This article studies the stochastic comparisons of order statistics with dependent and heterogeneous lower-truncated Weibull samples under Archimedean copula. To begin, we obtain the usual stochastic and hazard rate orders of the largest and smallest order statistics from heterogeneous and dependent lower-truncated Weibull samples under Archimedean copula. Second, under Archimedean copula, we get the convex transform and the dispersive orders of the largest and smallest order statistics from dependent and heterogeneous lower-truncated Weibull samples. Finally, several numerical examples are given to demonstrate the theoretical conclusions.
Citation: Xiao Zhang, Rongfang Yan. Stochastic comparisons of extreme order statistic from dependent and heterogeneous lower-truncated Weibull variables under Archimedean copula[J]. AIMS Mathematics, 2022, 7(4): 6852-6875. doi: 10.3934/math.2022381
[1] | Shakir Ali, Amal S. Alali, Atif Ahmad Khan, Indah Emilia Wijayanti, Kok Bin Wong . XOR count and block circulant MDS matrices over finite commutative rings. AIMS Mathematics, 2024, 9(11): 30529-30547. doi: 10.3934/math.20241474 |
[2] | Weitao Xie, Jiayu Zhang, Wei Cao . On the number of the irreducible factors of xn−1 over finite fields. AIMS Mathematics, 2024, 9(9): 23468-23488. doi: 10.3934/math.20241141 |
[3] | Xiaoer Qin, Li Yan . Some specific classes of permutation polynomials over Fq3. AIMS Mathematics, 2022, 7(10): 17815-17828. doi: 10.3934/math.2022981 |
[4] | Qian Liu, Jianrui Xie, Ximeng Liu, Jian Zou . Further results on permutation polynomials and complete permutation polynomials over finite fields. AIMS Mathematics, 2021, 6(12): 13503-13514. doi: 10.3934/math.2021783 |
[5] | Phitthayathon Phetnun, Narakorn R. Kanasri . Further irreducibility criteria for polynomials associated with the complete residue systems in any imaginary quadratic field. AIMS Mathematics, 2022, 7(10): 18925-18947. doi: 10.3934/math.20221042 |
[6] | Taekyun Kim, Dae San Kim, Dmitry V. Dolgy, Hye Kyung Kim, Hyunseok Lee . A new approach to Bell and poly-Bell numbers and polynomials. AIMS Mathematics, 2022, 7(3): 4004-4016. doi: 10.3934/math.2022221 |
[7] | Jovanny Ibarguen, Daniel S. Moran, Carlos E. Valencia, Rafael H. Villarreal . The signature of a monomial ideal. AIMS Mathematics, 2024, 9(10): 27955-27978. doi: 10.3934/math.20241357 |
[8] | Kaimin Cheng . Permutational behavior of reversed Dickson polynomials over finite fields. AIMS Mathematics, 2017, 2(2): 244-259. doi: 10.3934/Math.2017.2.244 |
[9] | Ian Marquette . Representations of quadratic Heisenberg-Weyl algebras and polynomials in the fourth Painlevé transcendent. AIMS Mathematics, 2024, 9(10): 26836-26853. doi: 10.3934/math.20241306 |
[10] | Varsha Jarali, Prasanna Poojary, G. R. Vadiraja Bhatta . A recent survey of permutation trinomials over finite fields. AIMS Mathematics, 2023, 8(12): 29182-29220. doi: 10.3934/math.20231495 |
This article studies the stochastic comparisons of order statistics with dependent and heterogeneous lower-truncated Weibull samples under Archimedean copula. To begin, we obtain the usual stochastic and hazard rate orders of the largest and smallest order statistics from heterogeneous and dependent lower-truncated Weibull samples under Archimedean copula. Second, under Archimedean copula, we get the convex transform and the dispersive orders of the largest and smallest order statistics from dependent and heterogeneous lower-truncated Weibull samples. Finally, several numerical examples are given to demonstrate the theoretical conclusions.
The polynomials of special kinds in finite fields have attracted a lot of research interest (see, e.g., [1,2,3,6,9]). Let Fq be the finite field of q elements with characteristic p and n≥1 be an integer. Let Iq(n) denote the number of monic irreducible polynomials of degree n over Fq and μ(⋅) the M¨obius function. Gauss [4] found that
Iq(n)=∑d|nμ(d)qnd/n. | (1.1) |
Let f(x)=xn+a1xn−1+⋯+an∈Fq[x] be an irreducible polynomial. Suppose that α is a root of f(x), then all the roots of f(x) are αqi,i=0,1,…,n−1. The trace function of α is defined to be Tr(α)=α+αq+⋯+αqn−1. So −a1=Tr(α) and therefore −a1 is also called the trace of f(x). Let Nq(n) denote the number of monic irreducible polynomials of degree n over Fq with nonzero traces. Suppose n=mpe with p∤m. Carlitz [1] and Ruskey, Miers and Sawada [12] obtained that:
Theorem 1.1. The number of monic irreducible polynomials of degree n over Fq with nonzero traces is given by
Nq(n)=(q−1)∑d|mμ(d)qnd/qn. |
An irreducible polynomial in Fq[x] is called a normal polynomial if its roots are linearly independent over Fq. All the roots of a normal polynomial of degree n over Fq form a normal basis of Fqn over Fq. Normal bases over finite fields have proved very useful for fast arithmetic computations with potential applications to coding theory and to cryptography (see, e.g., [6] and [7]). It is not easy to determine whether a given irreducible polynomial is normal or not. Let ϕ(⋅) denote the Euler totient function. Using Theorem 1.1 and other results, Huang, Han and Cao [5] showed that:
Theorem 1.2. The following inequality holds
qn−m∏d|m(qτ(d)−1)ϕ(d)/τ(d)⩽(q−1)∑d|mμ(d)qn/d/q, | (1.2) |
where τ(d) is the order of q modulo d. Furthermore, the following statements are equivalent:
(i) Inequality (1.2) becomes an equality.
(ii) n=pe, or n is a prime different from p and q is a primitive root modulo n.
(iii) Every irreducible polynomial of degree n over Fq with nonzero trace is a normal polynomial.
Let f(x) be an irreducible polynomial of degree n over Fq as before. For a positive divisor n1 of n, define the n1-traces of f(x) to be Tr(α;n1)=α+αq+⋯+αqn1−1 where α's are the roots of f(x). Let N∗q(n;n1) denote the number of monic irreducible polynomials of degree n over Fq with nozero n1-traces. Obviously, the function Tr(α;n1) generalizes the usual trace function Tr(α). Gauss's formula (1.1) gives the formula for N∗q(n;1) for n≥2 and Theorem 1.1 gives the formula for N∗q(n;n). In this paper, we obtain the explicit formula for N∗q(n;n1) in the general case, including a new proof to Theorem 1.1.
