ξ)→f[1](x,ξ),f[2](x,˜ξ)→f[2](x,ξ),f[3](x,˜ξ)→f[3](x,ξ), | (3.4) |
as ˜ξ→ξ both uniformly on [a,b]. Then we obtain
f1(˜ξ)→f1(ξ),f2(˜ξ)→f2(ξ),f3(˜ξ)→f3(ξ),f4(˜ξ)→f4(ξ)as˜ξ→ξ. | (3.5) |
Let
(m,m1,m2,m3,m4)T=(f(x,ξ),f1(ξ),f2(ξ),f3(ξ),f4(ξ))T‖(f(x,ξ),f1(ξ),f2(ξ),f3(ξ),f4(ξ))T‖,(n,n1,n2,n3,n4)T=(f(x,˜ξ),f1(˜ξ),f2(˜ξ),f3(˜ξ),f4(˜ξ))T‖(f(x,˜ξ),f1(˜ξ),f2(˜ξ),f3(˜ξ),f4(˜ξ))T‖,m[1]=f[1](x,ξ)‖(f(x,ξ),f1(ξ),f2(ξ),f3(ξ),f4(ξ))T‖,n[1]=f[1](x,˜ξ)‖(f(x,˜ξ),f1(˜ξ),f2(˜ξ),f3(˜ξ),f4(˜ξ))T‖,m[2]=f[2](x,ξ)‖(f(x,ξ),f1(ξ),f2(ξ),f3(ξ),f4(ξ))T‖,n[2]=f[2](x,˜ξ)‖(f(x,˜ξ),f1(˜ξ),f2(˜ξ),f3(˜ξ),f4(˜ξ))T‖,m[3]=f[3](x,ξ)‖(f(x,ξ),f1(ξ),f2(ξ),f3(ξ),f4(ξ))T‖,n[3]=f[3](x,˜ξ)‖(f(x,˜ξ),f1(˜ξ),f2(˜ξ),f3(˜ξ),f4(˜ξ))T‖. |
Then (3.3) holds by (3.4) and (3.5).
(ii) Assume that μ(ξ) is an eigenvalue of multiplicity j(j=2,3,4). Then we can choose eigenfunctions of μ(ξ) such that all of them satisfy the same initial conditions at c0 for some c0∈[a,b] since a linear combination of j linearly independent eigenfunctions can be chosen to satisfy arbitrary initial conditions.
Similarly, we obtain (3.3) as (i), This completes the proof.
In this section, we focus on giving the derivative formulas of the eigenvalues for all the parameters. First we give the definition of the Fréchet derivative.
Definition 4.1. A map F from a Banach space X into Banach space Y is differentiable at a point x∈X, if there exists a bounded linear operator dFx:X→Y such that for k∈X
|F(x+k)−F(x)−dFx(k)|=o(k)ask→0. |
Theorem 4.1. Assume that μ(ξ) is an eigenvalue of (2.1)–(2.5) with ξ∈Ω and (m,m1,m2,m3,m4)T∈H is the corresponding normalized eigenvector for μ(ξ). Suppose μ(ξ) is a simple eigenvalue or μ(σ) is an eigenvalue of multiplicity j(j=2,3,4) for each σ in some neighborhood N⊂Ω of ξ. Then μ is differentiable with respect to all the data in ξ.
(1) Let all the data of ξ be fixed except the boundary condition parameter matrix
K1=(τ1τ2γ1γ2), |
and μ(K1):=μ(ξ). Then
dμK1(L)=(m(b),−m[3](b))[E−K1(K1+L)−1](ˉm[3](b)ˉm(b)) | (4.1) |
for all L satisfying det(K1+L)=detK1=ρ1.
(2) Let all the data of ξ be fixed except the boundary condition parameter matrix
K2=(β1β2α1α2), |
and μ(K2):=μ(ξ). Then
dμK2(L)=(−m[1](b),m[2](b))[E−K2(K2+L)−1](ˉm[2](b)ˉm[1](b)) | (4.2) |
for all L satisfying det(K2+L)=detK2=ρ2.
(3) Let all the data of ξ be fixed except p and μ(1p):=μ(ξ). Then
dμ1p(k)=−∫ba|pm″|2kdx,k∈L1[a,b]. | (4.3) |
(4) Let all the data of ξ be fixed except q and μ(q):=μ(ξ). Then
dμq(k)=∫ba|m[1]|2kdx,k∈L1[a,b]. | (4.4) |
(5) Let all the data of ξ be fixed except q0 and μ(q0):=μ(ξ). Then
dμq0(k)=∫ba|m|2kdx,k∈L1[a,b]. | (4.5) |
(6) Let all the data of ξ be fixed except w and μ(w):=μ(ξ). Then
dμw(k)=−μ(w)⋅∫ba|m|2kdx,k∈L1[a,b]. | (4.6) |
Proof. Let all the data of ξ be fixed except one and μ(˜ξ) be the eigenvalue satisfying Theorem 3.1 when ‖˜ξ−ξ‖<ε for sufficiently small ε>0. For the above six cases, we replace μ(˜ξ) by μ(K1+L),μ(K2+L),μ(1p+k),μ(q+k),μ(q0+k),μ(w+k), respectively. Let (n,n1,n2,n3,n4)T be the corresponding normalized eigenvector.
(1) By (2.1) we have
(pm″)″−(qm′)′+q0m=μ(K1)wm, | (4.7) |
(pˉn″)″−(qˉn′)′+q0ˉn=μ(K1+L)wˉn. | (4.8) |
It follows from (4.7) and (4.8) that
[μ(K1+L)−μ(K1)]mˉnw=(pˉn″)″m−(qˉn′)′m−(pm″)″ˉn+(qm′)′ˉn. |
Integrating from a to b implies that
[μ(K1+L)−μ(K1)]∫bamˉnwdx=m(b)[(pˉn″)′(b)−(qˉn′)(b)]−m(a)[(pˉn″)′(a)−(qˉn′)(a)]−[(pm″)′(b)−(qm′)(b)]ˉn(b)+[(pm″)′(a)−(qm′)(a)]ˉn(a)−pˉn″(b)m′(b)+pˉn″(a)m′(a)+(pm″)(b)ˉn′(b)−(pm″)(a)ˉn′(a)=m(b)ˉn[3](b)−m(a)ˉn[3](a)−m[3](b)ˉn(b)+m[3](a)ˉn(a)−m[1](b)ˉn[2](b)+m[1](a)ˉn[2](a)+m[2](b)ˉn[1](b)−m[2](a)ˉn[1](a). | (4.9) |
According to the boundary condition (2.2), we have
μ(K1)m(a)ˉn(a)=m[3](a)ˉn(a), |
μ(K1+L)m(a)ˉn(a)=m(a)ˉn[3](a). |
Thus
[μ(K1+L)−μ(K1)]m1ˉn1=m(a)ˉn[3](a)−m[3](a)ˉn(a). | (4.10) |
Analogously, the boundary condition (2.3) implies that
[μ(K1+L)−μ(K1)]m2ˉn2=m[2](a)ˉn[1](a)−m[1](a)ˉn[2](a). | (4.11) |
Let K1+L=(~τ1~τ2~γ1~γ2). Then according to the boundary condition (2.4), we have
μ(K1)[τ1m(b)−γ1m[3](b)]=τ2m(b)−γ2m[3](b), |
μ(K1+L)[~τ1ˉn(b)−~γ1ˉn[3](b)]=~τ2ˉn(b)−~γ2ˉn[3](b). |
Thus
[μ(K1+L)−μ(K1)]1ρ1m3ˉn3=1ρ1[~τ2ˉn(b)−~γ2ˉn[3](b)][τ1m(b)−γ1m[3](b)]−1ρ1[τ2m(b)−γ2m[3](b)][~τ1ˉn(b)−~γ1ˉn[3](b)]. | (4.12) |
Analogously, the boundary condition (2.5) implies that
[μ(K1+L)−μ(K1)]1ρ2m4ˉn4=m[1](b)ˉn[2](b)−m[2](b)ˉn[1](b). | (4.13) |
From (4.9)–(4.13), we get
[μ(K1+L)−μ(K1)][∫bamˉnwdx+m1ˉn1+m2ˉn2+1ρ1m3ˉn3+1ρ2m4ˉn4]=m(b)ˉn[3](b)−m[3](b)ˉn(b)+1ρ1[~τ2ˉn(b)−~γ2ˉn[3](b)][τ1m(b)−γ1m[3](b)]−1ρ1[τ2m(b)−γ2m[3](b)][~τ1ˉn(b)−~γ1ˉn[3](b)]=(m(b),−m[3](b))E(ˉn[3](b)ˉn(b))+1ρ1(m(b),−m[3](b))(τ1γ1)(−~γ2,~τ2)(ˉn[3](b)ˉn(b))−1ρ1(m(b),−m[3](b))(τ2γ2)(−~γ1,~τ1)(ˉn[3](b)ˉn(b))=(m(b),−m[3](b))[E+1ρ1(τ1γ1)(−~γ2,~τ2)−1ρ1(τ2γ2)(−~γ1,~τ1)](ˉn[3](b)ˉn(b))=(m(b),−m[3](b))[E+1ρ1(τ2~γ1−τ1~γ2τ1~τ2−τ2~τ1γ2~γ1−γ1~γ2γ1~τ2−γ2~τ1)](ˉn[3](b)ˉn(b))=(m(b),−m[3](b))[E−K1(K1+L)−1](ˉn[3](b)ˉn(b)). | (4.14) |
Dividing both sides of (4.14) by L and taking the limit as L→0, by Theorem 3.2, we get
dμK1(L)=(m(b),−m[3](b))[E−K1(K1+L)−1](ˉm[3](b)ˉm(b)). |
Then (4.1) follows. In a similar discussion, we can obtain (4.2).
(2) For k∈L1[a,b], let 1p+k=1˜p. Using (2.1) and integration by parts, we have
[μ(1p+k)−μ(1p)]∫bamˉnwdx=m(b)ˉn[3](b)−m(a)ˉn[3](a)−m[3](b)ˉn(b)+m[3](a)ˉn(a)−m[1](b)ˉn[2](b)+m[1](a)ˉn[2](a)+m[2](b)ˉn[1](b)−m[2](a)ˉn[1](a)+∫ba˜pˉn″m″dx−∫bapm″ˉn″dx, |
where ˉn[2]=˜pˉn″, ˉn[3]=(˜pˉn″)′−qˉn′. Then by (2.2)–(2.5), we obtain
[μ(1p+k)−μ(1p)][∫bamˉnwdx+m1ˉn1+m2ˉn2+1ρ1m3ˉn3+1ρ2m4ˉn4]=∫ba˜pˉn″m″dx−∫bapm″ˉn″dx=∫ba(˜p−p)m″ˉn″dx=∫ba[−p˜pkm″ˉn″]dx. | (4.15) |
Dividing both sides of (4.15) by k and taking the limit as k→0, by Theorem 3.2 we get
dμ1p(k)=−∫ba|pm″|2kdx. |
Then (4.3) follows. Similar to the proof of (4.3), we can obtain (4.4).
(3) For k∈L1[a,b]. By (2.1), we have
[μ(q0+k)−μ(q0)]∫bamˉnwdx=m(b)ˉn[3](b)−m(a)ˉn[3](a)−m[3](b)ˉn(b)+m[3](a)ˉn(a)−m[1](b)ˉn[2](b)+m[1](a)ˉn[2](a)+m[2](b)ˉn[1](b)−m[2](a)ˉn[1](a)+∫bakmˉndx. |
Using the boundary conditions (2.2)–(2.5), we have
[μ(q0+k)−μ(q0)][∫bamˉnwdx+m1ˉn1+m2ˉn2+1ρ1m3ˉn3+1ρ2m4ˉn4]=∫bakmˉndx. | (4.16) |
Then (4.5) follows. The proof of (4.6) is similar as that of (4.5), hence we omit the details.
Theorem 4.2. Let μ(ξ) be an eigenvalue of (2.1)–(2.5) with ξ∈Ω and (m,m1,m2,m3,m4)T∈H be a normalized eigenvector for μ(ξ). Assume that μ(ξ) is a simple eigenvalue or μ(σ) is an eigenvalue of multiplicity j(j=2,3,4) for each σ in some neighborhood N⊂Ω of ξ. Then μ is differentiable with respect to the data in ξ.
(1) Let all the data of ξ be fixed except τ1 and μ(τ1):=μ(ξ). Then
μ′(τ1)=μμγ1−γ2|m(b)|2, | (4.17) |
where μγ1−γ2≠0.
(2) Let all the data of ξ be fixed except τ2 and μ(τ2):=μ(ξ). Then
μ′(τ2)=−1μγ1−γ2|m(b)|2, | (4.18) |
where μγ1−γ2≠0.
(3) Let all the data of ξ be fixed except γ1 and μ(γ1):=μ(ξ). Then
μ′(γ1)=−μμτ1−τ2|m[3](b)|2, | (4.19) |
where μτ1−τ2≠0.
(4) Let all the data of ξ be fixed except γ2 and μ(γ2):=μ(ξ). Then
μ′(γ2)=1μτ1−τ2|m[3](b)|2, | (4.20) |
where μτ1−τ2≠0.
(5) Let all the data of ξ be fixed except α1 and μ(α1):=μ(ξ). Then
μ′(α1)=μμβ1+β2|m[2](b)|2, | (4.21) |
where μβ1+β2≠0.
(6) Let all the data of ξ be fixed except α2 and μ(α2):=μ(ξ). Then
μ′(α2)=1μβ1+β2|m[2](b)|2, | (4.22) |
where μβ1+β2≠0.
(7) Let all the data of ξ be fixed except β1 and μ(β1):=μ(ξ). Then
μ′(β1)=−μμα1+α2|m[1](b)|2, | (4.23) |
where μα1+α2≠0.
(8) Let all the data of ξ be fixed except β2 and μ(β2):=μ(ξ). Then
μ′(β2)=−1μα1+α2|m[1](b)|2, | (4.24) |
where μα1+α2≠0.
Proof. (1) For k∈L1[a,b]. Using (2.1) and integration by parts, we have
[μ(τ1+k)−μ(τ1)]∫bamˉnwdx=m(b)ˉn[3](b)−m(a)ˉn[3](a)−m[3](b)ˉn(b)+m[3](a)ˉn(a)−m[1](b)ˉn[2](b)+m[1](a)ˉn[2](a)+m[2](b)ˉn[1](b)−m[2](a)ˉn[1](a). | (4.25) |
It follows from (2.2)–(2.5) that
[μ(τ1+k)−μ(τ1)]m1ˉn1=m(a)ˉn[3](a)−m[3](a)ˉn(a), | (4.26) |
[μ(τ1+k)−μ(τ1)]m2ˉn2=m[2](a)ˉn[1](a)−m[1](a)ˉn[2](a), | (4.27) |
[μ(τ1+k)−μ(τ1)]1ρ2m4ˉn4=m[1](b)ˉn[2](b)−m[2](b)ˉn[1](b), | (4.28) |
and
[μ(τ1+k)−μ(τ1)]1ρ1m3ˉn4=1ρ1[~τ2ˉn(b)−~γ2ˉn[3](b)][τ1m(b)−γ1m[3](b)]−1ρ1[τ2m(b)−γ2m[3](b)][~τ1ˉn(b)−~γ1ˉn[3](b)]=1ρ1(τ1γ2−γ1τ2)[m[3](b)ˉn(b)−m(b)ˉn[3](b)]+1ρ1[−kτ2m(b)ˉn(b)+kγ2m[3](b)ˉn(b)]=[m[3](b)ˉn(b)−m(b)ˉn[3](b)]+1ρ1[−kτ2m(b)ˉn(b)+kγ2μτ1−τ2μγ1−γ2m(b)ˉn(b)]=[m[3](b)ˉn(b)−m(b)ˉn[3](b)]+1ρ1[kμ(τ1γ2−γ1τ2)μγ1−γ2m(b)ˉn(b)]=[m[3](b)ˉn(b)−m(b)ˉn[3](b)]+kμμγ1−γ2m(b)ˉn(b). | (4.29) |
Combining (4.25)–(4.29), we obtain
[μ(τ1+k)−μ(τ1)][∫bamˉnwdx+m1ˉn1+m2ˉn2+1ρ1m3ˉn3+1ρ2m4ˉn4]=kμμγ1−γ2m(b)ˉn(b). | (4.30) |
Dividing both sides of (4.30) by k and taking the limit as k→0, by Theorem 3.2, we get
μ′(τ1)=μμγ1−γ2|m(b)|2, | (4.31) |
where μγ1−γ2≠0. Then (4.17) follows. The proofs of (4.18)–(4.24) are similar as that of (4.17), hence we omit the details.
This paper gives the dependence of eigenvalues of a fourth-order differential operator with eigenparameter dependent boundary conditions. The novelty lies in the fact that the fourth-order differential operator we considered has eigenparameter dependent boundary conditions at two endpoints. By a newly defined operator F such that the eigenvalues of the fourth-order boundary problem being consistent with those of F, we give the differential expressions of the eigenvalues with respect to all data.
This research is supported by NSF of Shandong Province (Nos. ZR2019MA034, ZR2020QA009, ZR2020QA010) and PSF of China (No. 2020M682139). The authors are grateful to the referees for his/her careful reading and very helpful suggestions which improved and strengthened the presentation of this manuscript.
All authors declare no conflicts of interest in this paper.
[1] |
A. A. Abramov, A. L. Duischko, N. B. Konyukhova, T. V. Pak, B. S. Pariiskii, Evaluation of prolate spheroidal function by solving the corresponding differential equations, U.S.S.R. Comput. Math. Math. Phys., 24 (1984), 1–11. https://doi.org/10.1016/0041-5553(84)90110-1 doi: 10.1016/0041-5553(84)90110-1
![]() |
[2] | A. Zettl, Sturm-Liouville theory, Providence: Mathematical Surveys and Monographs, American Mathematics Society, 2005. http://dx.doi.org/10.1090/surv/121 |
[3] |
P. A. Binding, P. J. Browne, B. A. Watson, Sturm-Liouville problems with boundary conditions rationally dependent on the eigenparameter, J. Comput. Appl. Math., 148 (2002), 147–168. https://doi.org/10.1016/S0377-0427(02)00579-4 doi: 10.1016/S0377-0427(02)00579-4
![]() |
[4] |
E. Uǧurlu, E. Bairamov, Spectral analysis of eigenparameter dependent boundary value transmission problems, J. Math. Anal. Appl., 413 (2014), 482–494. https://doi.org/10.1016/j.jmaa.2013.11.022 doi: 10.1016/j.jmaa.2013.11.022
![]() |
[5] |
J. Cai, Z. Zheng, Matrix representations of Sturm-Liouville problems with coupled eigenparameter-dependent boundary conditions and transmission conditions, Math. Method. Appl. Sci., 41 (2018), 3495–3508. https://doi.org/10.1002/mma.4842 doi: 10.1002/mma.4842
![]() |
[6] |
L. Zhang, J. Ao, On a class of inverse Sturm-Liouville problems with eigenparameter-dependent boundary conditions, Appl. Math. Comput., 362 (2019), 124553. https://doi.org/10.1016/j.amc.2019.06.067 doi: 10.1016/j.amc.2019.06.067
![]() |
[7] |
C. Gao, Y. Wang, L. Lv, Spectral properties of discrete Sturm-Liouville problems with two squared eigenparameter-dependent boundary conditions, Acta Math. Sci., 40 (2020), 755–781. https://doi.org/10.1007/s10473-020-0312-5 doi: 10.1007/s10473-020-0312-5
![]() |
[8] |
J. B. Amara, A. A. Vladimirov, On oscillation of eigenfunctions of a fourth-order problem with spectral parameters in the boundary conditions, J. Math. Sci., 150 (2008), 2317–2325. https://doi.org/10.1007/s10958-008-0131-z doi: 10.1007/s10958-008-0131-z
![]() |
[9] |
M. Möller, B. Zinsou, Spectral asymptotics of self-adjoint fourth order differential operators with eigenvalue parameter dependent boundary conditions, Complex Anal. Oper. Th., 6 (2012), 799–818. https://doi.org/10.1007/s11785-011-0162-1 doi: 10.1007/s11785-011-0162-1
![]() |
[10] |
S. Currie, A. D. Love, Hierarchies of difference boundary value problems II-Applications, Quaest. Math., 37 (2014), 371–392. https://doi.org/10.1080/10236198.2013.778841 doi: 10.1080/10236198.2013.778841
![]() |
[11] |
C. Gao, X. Li, R. Ma, Eigenvalues of a linear fourth-order differential operator with squared spectral parameter in a boundary condition, Mediterr. J. Math., 15 (2018), 1–14. https://doi.org/10.1007/s00009-018-1148-2 doi: 10.1007/s00009-018-1148-2
![]() |
[12] |
Q. Kong, A. Zettl, Eigenvalues of regular Sturm-Liouville problems, J. Differ. Equ., 131 (1996), 1–19. https://doi.org/10.1006/jdeq.1996.0154 doi: 10.1006/jdeq.1996.0154
![]() |
[13] |
Q. Kong, A. Zettl, Dependence of eigenvalues of Sturm-Liouville problems on the boundary, J. Differ. Equ., 126 (1996), 389–407. https://doi.org/10.1006/jdeq.1996.0056 doi: 10.1006/jdeq.1996.0056
![]() |
[14] |
Q. Kong, H. Wu, A. Zettl, Dependence of the nth Sturm-Lioouville eigenvalue on the problem, J. Differ. Equ., 156 (1999), 328–354. https://doi.org/10.1006/jdeq.1998.3613 doi: 10.1006/jdeq.1998.3613
![]() |
[15] |
O. Sh. Mukhtarov, E. Tunc, Eigenvalue problems for Sturm-Liouville equations with transmission conditions, Israel J. Math., 144 (2004), 367–380. https://doi.org/10.1007/BF02916718 doi: 10.1007/BF02916718
![]() |
[16] |
M. Zhang, Y. Wang, Dependence of eigenvalues of Sturm-Liouville problems with interface conditions, Appl. Math. Comput., 265 (2015), 31–39. https://doi.org/10.1016/j.amc.2015.05.002 doi: 10.1016/j.amc.2015.05.002
![]() |
[17] |
K. Li, J. Sun, X. Hao, Eigenvalues of regular fourth-order Sturm-Liouville problems with transmission conditions, Math. Method. Appl. Sci., 40 (2017), 3538–3551. https://doi.org/10.1002/mma.4243 doi: 10.1002/mma.4243
![]() |
[18] |
E. Uǧurlu, Regular third-order boundary value problems, Appl. Math. Comput., 343 (2019), 247–257. https://doi.org/10.1016/j.amc.2018.09.046 doi: 10.1016/j.amc.2018.09.046
![]() |
[19] |
M. Zhang, K. Li, Dependence of eigenvalues of Sturm-Liouville problems with eigenparameter dependent boundary conditions, Appl. Math. Comput., 378 (2020), 125214. https://doi.org/10.1016/j.amc.2020.125214 doi: 10.1016/j.amc.2020.125214
![]() |
[20] |
B. Zinsou, Dependence of eigenvalues of fourth-order boundary value problems with transmission conditions, Rocky Mt. J. Math., 50 (2020), 369–381. https://doi.org/10.1216/rmj.2020.50.369 doi: 10.1216/rmj.2020.50.369
![]() |
[21] |
L. Greenberg, M. Marletta, The code SLEUTH for solving fourth order Sturm-Liouville problems, ACM T. Math. Software, 23 (1997), 453–493. https://doi.org/10.1145/279232.279231 doi: 10.1145/279232.279231
![]() |
[22] |
P. B. Bailey, W. N. Everitt, A. Zettl, The SLEIGN2 Sturm-Liouville code, ACM T. Math. Software, 27 (2001), 143–192. https://doi.org/10.1145/383738.383739 doi: 10.1145/383738.383739
![]() |
[23] |
Z. S. Aliyev, S. B. Guliyeva, Propreties of natural frequencies and harmonic bending vibrations of a rod at one end of which is concentrated inertial load, J. Differ. Equ., 263 (2017), 5830–5845. https://doi.org/10.1016/j.jde.2017.07.002 doi: 10.1016/j.jde.2017.07.002
![]() |
[24] |
Z. S. Aliyev, G. T. Mamedova, Some properties of eigenfunctions for the equation of vibrating beam with a spectral parameter in the boundary conditions, J. Differ. Equ., 269 (2020), 1383–1400. https://doi.org/10.1016/j.jde.2020.01.010 doi: 10.1016/j.jde.2020.01.010
![]() |
[25] | X. Zhang, The self-adjointness, dissipation and spectrum analysis of some classes high order differential operators with discontinuity (in Chinese), Ph. D. thesis, Inner Mongolia University, 2013, 38–52. |
[26] | J. Liu, Spectral theory of ordinary differential operators (in Chinese), Beijing: Science Press, 2009. |
[27] | Q. Kong, A. Zettl, Linear ordinary differential equations, in inequalities and applications, Singapore: World Scientific Series in Applicable Analysis, 1994. https://doi.org/10.1142/9789812798879_0031 |
[28] | J. Dieudonné, Foundations of modern analysis, New York: Academis Press, 1969. https://doi.org/10.2307/3613136 |
1. | Ziyatkhan S. Aliyev, Ayna E. Fleydanli, Properties of eigenfunctions of a boundary value problem for ordinary differential equations of fourth-order with boundary conditions depending on the spectral parameter, 2024, 407, 00220396, 57, 10.1016/j.jde.2024.06.007 | |
2. | Antong Ji, Meizhen Xu, Wei Liu, Dependence of eigenvalues for higher odd-order differential operator with general transmission conditions, 2024, 0003-6811, 1, 10.1080/00036811.2024.2426087 | |
3. | Antong Ji, Meizhen Xu, Dependence of eigenvalues for higher odd-order boundary value problems, 2024, 467, 00963003, 128487, 10.1016/j.amc.2023.128487 | |
4. | Jianqing Suo, Dependence of eigenvalues of fourth-order Sturm-Liouville problems on canonical boundary conditions, 2025, 543, 0022247X, 128890, 10.1016/j.jmaa.2024.128890 |