Research article Special Issues

Threshold dynamics of a time-periodic two-strain SIRS epidemic model with distributed delay

  • Received: 18 September 2021 Revised: 10 January 2022 Accepted: 11 January 2022 Published: 19 January 2022
  • MSC : 35B35, 35B40, 35K57, 92D30

  • In this paper, a two-strain SIRS epidemic model with distributed delay and spatiotemporal heterogeneity is proposed and investigated. We first introduce the basic reproduction number $ R_0^i $ and the invasion number $ \hat{R}_0^i\; (i = 1, 2) $ for each strain $ i $. Then the threshold dynamics of the model is established in terms of $ R_0^i $ and $ \hat{R}_0^i $ by using the theory of chain transitive sets and persistence. It is shown that if $ \hat{R}_0^i > 1\; (i = 1, 2) $, then the disease in two strains is persist uniformly; if $ R_0^i > 1\geq R_0^j\; (i\neq j, i, j = 1, 2) $, then the disease in $ i $-th strain is uniformly persist, but the disease in $ j $-th strain will disappear; if $ R_0^i < 1 $ or $ R_0^i = 1\; (i = 1, 2) $ and $ \beta_i(x, t) > 0 $, then the disease in two strains will disappear.

    Citation: Jinsheng Guo, Shuang-Ming Wang. Threshold dynamics of a time-periodic two-strain SIRS epidemic model with distributed delay[J]. AIMS Mathematics, 2022, 7(4): 6331-6355. doi: 10.3934/math.2022352

    Related Papers:

  • In this paper, a two-strain SIRS epidemic model with distributed delay and spatiotemporal heterogeneity is proposed and investigated. We first introduce the basic reproduction number $ R_0^i $ and the invasion number $ \hat{R}_0^i\; (i = 1, 2) $ for each strain $ i $. Then the threshold dynamics of the model is established in terms of $ R_0^i $ and $ \hat{R}_0^i $ by using the theory of chain transitive sets and persistence. It is shown that if $ \hat{R}_0^i > 1\; (i = 1, 2) $, then the disease in two strains is persist uniformly; if $ R_0^i > 1\geq R_0^j\; (i\neq j, i, j = 1, 2) $, then the disease in $ i $-th strain is uniformly persist, but the disease in $ j $-th strain will disappear; if $ R_0^i < 1 $ or $ R_0^i = 1\; (i = 1, 2) $ and $ \beta_i(x, t) > 0 $, then the disease in two strains will disappear.