To state our result, we need to introduce more notation and convention.
● Assume that n=mpe and n1=m1pe1 with n1∣n and p∤mm1.
● For a positive integer d, let P(d) denote the set of all distinct positive prime divisors of d. Assume that P(n)={p1,p2,…,pk} and pk=p if e≥1.
● Without loss of generality, assume that {a∈P(n):a∈P(m1),a∉P(mm1)}={p1,…,pt} with t≤k. Write m′1=p1⋯pt.
The following is the main theorem of this paper.
Theorem 1.3 (Main Theorem). With the above notation and convention, we have
N∗q(n;n1)={[∑d|nμ(d)qnd−∑d|m′1μ(d)(qn1d−1−qn1pd)]/n if e1=e>0 and k=t+1,(∑d|nμ(d)qnd−∑d|m′1μ(d)qn1d−1)/nif e1=e=0 and k=t,∑d|nμ(d)qnd/notherwise. |
In particular, for n1=1,
N∗q(n;1)={Iq(n)−1=q−1if n=1,Iq(n)=∑d|nμ(d)qnd/nif n>1, |
and for n1=n,
N∗q(n;n)=Nq(n)=(q−1)∑d|mμ(d)qnd/qn. |
Let N0q(n;n1) denote the number of monic irreducible polynomials of degree n over Fq with zero n1-traces. The following corollary is a direct consequence of Theorem 1.3.
Corollary 1.4. With the above notation and convention, we have
N0q(n;n1)={[∑d|m′1μ(d)(qn1d−1−qn1pd)]/nif e1=e>0 and k=t+1,(∑d|m′1μ(d)qn1d−1)/n if e1=e=0 and k=t,0otherwise. |
Since our method is based on the properties of linearized polynomials in finite fields, we will introduce them in the next section. The proof of Theorem 1.3 will be given in Section 3.
Linearized polynomials are also called q-polynomials in the literature. Many definitions and results of this section go back to the fundamental papers of Ore [8,9,10,11], and we just list them without examples and proofs for the sake of brevity; see [6] for further details.
Let r be a positive integer. A polynomial of the form L(x)=∑ni=0cixqi with coefficients in an extension filed Fqr of Fq is called a linearized polynomial over Fqr. The polynomials l(x)=∑ni=0cixi and L(x)=∑ni=0cixqi over Fqr are called q-associates of each other. More specially, l(x) is the conventional q-associate of L(x) and L(x) is the linearized q-associate of l(x). Given two linearized polynomials L1(x) and L2(x) over Fqr, we define symbolic multiplication by L1(x)⊗L2(x)=L1(L2(x)). The ordinary product of linearized polynomials need not to be a linearized polynomial. And the set of linearized polynomials over Fq forms an integral domain under the operations of symbolic multiplication and ordinary addition.
If L1(x) and L2(x) are two linearized polynomials over Fq, we say that L1(x) symbolically divides L2(x) (or that L2(x) is symbolically divisible by L1(x)) if L2(x)=L1(x)⊗L(x) for some linearized polynomial L(x) over Fq. Similarly, one can define symbolic factorization and symbolic irreducibility for linearized polynomials.
Lemma 2.1. ([6,Lemma 3.59]) Let L1(x) and L2(x) be linearized polynomials over Fq with conventional q-associates l1(x) and l2(x). Then l(x)=l1(x)l2(x) and L(x)=L1(x)⊗L2(x) are q-associates of each other.
The following criterion is an immediate consequence of the lemma above.
Corollary 2.2. Let L1(x) and L(x) be linearized polynomials over Fq with conventional q-associates l1(x) and l(x). Then L1(x) symbolically divides L(x) if and only if l1(x) divides l(x). In particular, L(x) is symbolically irreducible over Fq if and only if l(x) is irreducible over Fq.
Let L(x) be a linearized polynomial over Fq with conventional q-associate l(x). We write L(x)⊗e:=L(x)⊗⋯⊗L(x)⏟e for short. Let L(x)=⊗ri=1Li(x)⊗ei be the symbolic factorization with distinct symbolically irreducible linearized polynomials Li(x) over Fq, then by Lemma 2.1, l(x)=∏ri=1li(x)ei is the canonical factorization of l(x) in Fq[x], where li(x) is the conventional q-associate of Li(x).
For a positive integer d, let φd(x) denote the dth cyclotomic polynomial of degree ϕ(d) where ϕ(d) is the Euler totient function, and let Ψd(x) denote the linearized q-associate of φd(x). The following lemma is well known.
Lemma 3.1. ([6,Theorems 2.45 and 2.47])
xn−1=(xm−1)pe=∏d|m(φd(x))pe. |
As a direct consequence of Lemmas 2.1 and 3.1, we have
Corollary 3.2.
xqn−x=⊗d|mΨd(x)⊗pe. |
Definition 3.3. We define
A={α∈Fqn:α+αq+⋯+αqn1−1=0}, |
and for each pi∈P(n), we define
Api=Fqn/pi={α∈Fqn:αqnpi−α=0}. |
Remark 3.4. (i) From the definition of Api, one easily knows that it is just the finite field of size qn/pi. However, since the sets A and Api will be considered together later, we adopt this notation to keep consistency.
(ii) Let α∈Fqn∖(⋃pi∈P(n)Api⋃A). Then from the definition above, we know that the n1-trace of α over Fq is nonzero, and that the degree of the minimal polynomial of α over Fq is just n. So α and all its conjugates in Fqn form the roots of an irreducible polynomial of degree n over Fq with nonzero n1-traces.
To calculate the intersection of A and Api's, we need to factorize the two polynomials x+xq+⋯+xqn1−1 and xqnpi−x into irreducible linearized polynomials.
Lemma 3.5.
A={α∈Fqn:(αq−α)⊗pe1−1⊗⊗1<d|m1Ψd(α)⊗pe1=0}, | (3.1) |
and
Api={α∈Fqn:⊗d|npiΨd(α)=0}, | (3.2) |
for pi∈P(n). In particular, if pi≠p, then
Api={α∈Fqn:(αq−α)⊗pe⊗⊗1<d|mpiΨd(α)⊗pe=0}, | (3.3) |
and
Ap={α∈Fqn:(αq−α)⊗pe−1⊗⊗1<d|mΨd(α)⊗pe−1=0}. | (3.4) |
Proof. Using Corollary 3.2 and the factorization
xn1−1=(x−1)(x−1)pe1−1∏1<d|m1(φd(x))pe1 |
that comes from Lemma 3.1, we get (3.1). Similarly, we can get (3.2), (3.3) and (3.4).
Suppose that ∅≠J={pj1,…,pjr}⊆P(n). Without loss of generality, assume that {a∈J:a∈P(m1),a∉P(mm1)}={pj1,…,pjt}, and p=pjr if p∈J. Observe that if p∉J, then
gcd(m1,mpj1⋯pjr)=gcd(m1,m1pj1⋯pjtmm1pjt+1⋯pjr)=m1pj1⋯pjt, | (3.5) |
and if p=pjr∈J, then
gcd(m1,mpj1⋯pjr−1)=gcd(m1,m1pj1⋯pjtmm1pjt+1⋯pjr−1)=m1pj1⋯pjt. | (3.6) |
We will use the two observations (3.5) and (3.6) in the lemma below.
Lemma 3.6. (i) If p∉J or p=pjr∈J and e1<e, then
(⋂j∈JAj)⋂A={α∈Fqn:(αq−α)⊗pe1−1⊗⊗1<d|m1pj1⋯pjtΨd(α)⊗pe1=0}. |
(ii) If p=pjr∈J and e1=e, then
(⋂j∈JAj)⋂A={α∈Fqn:(αq−α)⊗pe1−1⊗⊗1<d|m1pj1⋯pjtΨd(α)⊗pe1−1=0}. |
Proof. To calculate (⋂j∈JAj)⋂A, we first calculate (⋂j∈JAj). By (3.2),
⋂j∈JAj={α∈Fqn:⊗d|npj1⋯pjrΨd(α)=0}. | (3.7) |
If p∉J, then by (3.3) and (3.7),
⋂j∈JAj={α∈Fqn:(αq−α)⊗pe⊗⊗1<d|mpj1⋯pjrΨd(α)⊗pe=0}. | (3.8) |
If p=pjr∈J, then by (3.4) and (3.7),
⋂j∈JAj={α∈Fqn:(αq−α)⊗pe−1⊗⊗1<d|mpj1⋯pjr−1Ψd(α)⊗pe−1=0}. | (3.9) |
Now we calculate (⋂j∈JAj)⋂A. Recall the observations (3.5) and (3.6) and that 0≤e1≤e which will be used below. If p∉J, then by (3.1) and (3.8),
(⋂j∈JAj)⋂A={α∈Fqn:(αq−α)⊗min{pe,pe1−1}⊗⊗1<d|gcd(m1,mpj1⋯pjr)Ψd(α)⊗min{pe,pe1}=0}={α∈Fqn:(αq−α)⊗pe1−1⊗⊗1<d|m1pj1⋯pjtΨd(α)⊗pe1=0}. |
If p=pjr∈J, then by (3.1) and (3.9),
(⋂j∈JAj)⋂A={α∈Fqn:(αq−α)⊗min{pe−1,pe1−1}⊗⊗1<d|gcd(m1,mpj1⋯pjr−1)Ψd(α)⊗min{pe−1,pe1}=0}={{α∈Fqn:(αq−α)⊗pe1−1⊗⊗1<d|m1pj1⋯pjtΨd(α)⊗pe1−1=0}if e1=e,{α∈Fqn:(αq−α)⊗pe1−1⊗⊗1<d|m1pj1⋯pjtΨd(α)⊗pe1=0}if e1<e. |
This finishes the proof.
The following lemma plays a vital role in the proof of our main theorem.
Lemma 3.7. (i) |A|=qn1−1.
(ii) |⋂j∈JAj|=qnpj1…pjr.
(iii) |(⋂j∈JAj)⋂A|=qn1ppj1⋯pjt if p∈J and e1=e.
(iv) |(⋂j∈JAj)⋂A|=qn1pj1⋯pjt−1 if p∉J or e1<e.
Proof. Since (ⅰ) and (ⅱ) are trivial, we only need to prove (ⅲ) and (ⅳ). First consider the case p∉J. Set
G(x)=(xq−x)⊗pe1−1⊗⊗1<d|m1pj1⋯pjtΨd(x)⊗pe1. |
By Lemma 3.6 (ⅰ),
(⋂j∈JAj)⋂A={α∈Fqn:G(α)=0}. |
Notice that the degree of G(x) is
qpe1−1+pe1(∑d∣m1pj1…pjtϕ(d)−1)=qm1pe1pj1…pjt−1=qn1pj1…pjt−1, |
where we use the fact that ∑d∣m1pj1…pjtϕ(d)=m1pj1…pjr. So G(x) has qn1pj1…pjt−1 simple roots. Similarly for the case p∈J, and we can get
|(⋂j∈JAj)⋂A|={qm1pe1−1pj1⋯pjt=qn1ppj1⋯pjt if p=pjr∈J and e1=e,qm1pe1pj1⋯pjt−1=qn1pj1⋯pjt−1 if p∉J or e1<e. |
The result follows.
Now we are in the position to prove our main theorem.
Proof of Theorem 1.3. Write Ai=Api(i=1,…,k) for short. Let α∈Fqn∖(⋃ki=1Ai⋃A). By Remark 3.4 (ii), we know that Tr(α;n1)≠0 and that the degree of the minimal polynomial of α over Fq is n. Since all the conjugates of α have the same property, namely, Tr(αqi;n1)≠0 and the degree of the minimal polynomial of αqi over Fq is n for i=0,1,…,n−1, we have
N∗q(n;n1)=|Fqn∖(k⋃i=1Ai⋃A)|/n. | (3.10) |
We first consider the simplest two cases that e1<e and e1=e=0, in which Lemma 3.7 (iii) is not used that makes the calculation relatively easy. By the inclusion-exclusion principle and Lemma 3.7,
\begin{eqnarray*} && \big|\mathbb{F}_{q^{n}}\backslash(\bigcup\limits_{i = 1}^{k}A_{i}\bigcup A)\big| \nonumber \\ & = & q^{n}+\sum\limits_{l = 1}^{k}(-1)^l\sum\limits_{|I| = l}\big|\bigcap\limits_{i\in I\subseteq \{1, \dots, k\}}A_i\big|+\sum\limits_{l = 1}^{k+1}(-1)^l\sum\limits_{l_1+l_2 = l-1}\big|\bigcap\limits_{i\in I_1\subseteq \{1, \dots, t\}\atop |I_1| = l_1}A_i\bigcap\bigcap\limits_{j\in I_2\subseteq \{t+1, \dots, k\}\atop |I_2| = l_2}A_j\bigcap A\big|\nonumber \\ & = & q^{n}+\sum\limits_{l = 1}^{k}(-1)^l\underset{1\leq i_{1} \lt \cdots \lt i_{l}\leq k}\sum q^{\frac{n}{p_{i_{1}}\cdots p_{i_{l}}}}+\sum\limits_{l = 1}^{k+1}(-1)^l\sum\limits_{l_1+l_2 = l-1}{k-t \choose l_2}\underset{1\leq i_{1} \lt \cdots \lt i_{l_1}\leq t}\sum q^{\frac{n_{1}}{p_{i_{1}}\cdots p_{i_{l_1}}}-1}. \nonumber \end{eqnarray*} |
For a positive integer, let \omega(d) denote the number of distinct prime factors of d . Recall \mathfrak{P}(n) = \{p_{1}, p_{2}, \ldots, p_{k}\} and m_1' = p_{1}\cdots p_{t} . Hence the above equation can be rewritten as
\begin{equation} \big|\mathbb{F}_{q^{n}}\backslash(\bigcup\limits_{i = 1}^{k}A_{i}\bigcup A)\big| = \sum\limits_{d|n}\mu(d)q^{\frac{n}{d}}-\sum\limits_{l = 0}^{k}(-1)^l\sum\limits_{d|m_1'}{k-t \choose l-\omega(d)}q^{\frac{n_{1}}{d}-1}. \end{equation} | (3.11) |
Note that
\begin{equation} \begin{aligned}[t] &\sum\limits_{l = 0}^{k}(-1)^l\sum\limits_{d|m_1'}{k-t \choose l-\omega(d)}q^{\frac{n_{1}}{d}-1} \\ = &q^{n_{1}-1}-\sum\limits_{i = 1}^{t}q^{\frac{n_{1}}{p_{i}}-1}-{k-t \choose 1}q^{n_{1}-1}+\underset{1\leq j_{1} \lt j_{2}\leq t}\sum q^{\frac{n_{1}}{p_{j_{1}}p_{j_{2}}}-1}+{k-t \choose 1}\sum\limits_{i = 1}^{t}q^{\frac{n_{1}}{p_{i}}-1} \\ &+{k-t \choose 2}q^{n_{1}-1}-\underset{1\leq j_{1} \lt j_{2} \lt j_{3}\leq t}\sum q^{\frac{n_{1}}{p_{j_{1}}p_{j_{2}}p_{j_{3}}}-1}-{k-t \choose 1}\underset{1\leq j_{1} \lt j_{2}\leq t}\sum q^{\frac{n_{1}}{p_{j_{1}}p_{j_{2}}}-1} \\ &-{k-t \choose 2}\sum\limits_{i = 1}^{t}q^{\frac{n_{1}}{p_{i}}-1}-{k-t \choose 3}q^{n_{1}-1} +\cdots \\ = & \underset{d|m_1'}\sum\mu{(d)}q^{\frac{n_1}{d}-1}-{k-t \choose 1}\underset{d|m_1'}\sum\mu{(d)}q^{\frac{n_1}{d}-1}+{k-t \choose 2}\underset{d|m_1'}\sum\mu{(d)}q^{\frac{n_1}{d}-1}+\cdots \\ = & \left\{ \begin{array}{ll} \underset{d|m_1'}\sum\limits\mu{(d)}q^{\frac{n_1}{d}-1} & \hbox{if} \ k = t, \\ 0 & \hbox{if}\ k \gt t. \end{array} \right. \end{aligned} \end{equation} | (3.12) |
By (3.10), (3.11) and (3.12), we get
\begin{equation} N_q^*(n;n_1) = \left\{ \begin{array}{ll} \underset{d|n}\sum\limits\mu{(d)}q^{\frac{n}{d}}/n & \hbox{if } e_1 \lt e \hbox{ or } e_1 = e = 0 \hbox{ and } k \gt t, \\ (\underset{d|n}\sum\limits\mu{(d)}q^{\frac{n}{d}}-\underset{d|m_1'}\sum\limits\mu{(d)}q^{\frac{n_1}{d}-1})/n & \hbox{if } e_1 = e = 0 \hbox{ and } k = t. \end{array} \right. \end{equation} | (3.13) |
Next we consider the more complicated case that e_1 = e > 0 , in which Lemma 3.7 (ⅲ) is used that makes the calculation relatively lengthy. We omit some detail due to the similar deduction and notation as above. Note that p_k = p in this case by assumption. By the inclusion-exclusion principle,
\begin{eqnarray} && \big|\mathbb{F}_{q^{n}}\backslash(\bigcup\limits_{i = 1}^{k}A_{i}\bigcup A)\big| \\ & = & q^{n}+\sum\limits_{l = 1}^{k}(-1)^l\sum\limits_{|I| = l}\big|\bigcap\limits_{i\in I\subseteq \{1, \dots, k\}}A_i\big| \\ & & +\sum\limits_{l = 1}^{k}(-1)^l\sum\limits_{l_1+l_2 = l-1}\big|\bigcap\limits_{i\in I_1\subseteq \{1, \dots, t\}\atop |I_1| = l_1}A_i\bigcap\bigcap\limits_{j\in I_2\subseteq \{t+1, \dots, k-1\}\atop |I_2| = l_2}A_j\bigcap A\big| \\ & & +\sum\limits_{l = 2}^{k+1}(-1)^l\sum\limits_{l_1+l_2 = l-2}\big|\bigcap\limits_{i\in I_1\subseteq \{1, \dots, t\}\atop |I_1| = l_1}A_i\bigcap\bigcap\limits_{j\in I_2\subseteq \{t+1, \dots, k-1\}\atop |I_2| = l_2}A_j\bigcap A_k\bigcap A\big|. \end{eqnarray} | (3.14) |
By Lemma 3.7,
\begin{eqnarray} && \sum\limits_{l = 1}^{k}(-1)^l\sum\limits_{l_1+l_2 = l-1}\big|\bigcap\limits_{i\in I_1\subseteq \{1, \dots, t\}\atop |I_1| = l_1}A_i\bigcap\bigcap\limits_{j\in I_2\subseteq \{t+1, \dots, k-1\}\atop |I_2| = l_2}A_j\bigcap A\big| \\ & = & \sum\limits_{l = 1}^{k}(-1)^l\sum\limits_{l_1+l_2 = l-1}{k-t-1 \choose l_2}\underset{1\leq i_{1} \lt \cdots \lt i_{l_1}\leq t}\sum q^{\frac{n_{1}}{p_{i_{1}}\cdots p_{i_{l_1}}}-1} \\ & = &-\sum\limits_{l = 0}^{k-1}(-1)^l\sum\limits_{d|m_1'}{k-t-1 \choose l-\omega(d)}q^{\frac{n_{1}}{d}-1}, \end{eqnarray} | (3.15) |
and
\begin{eqnarray} && \sum\limits_{l = 2}^{k+1}(-1)^l\sum\limits_{l_1+l_2 = l-2}\big|\bigcap\limits_{i\in I_1\subseteq \{1, \dots, t\}\atop |I_1| = l_1}A_i\bigcap\bigcap\limits_{j\in I_2\subseteq \{t+1, \dots, k-1\}\atop |I_2| = l_2}A_j\bigcap A_k\bigcap A\big| \\ & = &\sum\limits_{l = 2}^{k+1}(-1)^l\sum\limits_{l_1+l_2 = l-2}{k-t-1 \choose l_2}\underset{1\leq i_{1} \lt \cdots \lt i_{l_1}\leq t}\sum q^{\frac{n_{1}}{pp_{i_{1}}\cdots p_{i_{l_1}}}}. \\ & = &\sum\limits_{l = 0}^{k-1}(-1)^l\sum\limits_{d|m_1'}{k-t-1 \choose l-\omega(d)}q^{\frac{n_{1}}{pd}}. \end{eqnarray} | (3.16) |
It follows from (3.14), (3.15) and (3.16) that
\begin{equation} \big|\mathbb{F}_{q^{n}}\backslash(\bigcup\limits_{i = 1}^{k}A_{i}\bigcup A)\big| = \sum\limits_{d|n}\mu(d)q^{\frac{n}{d}}-\sum\limits_{l = 0}^{k-1}(-1)^l\sum\limits_{d|m_1'}{k-t-1 \choose l-\omega(d)}(q^{\frac{n_{1}}{d}-1}-q^{\frac{n_{1}}{pd}}). \end{equation} | (3.17) |
Similar to (3.12), we have
\begin{align} & \sum\limits_{l = 0}^{k-1}(-1)^l\sum\limits_{d|m_1'}{k-t-1 \choose l-\omega(d)}(q^{\frac{n_{1}}{d}-1}-q^{\frac{n_{1}}{pd}})\quad\quad\quad\quad\quad\quad\quad\quad \\ = & \left\{ \begin{array}{ll} \underset{d|m_1'}\sum\limits\mu{(d)}q^{\frac{n_1}{d}-1}-\underset{d|m_1'}\sum\limits\mu{(d)}q^{\frac{n_1}{pd}} & \hbox{if}\ k = t+1, \\ 0 & \hbox{if} \ k \gt t+1, \end{array} \right. \end{align} | (3.18) |
By (3.10), (3.17) and (3.18), we get
\begin{equation} N_q^*(n;n_1) = \left\{ \begin{array}{ll} \underset{d|n}\sum\limits\mu{(d)}q^{\frac{n}{d}}/n & \hbox{if } e_1 = e \gt 0 \hbox{ and } k \gt t+1, \\ \big[\underset{d|n}\sum\limits\mu{(d)}q^{\frac{n}{d}}-\underset{d|m_1'}\sum\limits\mu{(d)}(q^{\frac{n_1}{d}-1}-q^{\frac{n_1}{pd}})\big]/n & \hbox{if } e_1 = e \gt 0 \hbox{ and } k = t+1. \end{array} \right. \end{equation} | (3.19) |
Putting (3.13) and (3.19) together, we obtain
\begin{equation} N_q^*(n;n_1) = \left\{ \begin{array}{ll} \big[\underset{d|n}\sum\limits\mu{(d)}q^{\frac{n}{d}}-\underset{d|m_1'}\sum\limits\mu{(d)}(q^{\frac{n_1}{d}-1}-q^{\frac{n_1}{pd}})\big]/n & \hbox{ if } e_1 = e \gt 0\ \hbox{ and } k = t+1, \\ (\underset{d|n}\sum\limits\mu{(d)}q^{\frac{n}{d}}-\underset{d|m_1'}\sum\limits\mu{(d)}q^{\frac{n_1}{d}-1})/n & \hbox{ if } e_1 = e = 0 \hbox{ and } k = t, \\ \underset{d|n}\sum\limits\mu{(d)}q^{\frac{n}{d}}/n & \hbox{ otherwise}, \end{array} \right. \end{equation} | (3.20) |
as desired.
Now suppose that n_1 = 1 in which e_1 = 0 . So the case e_1 = e > 0 is excluded. For the case e_1 = e = 0 and k = t , since t = 1 , we must have k = 1 and hence n = 1 . By (3.20),
\begin{equation*} N_q^*(1;1) = \underset{d|1}\sum\limits\mu{(d)}q^{\frac{1}{d}}-\underset{d|1}\sum\limits\mu{(d)}q^{\frac{1}{d}-1} = q-1 = I_q(1)-1. \end{equation*} |
For the other cases, by (3.20) we get N_q^*(n; 1) = \sum_{d|n}\mu(d)q^{\frac{n}{d}}/n = I_q(n) .
Finally suppose that n_1 = n in which m_1 = m and e = e_1 . There are two subcases: e = e_1 = 0 and e = e_1 > 0 .
● If e = e_1 = 0 , then n = m = n_1 = m_1 , and by (3.20) it is easy to verify that
N_q^*(n;n) = (\underset{d|n}\sum\limits\mu{(d)}q^{\frac{n}{d}}-\underset{d|m_1'}\sum\limits\mu{(d)}q^{\frac{n_1}{d}-1})/n = (q-1)\sum\limits\limits_{d|m}\mu(d)q^{\frac{n}{d}}/qn. |
● If e = e_1 > 0 , then k = t+1 and hence by (3.20),
\begin{eqnarray*} N_q^*(n;n) & = & \big[\underset{d|n}\sum\limits\mu{(d)}q^{\frac{n}{d}}-\underset{d|m_1'}\sum\limits\mu{(d)}(q^{\frac{n_1}{d}-1}-q^{\frac{n_1}{pd}})\big]/n \\ & = & \big[\underset{d|m}\sum\limits\mu{(d)}q^{\frac{n}{d}}-\underset{d|m}\sum\limits\mu{(d)}q^{\frac{n}{pd}}-\underset{d|m}\sum\limits\mu{(d)}(q^{\frac{n}{d}-1}-q^{\frac{n}{pd}})\big]/n \\ & = & \big(\underset{d|m}\sum\limits\mu{(d)}q^{\frac{n}{d}}-\underset{d|m}\sum\limits\mu{(d)}q^{\frac{n}{d}-1}\big)/n\\ & = & (q-1)\sum\limits\limits_{d|m}\mu(d)q^{\frac{n}{d}}/qn. \end{eqnarray*} |
The proof is complete.
The main contribution of this paper is to provide a new proof to Theorem 1.1 and its generalizations. To be precise, based on the properties of linearized polynomials, we count the monic irreducible polynomials of degree n over \mathbb{F} _q with nozero n_1 -traces, where n_1 is a divisor of n . Since n_1 -traces have the close relationship with the roots (and hence the coefficients) of the associated polynomial, this approach may be adopted to deal with the other enumeration problems concerning the irreducible polynomials with the restricted coefficients in finite fields.
As one reviewer pointed out, the first two cases (i.e. e_1 = e > 0 and k = t+1 , respectively, e_1 = e = 0 and k = t ) in Theorem 1.3 only occur for n = n_1 . Thus it remains to consider the case n < n_1 , which can be deduced from the additive version of Hilbert's Theorem 90. However, if we drop out the restriction that the polynomials must be irreducible, i.e., allowing the degree of \alpha in \mathrm{Tr}(\alpha; n_1) to be less than n , our approach still works while Hilbert's Theorem 90 may not be valid again.
The authors sincerely thank the referees for their helpful comments which led to a substantial improvement of this paper. This work was jointly supported by the National Natural Science Foundation of China (Grant No. 11871291) and Ningbo Natural Science Foundation (Grant No. 2019A610035), and sponsored by the K. C. Wong Magna Fund in Ningbo University.
The authors declare that there is no conflict of interest.
[1] |
R. Dykstra, S. Kochar, J. Rojo, Stochastic comparisons of parallel systems of heterogeneous exponential components, J. Stat. Plan. Infer., 65 (1997), 203–211. https://doi.org/10.1016/S0378-3758(97)00058-X doi: 10.1016/S0378-3758(97)00058-X
![]() |
[2] |
P. Zhao, N. Balakrishnan, Some characterization results for parallel systems with two heterogeneous exponential components, Statistics, 45 (2011), 593–604. https://doi.org/10.1080/02331888.2010.485276 doi: 10.1080/02331888.2010.485276
![]() |
[3] |
C. Li, X. Li, Likelihood ratio order of sample minimum from heterogeneous Weibull random variables, Stat. Probabil. Lett., 97 (2015), 46–53. https://doi.org/10.1016/j.spl.2014.10.019 doi: 10.1016/j.spl.2014.10.019
![]() |
[4] |
N. Torrado, S. C. Kochar, Stochastic order relations among parallel systems from Weibull distributions, J. Appl. Probab., 52 (2015), 102–116. https://doi.org/10.1239/jap/1429282609 doi: 10.1239/jap/1429282609
![]() |
[5] |
B. E. Khaledi, S. Kochar, Weibull distribution: Some stochastic comparisons results, J. Stat. Plan. Infer., 136 (2006), 3121–3129. https://doi.org/10.1016/j.jspi.2004.12.013 doi: 10.1016/j.jspi.2004.12.013
![]() |
[6] |
S. Kochar, M. Xu, Stochastic comparisons of parallel systems when components have proportional hazard rates, Probab. Eng. Inform. Sci., 21 (2007), 597–609. https://doi.org/10.1017/S0269964807000344 doi: 10.1017/S0269964807000344
![]() |
[7] |
N. Torrado, Comparisons of smallest order statistics from Weibull distributions with different scale and shape parameters, J. Korean Stat. Soc., 44 (2015), 68–76. https://doi.org/10.1016/j.jkss.2014.05.004 doi: 10.1016/j.jkss.2014.05.004
![]() |
[8] |
S. Kochar, M. Xu, On the skewness of order statistics with applications, Ann. Oper. Res., 212 (2012), 127–138. https://doi.org/10.1007/s10479-012-1212-4 doi: 10.1007/s10479-012-1212-4
![]() |
[9] |
N. Balakrishnan, A. Haidari, K. Masoumifard, Stochastic comparisons of series and parallel systems with generalized exponential components, IEEE T. Reliab., 64 (2015), 333–348. https://doi.org/10.1109/TR.2014.2354192 doi: 10.1109/TR.2014.2354192
![]() |
[10] |
L. Fang, X. Zhang, Stochastic comparisons of parallel systems with exponentiated Weibull components, Stat. Probabil. Lett., 97 (2015), 25–31. https://doi.org/10.1016/j.spl.2014.10.017 doi: 10.1016/j.spl.2014.10.017
![]() |
[11] |
A. Kundu, S. Chowdhury, Ordering properties of order statistics from heterogeneous exponentiated Weibull models, Stat. Probabil. Lett., 114 (2016), 119–127. https://doi.org/10.1016/j.spl.2016.03.017 doi: 10.1016/j.spl.2016.03.017
![]() |
[12] |
N. K. Hazra, M. R. Kuiti, M. Finkelstein, A. K. Nanda, On stochastic comparisons of minimum order statistics from the location-scale family of distributions, Metrika, 81 (2017), 105–123. https://doi.org/10.1007/s00184-017-0636-x doi: 10.1007/s00184-017-0636-x
![]() |
[13] |
N. Balakrishnan, G. Barmalzan, A. Haidari, Modified proportional hazard rates and proportional reversed hazard rates models via marshall olkin distribution and some stochastic comparisons, J. Korean Stat. Soc., 47 (2018), 127–138. https://doi.org/10.1016/j.jkss.2017.10.003 doi: 10.1016/j.jkss.2017.10.003
![]() |
[14] | G. Barmalzan, S. Kosari, N. Balakrishnan, Usual stochastic and reversed hazard orders of parallel systems with independent heterogeneous components, Commun. Stat.-Theory Methods, 2020, 1–26. https://doi.org/10.1080/03610926.2020.1823415 |
[15] | G. Barmalzan, S. Ayat, N. Balakrishnan, Stochastic comparisons of series and parallel systems with dependent burr type XII components, Commun. Stat.-Theory Methods, 2020, 1–22. https://doi.org/10.1080/03610926.2020.1772307 |
[16] | S. Naqvi, W. Ding, P. Zhao, Stochastic comparison of parallel systems with pareto components, Probab. Eng. Inform. Sci., 2021, 1–13. https://doi.org/10.1017/S0269964821000176 |
[17] |
A. Arriaza, A. Di Crescenzo, M. A. Sordo, A. Suárez-Llorens, Shape measures based on the convex transform order, Metrika, 82 (2019), 99–124. https://doi.org/10.1007/s00184-018-0667-y doi: 10.1007/s00184-018-0667-y
![]() |
[18] |
J. Zhang, R. Yan, Stochastic comparison at component level and system level series system with two proportional hazards rate components, J. Quant. Econ., 35 (2018), 91–95. https://doi.org/10.16339/j.cnki.hdjjsx.2018.04.035 doi: 10.16339/j.cnki.hdjjsx.2018.04.035
![]() |
[19] |
G. S. Mudholkar, D. K. Srivastava, Exponentiated Weibull family for analyzing bathtub failure-rate data, IEEE T. Reliab., 42 (1993), 299–302. https://doi.org/10.1109/24.229504 doi: 10.1109/24.229504
![]() |
[20] |
P. Zhao, N. Balakrishnan, New results on comparisons of parallel systems with heterogeneous gamma components, Stat. Probabil. Lett., 81 (2011), 36–44. https://doi.org/10.1016/j.spl.2010.09.016 doi: 10.1016/j.spl.2010.09.016
![]() |
[21] |
B. E. Khaledi, S. Farsinezhad, S. C. Kochar, Stochastic comparisons of order statistics in the scale model, J. Stat. Plan. Infer., 141 (2011), 276–286. https://doi.org/10.1016/j.jspi.2010.06.006 doi: 10.1016/j.jspi.2010.06.006
![]() |
[22] |
N. Misra, A. K. Misra, New results on stochastic comparisons of two-component series and parallel systems, Stat. Probabil. Lett., 82 (2012), 283–290. https://doi.org/10.1016/j.spl.2011.10.010 doi: 10.1016/j.spl.2011.10.010
![]() |
[23] |
N. Balakrishnan, P. Zhao, Hazard rate comparison of parallel systems with heterogeneous gamma components, J. Multivariate Anal., 113 (2013), 153–160. https://doi.org/10.1016/j.jmva.2011.05.001 doi: 10.1016/j.jmva.2011.05.001
![]() |
[24] |
P. Zhao, N. Balakrishnan, Comparisons of largest order statistics from multiple-outlier gamma models, Methodol. Comput. Appl. Probab., 17 (2015), 617–645. https://doi.org/10.1007/s11009-013-9377-0 doi: 10.1007/s11009-013-9377-0
![]() |
[25] |
W. Ding, Y. Zhang, P. Zhao, Comparisons of k-out-of-n systems with heterogenous components, Stat. Probabil. Lett., 83 (2013), 493–502. https://doi.org/10.1016/j.spl.2012.10.012 doi: 10.1016/j.spl.2012.10.012
![]() |
[26] |
Z. Guo, J. Zhang, R. Yan, The residual lifetime of surviving components of coherent system under periodical inspections, Mathematics, 8 (2020), 2181. https://doi.org/10.3390/math8122181 doi: 10.3390/math8122181
![]() |
[27] |
S. C. Kochar, N. Torrado, On stochastic comparisons of largest order statistics in the scale model, Commun. Stat.-Theory Methods, 44 (2015), 4132–4143. https://doi.org/10.1080/03610926.2014.985839 doi: 10.1080/03610926.2014.985839
![]() |
[28] | A. Panja, P. Kundu, B. Pradhan, Variability and skewness ordering of sample extremes from dependent random variables following the proportional odds model, arXiv, 2020. Available from: https://arXiv.org/abs/2006.04454. |
[29] | Z. Guo, J. Zhang, R. Yan, On inactivity times of failed components of coherent system under double monitoring, Probab. Eng. Inform. Sci., 2021, 1–18. https://doi.org/10.1017/S0269964821000152 |
[30] |
A. Kundu, S. Chowdhury, A. K. Nanda, N. K. Hazra, Some results on majorization and their applications, J. Comput. Appl. Math., 301 (2016), 161–177. https://doi.org/10.1016/j.cam.2016.01.015 doi: 10.1016/j.cam.2016.01.015
![]() |
[31] |
R. Yan, B. Lu, X. Li, On redundancy allocation to series and parallel systems of two components, Commun. Stat.-Theory Methods, 48 (2019), 4690–4701. https://doi.org/10.1080/03610926.2018.1500603 doi: 10.1080/03610926.2018.1500603
![]() |
[32] |
X. Li, R. Fang, Ordering properties of order statistics from random variables of Archimedean copulas with applications, J. Multivariate Anal., 133 (2015), 304–320. https://doi.org/10.1016/j.jmva.2014.09.016 doi: 10.1016/j.jmva.2014.09.016
![]() |
[33] |
C. Li, R. Fang, X. Li, Stochastic somparisons of order statistics from scaled and interdependent random variables, Metrika, 79 (2016), 553–578. https://doi.org/10.1007/s00184-015-0567-3 doi: 10.1007/s00184-015-0567-3
![]() |
[34] |
R. Fang, C. Li, X. Li, Stochastic comparisons on sample extremes of dependent and heterogenous observations, Statistics, 50 (2016), 930–955. https://doi.org/10.1080/02331888.2015.1119151 doi: 10.1080/02331888.2015.1119151
![]() |
[35] |
Y. Zhang, X. Cai, P. Zhao, H. Wang, Stochastic comparisons of parallel and series systems with heterogeneous resilience-scaled components, Statistics, 53 (2019), 126–147. https://doi.org/10.1080/02331888.2018.1546705 doi: 10.1080/02331888.2018.1546705
![]() |
[36] |
C. Li, X. Li, Hazard rate and reversed hazard rate orders on extremes of heterogeneous and dependent random variables, Stat. Probabil. Lett., 146 (2019), 104–111. https://doi.org/10.1016/j.spl.2018.11.005 doi: 10.1016/j.spl.2018.11.005
![]() |
[37] |
Y. Zhang, X. Cai, P. Zhao, Ordering properties of extreme claim amounts from heterogeneous portfolios, ASTIN Bull., 49 (2019), 525–554. https://doi.org/10.1017/asb.2019.7 doi: 10.1017/asb.2019.7
![]() |
[38] |
G. Barmalzan, S. M. Ayat, N. Balakrishnan, R. Roozegar, Stochastic comparisons of series and parallel systems with dependent heterogeneous extended exponential components under archimedean copula, J. Comput. Appl. Math., 380 (2020), 112965. https://doi.org/10.1016/j.cam.2020.112965 doi: 10.1016/j.cam.2020.112965
![]() |
[39] |
L. Zhang, R. Yan, Stochastic comparisons of series and parallel systems with dependent and heterogeneous topp leone generated components, AIMS Math., 6 (2021), 2031–2047. https://doi.org/10.3934/math.2021124 doi: 10.3934/math.2021124
![]() |
[40] |
M. Zhang, B. Lu, R. Yan, Ordering results of extreme order statistics from dependent and heterogeneous modified proportional (reversed) hazard variables, AIMS Math., 6 (2021), 584–606. https://doi.org/10.3934/math.2021036 doi: 10.3934/math.2021036
![]() |
[41] |
N. Torrado, Comparing the reliability of coherent systems with heterogeneous, dependent and distribution-free components, Qual. Technol. Quant. M., 18 (2021), 740–770. https://doi.org/10.1080/16843703.2021.1963033 doi: 10.1080/16843703.2021.1963033
![]() |
[42] |
E. Amini-Seresht, J. Qiao, Y. Zhang, P. Zhao, On the skewness of order statistics in multiple-outlier PHR models, Metrika, 79 (2016), 817–836. https://doi.org/10.1007/s00184-016-0579-7 doi: 10.1007/s00184-016-0579-7
![]() |
[43] |
B. E. Khaledi, S. Kochar, Dispersive ordering among linear combinations of uniform random variables, J. Stat. Plan. Infer., 100 (2002), 13–21. https://doi.org/10.1016/S0378-3758(01)00091-X doi: 10.1016/S0378-3758(01)00091-X
![]() |
[44] |
J. Jeon, S. Kochar, C. G. Park, Dispersive ordering some applications and examples, Stat. Pap., 47 (2006), 227–247. https://doi.org/10.1007/s00362-005-0285-4 doi: 10.1007/s00362-005-0285-4
![]() |
[45] |
S. Kochar, Stochastic comparisons of order statistics and spacings: A review, Probab. Stat., 2012 (2012), 839473. https://doi.org/10.5402/2012/839473 doi: 10.5402/2012/839473
![]() |
[46] |
W. Ding, J. Yang, X. Ling, On the skewness of extreme order statistics from heterogeneous samples, Commun. Stat.-Theory Methods, 46 (2016), 2315–2331. https://doi.org/10.1080/03610926.2015.1041984 doi: 10.1080/03610926.2015.1041984
![]() |
[47] |
J. Wu, M. Wang, X. Li, Convex transform order of the maximum of independent Weibull random variables, Stat. Probabil. Lett., 156 (2020), 108597. https://doi.org/10.1016/j.spl.2019.108597 doi: 10.1016/j.spl.2019.108597
![]() |
[48] | R. Yan, J. Wang, Component level versus system level at active redundancies for coherent systems with dependent heterogeneous components, Commun. Stat.-Theory Methods, 2020, 1–21. https://doi.org/10.1080/03610926.2020.1767140 |
[49] |
R. Yan, J. Zhang, Y. Zhang, Optimal allocation of relevations in coherent systems, J. Appl. Probab., 58 (2021), 1152–1169. https://doi.org/10.1017/jpr.2021.23 doi: 10.1017/jpr.2021.23
![]() |
[50] |
T. Lando, I. Arab, P. E. Oliveira, Second-order stochastic comparisons of order statistics, Statistics, 55 (2021), 561–579. https://doi.org/10.1080/02331888.2021.1960527 doi: 10.1080/02331888.2021.1960527
![]() |
[51] |
T. Lando, L. Bertoli-Barsotti, Second-order stochastic dominance for decomposable multiparametric families with applications to order statistics, Stat. Probabil. Lett., 159 (2020), 108691. https://doi.org/10.1016/j.spl.2019.108691 doi: 10.1016/j.spl.2019.108691
![]() |
[52] |
J. Zhang, R. Yan, J. Wang, Reliability optimization of parallel-series and series-parallel systems with statistically dependent components, Appl. Math. Model., 102 (2022), 618–639. https://doi.org/10.1016/j.apm.2021.10.003 doi: 10.1016/j.apm.2021.10.003
![]() |
[53] |
L. Jiao, R. Yan, Stochastic comparisons of lifetimes of series and parallel systems with dependent heterogeneous MOTL-G components under random shocks, Symmetry, 13 (2021), 2248. https://doi.org/10.3390/sym13122248 doi: 10.3390/sym13122248
![]() |
[54] | B. Lu, J. Zhang, R. Yan, Optimal allocation of a coherent system with statistical dependent subsystems, Probab. Eng. Inform. Sci., 2021, 1–20. https://doi.org/10.1017/S0269964821000437 |
[55] | S. Blumenthal, A survey of estimating distributional parameters and sample sizes from truncated samples, In: Statistical distributions in scientific work, Springer Netherlands: Dordrecht, 79 (1981), 75–86. https://doi.org/10.1007/978-94-009-8552-0_6 |
[56] |
S. Blumenthal, R. Marcus, Estimating population size with exponential failure, J. Am. Stat. Assoc., 70 (1975), 913–922. https://doi.org/10.2307/2285457 doi: 10.2307/2285457
![]() |
[57] |
L. Fang, J. Ling, N. Balakrishnan, Stochastic comparisons of series and parallel systems with independent heterogeneous lower-truncated Weibull components, Commun. Stat.-Theory Methods, 45 (2015), 540–551. https://doi.org/10.1080/03610926.2015.1099671 doi: 10.1080/03610926.2015.1099671
![]() |
[58] |
F. Famoye, Continuous univariate distributions, Technometrics, 37 (1995), 466. https://doi.org/10.1080/00401706.1995.10484392 doi: 10.1080/00401706.1995.10484392
![]() |
[59] | D. N. P. Murthy, M. Xie, R. Jiang, Weibull models, Wiley, 2004. |
[60] | W. R. Van Zwet, Convex transformations of random variables, Mathematisch Centrum Amsterdam, 1964. |
[61] | M. Shaked, J. G. Shanthikumar, Stochastic orders, New York: Springer, 2007. https://doi.org/10.1007/978-0-387-34675-5 |
[62] | H. Li, X. Li, Stochastic orders in reliability and risk, New York: Springer, 2013. https://doi.org/10.1007/978-1-4614-6892-9 |
[63] | A. W. Marshall, I. Olkin, B. C. Arnold, Inequalities: Theory of majorization and its applications, Springer, 1979. |
[64] | R. B. Nelsen, An introduction to copulas, New York: Springer, 2007. https://doi.org/10.1007/0-387-28678-0 |
[65] |
A. J. McNeil, J. Neslehova, Multivariate Archimedean copulas, d-monotone functions and \ell_{1}-norm symmetric distributions, Ann. Stat., 37 (2009), 3059–3097. https://doi.org/10.1214/07-AOS556 doi: 10.1214/07-AOS556
![]() |