    加载中


    [1] A. Ackleh, K. Deng, Y. Wu, Competitive exclusion and coexistence in a two-strain pathogen model with diffusion, Math. Biosci. Eng., 13 (2016), 1–18. http://dx.doi.org/10.3934/mbe.2016.13.1 doi: 10.3934/mbe.2016.13.1
    [2] P. Agarwal, J. J. Nieto, M. Ruzhansky, D. F. Torres, Analysis of infectious disease problems (Covid-19) and their global impact, Singapore: Springer Nature Singapore Pte Ltd, 2021. http://dx.doi.org/10.1007/978-981-16-2450-6
    [3] S. Altizer, A. Dobson, P. Hosseini, P. Hudson, M. Pascua, P. Rohani, Seasonality and the dynamics of infectious disease, Ecol. Lett., 9 (2006), 467–484. http://dx.doi.org/10.1111/j.1461-0248.2005.00879.x doi: 10.1111/j.1461-0248.2005.00879.x
    [4] I. A. Baba, B. Kaymakamzade, E. Hincal, Two-strain epidemic model with two vaccinations, Chaos Soliton. Fract., 106 (2018), 342–348. http://dx.doi.org/10.1016/j.chaos.2017.11.035 doi: 10.1016/j.chaos.2017.11.035
    [5] L. Bauer, J. Bassett, P. H$\ddot{o}$vel, Y. N. Kyrychko, k. B. Blyuss, Chimera states in multi-strain epidemic models with temporary immunity, Chaos, 27 (2017), 114317. http://dx.doi.org/10.1063/1.5008386 doi: 10.1063/1.5008386
    [6] L. Cai, J. Xiang, X. Z. Li, A. A. Lashari, A two-strain epidemic model with mutant strain and vaccination, J. Appl. Math. Comput., 40 (2012), 125–142. http://dx.doi.org/10.1007/s12190-012-0580-x doi: 10.1007/s12190-012-0580-x
    [7] M. X. Chang, B. S. Han, X. M. Fan, Spatiotemporal dynamics for a Belousov-Zhabotinsky reaction-diffusion system with nonlocal effects, Appl. Anal., 2021. https://doi.org/10.1080/00036811.2020.1869948
    [8] Z. W. Chen, Z. T. Xu, A delayed diffusive influenza model with two-strain and two vaccinations, Appl. Math. Comput., 349 (2019), 439–453. http://dx.doi.org/10.1016/j.amc.2018.12.065 doi: 10.1016/j.amc.2018.12.065
    [9] D. Dancer, P. Koch Medina, Abstract ecolution equations, Periodic problem and applications, Essex: Longman Scientific & Technical, 1992.
    [10] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. http://dx.doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [11] A. Friedman, Partial differential equations of parabolic type, Englewood Cliffs: Prentice-Hall, 1964.
    [12] Z. Guo, F. Wang, X. Zou, Threshold dynamics of an infective disease model with a fixed latent period and non-local infections, J. Math. Biol., 65 (2012), 1387–1410. http://dx.doi.org/10.1007/s00285-011-0500-y doi: 10.1007/s00285-011-0500-y
    [13] B. S. Han, Y. Yang, W. J. Bo, H. Tang, Global dynamics of a Lotka-Volterra competition diffusion system with nonlocal effects, Int. J. Bifurcat. Chaos, 30 (2020), 2050066. http://dx.doi.org/10.1142/S0218127420500662 doi: 10.1142/S0218127420500662
    [14] B. S. Han, Z. Feng, W. J. Bo, Traveling wave phenomena of a nonlocal reaction-diffusion equation with degenerate nonlinearity, Commun. Nonlinear Sci., 103 (2021), 105990. http://dx.doi.org/10.1016/j.cnsns.2021.105990 doi: 10.1016/j.cnsns.2021.105990
    [15] P. Hess, Periodic-parabolic boundary value problems and positivity, Essex: Longman Scientific & Technical, 1991.
    [16] H. W. Hethcote, Asymptotic behavior in a deterministic epidemic model, B. Math. Biol., 36 (1973), 607–614. http://dx.doi.org/10.1007/BF02458365 doi: 10.1007/BF02458365
    [17] M. W. Hirsch, H. L. Smith, X. Q. Zhao, Chain transitivity, attractivity and strong repellors for semidynamical systems, J. Dyn. Differ. Equ., 13 (2001), 107–131. http://dx.doi.org/10.1023/A:1009044515567 doi: 10.1023/A:1009044515567
    [18] Y. Jin, X. Q. Zhao, Spatial dynamics of a nonlocal periodic reaction-diffusion model with stage structure, SIAM J. Math. Anal., 40 (2009), 2496–2516. http://dx.doi.org/10.1137/070709761 doi: 10.1137/070709761
    [19] C. Leung, The difference in the incubation period of 2019 novel coronavirus (SARS-CoV-2) infection between travelers to Hubei and nontravelers: The need for a longer quarantine period, Infect. Cont. Hosp. Ep., 41 (2020), 594–596. http://dx.doi.org/10.1017/ice.2020.81 doi: 10.1017/ice.2020.81
    [20] X. Liang, X. Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Commun. Pure Appl. Math., 60 (2007), 1–40. http://dx.doi.org/10.1002/cpa.20154 doi: 10.1002/cpa.20154
    [21] X. Liang, L. Zhang, X. Q. Zhao, Basic reproduction ratios for periodic abstract functional differential equations (with application to a spatial model for lyme disease), J. Dyn. Differ. Equ., 31 (2019), 1247–1278. http://dx.doi.org/10.1007/s10884-017-9601-7 doi: 10.1007/s10884-017-9601-7
    [22] Y. Lou, X. Q. Zhao, Threshold dynamics in a time-delayed periodic SIS epidemic model, Discrete Cont. Dyn. B, 12 (2009), 169–186. http://dx.doi.org/10.3934/dcdsb.2009.12.169 doi: 10.3934/dcdsb.2009.12.169
    [23] P. Magal, X. Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251–275. http://dx.doi.org/10.1137/S0036141003439173 doi: 10.1137/S0036141003439173
    [24] M. Martcheva, A non-autonomous multi-strain SIS epidemic model, J. Biol. Dynam., 3 (2009), 235–251. http://dx.doi.org/10.1080/17513750802638712 doi: 10.1080/17513750802638712
    [25] R. Martain, H. L. Smith, Abstract functional differential equations and reaction-diffusion system, T. Am. Math. Soc., 321 (1990), 1–44. http://dx.doi.org/10.2307/2001590 doi: 10.2307/2001590
    [26] R. H. Martin, Nonlinear operators and differential equations in Banach spaces, 1986.
    [27] C. McAloon, Á. Collins, K. Hunt, A. Barber, F. Butler, M. Casey, et al., Incubation period of COVID-19: A rapid systematic review and meta-analysis of observational research, BMJ open, 10 (2020), e039652. http://dx.doi.org/10.1136/bmjopen-2020-039652 doi: 10.1136/bmjopen-2020-039652
    [28] J. A. J. Metz, O. Diekmann, The dynamics of physiologically structured populations, Springer, 1986. http://dx.doi.org/10.1007/978-3-662-13159-6
    [29] R. Peng, X. Q. Zhao, A reaction-diffusion SIS epidemic model in a time-periodic environment, Nonlinearity, 25 (2012), 1451–1471. http://dx.doi.org/10.1088/0951-7715/25/5/1451 doi: 10.1088/0951-7715/25/5/1451
    [30] P. J. Sansonetti, J. Arondel, Construction and evaluation of a double mutant of Shigella flexneri as a candidate for oral vaccination against shigellosis, Vaccine, 7 (1989), 443–450. http://dx.doi.org/10.1016/0264-410X(89)90160-6 doi: 10.1016/0264-410X(89)90160-6
    [31] H. L. Smith, Multiple stable subharmonics for a periodic epidemic model, J. Math. Biol., 17 (1983), 179–190. http://dx.doi.org/10.1007/BF00305758 doi: 10.1007/BF00305758
    [32] Y. Takeuchi, W. Ma, E. Beretta, Global asymptotic properties of delay SIR epidemic model with finite incubation times, Nonlinear Anal., 42 (2000), 931–947. http://dx.doi.org/10.1016/S0362-546X(99)00138-8 doi: 10.1016/S0362-546X(99)00138-8
    [33] N. Tuncer, M. Martcheva, Analytical and numerical approaches to coexistence of strains in a two-strain SIS model with diffusion, J. Biol. Dynam., 6 (2012), 406–439. http://dx.doi.org/10.1080/17513758.2011.614697 doi: 10.1080/17513758.2011.614697
    [34] H. Xi, H. Jiang, M. Juhas, Y. Zhang, Multiplex biosensing for simultaneous detection of mutations in SARS-CoV-2, ACS Omega, 6 (2021), 25846–25859. http://dx.doi.org/10.1021/acsomega.1c04024 doi: 10.1021/acsomega.1c04024
    [35] X. Yang, H. Li, Y. Cao, Influence of meteorological factors on the COVID-19 transmission with season and geographic location, Int. J. Environ. Res. Public. Health, 18 (2021), 484. http://dx.doi.org/10.3390/ijerph18020484 doi: 10.3390/ijerph18020484
    [36] L. Zhang, Z. C. Wang, X. Q. Zhao, Threshold dynamics of a time periodic reaction-diffusion epidemic model with latent period, J. Differ. Equ., 258 (2015), 3011–3036. http://dx.doi.org/10.1016/j.jde.2014.12.032 doi: 10.1016/j.jde.2014.12.032
    [37] T. Zhang, Z. Teng, On a nonautonomous SEIR model in epidemiology, B. Math. Biol., 69 (2007), 2537–2560. http://dx.doi.org/10.1007/s11538-007-9231-z doi: 10.1007/s11538-007-9231-z
    [38] L. Zhao, Z. C. Wang, S. Ruan, Dynamics of a time-periodic two-strain SIS epidemic model with diffusion and latent period, Nonlinear Anal. Real, 51 (2020), 102966. http://dx.doi.org/10.1016/j.nonrwa.2019.102966 doi: 10.1016/j.nonrwa.2019.102966
    [39] L. Zhao, Z. C. Wang, L. Zhang, Threshold dynamics of a time periodic and two-group epidemic model with distributed delay, Math. Biosci. Eng., 14 (2017), 1535–1563. http://dx.doi.org/10.3934/mbe.2017080 doi: 10.3934/mbe.2017080
    [40] X. Q. Zhao, Dynamical systems in population biology, New York: Springer, 2003. http://dx.doi.org/10.1007/978-0-387-21761-1
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1272) PDF downloads(78) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog