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Abstract: In this paper, a two-strain SIRS epidemic model with distributed delay and spatiotemporal
heterogeneity is proposed and investigated. We first introduce the basic reproduction number Ri

0 and the
invasion number R̂i

0 (i = 1, 2) for each strain i. Then the threshold dynamics of the model is established
in terms of Ri

0 and R̂i
0 by using the theory of chain transitive sets and persistence. It is shown that if

R̂i
0 > 1 (i = 1, 2), then the disease in two strains is persist uniformly; if Ri

0 > 1 ≥ R j
0 (i , j, i, j = 1, 2),

then the disease in i-th strain is uniformly persist, but the disease in j-th strain will disappear; if Ri
0 < 1

or Ri
0 = 1 (i = 1, 2) and βi(x, t) > 0, then the disease in two strains will disappear.
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1. Introduction

Nowadays there are always various communicable diseases, such as malaria, dengue fever,
HIV/AIDS, Zika virus, and COVID-19, which impair the health of people around the globe [2].
Especially, as of now, COVID-19 has killed more than 4 million people and is still prevailing in many
countries over the world. Since Covid-19 was first identified in January 2020, thousands of mutations
have been detected [34]. Moreover, it has been reported that various new strains of COVID-19 are
considered as more dangerous than the original virus. In fact, the variation of pathogens is very
common in epidemiology, we can refer to [4] for the instance of the mutation of influenza virus.
Besides, Dengue fever is one of the most typical vector-borne infectious disease prevailing in the
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tropical and subtropical areas. Usually, the fever is caused by five different serotypes (DEN I-IV) and
the corresponding fatality rates of these serotypes are dramatically different. This means that a person
living in an endemic area might be facing the risk of infection from five distinct serotypes, and a
individual who recovered form one of the serotypes could get permanent immunity to itself and only
temporary cross-immune against the others. In recent years, mathematical model increasingly become
a effective tool in the investigation of the spread of epidemics. With the aid of proper analysis for the
mathematical models, we can better understand the transmission mechanism of infectious diseases
and then take appropriate prevention and control measures to combat the diseases. In fact, the
researches of epidemic dynamics models involving multi-strain interactions have attracted
considerable attention of many scholars. Baba et al. [4] studied a two-strain model containing
vaccination for both strains. Cai et al. [6] studied a two-strain model including vaccination, and
analyzed the interaction between the strains under the vaccination theme. A class of multi-chain
models with discrete time delays, moreover, is considered in the case of temporary immunity and
multiple cross immunity by Bauer et al. [5]. For more literatures corresponding to pathogens with
multiple strains, we can refer to [1, 8, 24, 30, 33, 39] and the references.

In reality, accumulating empirical evidence shows that seasonal factors can affect the
host-pathogen interactions [3], and the incidence of many infectious diseases fluctuates over time,
often with a cyclical pattern(see, e.g., [16, 31, 37]). In addition, Yang, et al [35] found that
temperature and relative humidity were mainly the driving factors on COVID-19 transmission. It is
therefore necessary to consider infectious disease models with time-dependent parameters. Martcheva
et al. [24] considered a class of multi-chain models with time-periodic coefficients. Precisely
speaking, they presented sufficient conditions to guarantee the coexistence of the two-strain, and
further proved that competitive exclusion would occur only when the transmission rates on each chain
are linearly correlated.

At the same time, it is noticed that the resources, humidity and temperature are not uniformly
distributed in space, then spatial heterogeneity should not be ignored a practical epidemiological
model. From the point of view of model’s rationalization, the main parameters, such as infection rate
and recovery rate, should be intrinsically spatially dependent. Taking into consideration both the
spatial heterogeneity of the environment and the impact of individual movement on disease
transmission, Tuncer et al. [33] proposed the following two-strain model:

∂S (x, t)
∂t

= dS ∆S (x, t) −
(β1(x)I1(x, t) + β2(x)I2(x, t)) S (x, t)

S (x, t) + I1(x, t) + I2(x, t)
+ r1(x, t)I1(x, t) + r2(x, t)I2(x, t),

∂I1(x, t)
∂t

= d1∆I1(x, t) +
β1(x)S (x, t)I1(x, t)

S (x, t) + I1(x, t) + I2(x, t)
− r1(x, t)I1(x, t),

∂I2(x, t)
∂t

= d2∆I2(x, t) +
β2(x)S (x, t)I2(x, t)

S (x, t) + I1(x, t) + I2(x, t)
− r2(x, t)I2(x, t).

(1.1)

Furthermore, Acklehd et al. [1] studied a model with bilinear incidence, the results showed that the
spatial heterogeneity facilitated the coexistence of strains. Taking into account alternation of seasons,
Peng et al. [29] studied a reaction-diffusion SIS model, in which the disease transmission rate and
recovery rate are all spatial-dependent and temporally periodic. The results show that temporal
heterogeneity have little effect on the extinction and persistence of the diseases, nevertheless, the
combination of temporal and spatial heterogeneity would increase the duration of the disease.
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It is well known that the incubation period exist commonly in most infectious diseases, and the
length of the incubation periods corresponding to different diseases are often different. We can refer
Leung [19] for more information about the difference of the incubation period of COVID-19 between
various different variants. During the incubation period, random movements of individuals can give
rise to nonlocal effects, precisely speaking, the rate of gaining infectious individuals at current
position at the present time actually depends on the infections at all possible locations and all possible
previous times. This nonlocal interaction will affect the global dynamic behavior of the
solutions [7, 13], traveling wave phenomena [14], etc. Guo et al. [12] studied the threshold dynamics
of a reaction-diffusion model with nonlocal effects. In particular, Zhao et al. [38] considered the
threshold dynamics of a model with fixed latent period on the basis of model (1.1). In particular, when
Ri

0 = 1 and the infection rate is assumed to be strictly positive, they studied the threshold dynamics of
the model by constructing the upper control system.

Due to the individual difference in age, nutrition, lifestyle and health status, there are significant
difference in the immunity among different individuals [27]. This further lead to the difference of
incubation periods in different individuals. As McAloon, et al. [27] points out, it is critically
important to understand the variation in the distribution within the population. Thus, the fixed
incubation period is not always an ideal description for most diseases. Takeuchi et al. [32] considered
a vector-borne SIR infectious disease model with distributed time delay. Zhao et al. [39] studied a
two-group reaction-diffusion model with distributed delay. In [39], the recovered individuals are
assumed to be lifelong immune to the disease. However, this assumption is not suitable for all
epidemics. Then it is very necessary to establish and analysis a SIRS model involving aforementioned
various factors, and thus to further improve the existing relevant research. The purpose of this paper is
to investigate the threshold dynamics of a two-strain SIRS epidemic model with distributed delay and
spatiotemporal heterogeneity.

The remainder of this paper is organized as follows. In the next section, we derive the model and
show its well-posedness. In section 3, we established the threshold dynamics for the system in term
of the basic reproduction number Ri

0 and the invasion number R̂i
0 (i = 1, 2) for each strain i. At the

end of the current paper, a brief but necessary discussion is presented to show some epidemiological
implications of this study.

2. Model formulation and well-posedness

In this section, we propose a time-periodic two-strain SIRS model with distributed delay and
spatiotemporal heterogeneity, and further analyze some useful properties of the solutions of the
model.

2.1. Model formulation

Let Ω ∈ Rn denote the spatial habitat with smooth boundary ∂Ω. We suppose that only one mutant
can appear in a pathogen, and a susceptible individual can only be infected by one virus strain. Denote
the densities of the two different infectious classes with infection age a ≥ 0 and at position x, and time t
by E1(x, a, t) and E2(x, a, t), respectively. By a standard argument on structured population and spatial
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diffusion (see e.g., [28]), we obtain
(
∂
∂t + ∂

∂a

)
Ei(x, a, t) = Di∆Ei − (δi(x, a, t) + ri(x, a, t) + d(x, t)) Ei(x, a, t), x ∈ Ω, a > 0, t > 0

∂Ei(x,a,t)
∂n = 0, x ∈ ∂Ω, a > 0, t > 0, i = 1, 2,

(2.1)
where d(x, t) is the natural death rate at location x and time t; ri(x, a, t) and δi(x, a, t) represent the
recovery rates and mortality rates induced by the disease of the i-th infectious classes with infection
age a ≥ 0 at position x and time t; the constants Di denote the diffusion rates of the i-th infectious class
for i = 1, 2. We divide the population into six compartments: the susceptible group S (x, t), two latent
groups Li(x, t), two infective groups Ii(x, t), and the recovered group R(x, t), i = 1, 2. Let N(x, t) =

S (x, t) +
∑

i=1,2 (Li(x, t) + Ii(x, t)) + R(x, t). We assume that only a portion of recovered individuals
would be permanently immune to the virus. Let α(x, a, t) be the loss of immunity rate with infection
age a ≥ 0 at position x and time t. In order to simplify the model reasonably, we further suppose that

δi(x, a, t) = δi(x, t), ri(x, a, t) = ri(x, t), α(x, a, t) = α(x, t), ∀x ∈ Ω, a, t ≥ 0, i = 1, 2.

On account of the individual differences of the incubation period among the different individuals,
infections individuals of the i-th population be capable of infecting others until after a possible infection
age a ∈ (0, τi], where the positive constant τi is the maximum incubation period of i-th strain, i = 1, 2.
Let fi(r)dr denote the probability of becoming into the individuals who are capable of infecting others
between the infection age r and r +dr, then Fi(a) =

∫ a

0
fi(r)dr represents the probability of turning into

the individuals with infecting others before the infection age a for i = 1, 2. It is clear that Fi(a) ≥ 0 for
a ∈ (0, τi), Fi(a) ≡ 1 for a ∈ [τi,+∞), i = 1, 2, and

Li(x, t) =

∫ τi

0
(1 − Fi (a)) Ei(x, a, t)da,

Ii(x, t) =

∫ τi

0
Fi(a)Ei(x, a, t)da +

∫ +∞

τi

Ei(x, a, t)da, i = 1, 2.
(2.2)

Let

Ii£1(x, t) =

∫ τi

0
Fi(a)Ei(x, a, t)da, Ii£2(x, t) =

∫ +∞

τi

Ei(x, a, t)da.

It then follows that

∂Li(x, t)
∂t

=Di∆Li(x, t) − (δi(x, t) + ri(x, t) + d(x, t)) Li(x, t)

−

∫ τi

0
fi(a)Ei(x, a, t)da + Ei(x, 0, t),

and

∂Ii,1(x, t)
∂t

=Di∆Ii,1(x, t) − (δi(x, t) + ri(x, t) + d(x, t)) Ii,1(x, t)

+

∫ τi

0
fi(a)Ei(x, a, t)da − Ei(x, τi, t),

∂Ii,2(x, t)
∂t

= Di∆Ii,2(x, t) − (δi(x, t) + ri(x, t) + d(x, t)) Ii,2(x, t) + Ei(x, τi, t) − Ei(x,∞, t),
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where i = 1, 2. Biologically, we assume Ei(x,∞, t) = 0 (i = 1, 2). Then we have

∂Ii(x, t)
∂t

= Di∆Ii(x, t) − (δi(x, t) + ri(x, t) + d(x, t)) Ii(x, t) +

∫ τi

0
fi(a)Ei(x, a, t)da.

Denote the infection rate by βi(x, t) ≥ 0. Due to the fact that the contact of susceptible and infectious
individuals yields the new infected individuals, we take Ei(x, 0, t) as follows:

Ei(x, 0, t) =
βi(x, t)S (x, t)Ii(x, t)

S (x, t) + I1(x, t) + I2(x, t) + R(x, t)
, i = 1, 2.

In the absence of disease, moreover, we suppose that the evolution of the population density follows
the following equation:

∂N(x, t)
∂t

= DN∆N(x, t) + µ(x, t) − d(x, t)N(x, t),

where d(x, t) is the natural death rate, µ(x, t) is the recruiting rate, and DN denotes the diffusion rate. In
conclusion, the disease dynamics is expressed by the following system:

∂S (x, t)
∂t

= DS ∆S (x, t) + µ(x, t) − d(x, t)S (x, t) + α(x, t)R(x, t)

−
β1(x, t)S (x, t)I1(x, t)

S (x, t) + I1(x, t) + I2(x, t) + R(x, t)
−

β2(x, t)S (x, t)I2(x, t)
S (x, t) + I1(x, t) + I2(x, t) + R(x, t)

,

∂Li(x, t)
∂t

= Di∆Li(x, t) − (δi(x, t) + ri(x, t) + d(x, t)) Li(x, t)

+
βi(x, t)S (x, t)Ii(x, t)

S (x, t) + I1(x, t) + I2(x, t) + R(x, t)
−

∫ τi

0
fi(a)Ei(x, a, t)da,

∂Ii(x, t)
∂t

= Di∆Ii(x, t) − (δi(x, t) + ri(x, t) + d(x, t)) Ii(x, t) +

∫ τi

0
fi(a)Ei(x, a, t)da,

∂R(x, t)
∂t

= DR∆R(x, t) + r1(x, t)(L1(x, t) + I1(x, t)) + r2(x, t)(L2(x, t) + I2(x, t))

− d(x, t)R(x, t) − α(x, t)R(x, t), i = 1, 2.

(2.3)

We make the following basic assumption:

(H) DS ,Di,DR > 0, i = 1, 2, the functions d(x, t), µ(x, t), α(x, t), βi(x, t), δi(x, t), ri(x, t) are Hölder
continuous and nonnegative nontrivial on Ω̄ × R, and periodic in time t with the same period
T > 0. Moreover, d(x, t) > 0, x ∈ ∂Ω, t > 0.

For the sake of simplicity, we let hi(x, t) = δi(x, t) + ri(x, t) + d(x, t), i = 1, 2. In order to determine
Ei(x, a, t), let Vi(x, a, ξ) = Ei(x, a, a + ξ), ∀ξ ≥ 0, i = 1, 2. By a similar idea as that in [36], we have∂Vi(x,a,ξ)

∂a = Di∆Vi(x, a, ξ) − hi(x, t)Vi(x, a, ξ),
Vi(x, 0, ξ) = Ei(x, 0, ξ) =

βi(x,ξ)S (x,ξ)Ii(x,ξ)
S (x,ξ)+I1(x,ξ)+I2(x,ξ)+R(x,ξ) , i = 1, 2.

Let Γi(x, y, t, s) with x, y ∈ Ω and t > s ≥ 0 be the fundamental solution associated with the partial
differential operator ∂t − Di∆ − hi(x, t)(i = 1, 2). Then we have

Vi(x, a, ξ) =

∫
Ω

Γi(x, y, ξ + a, ξ)
βi(y, ξ)S (y, ξ)Ii(y, ξ)

S (y, ξ) + I1(y, ξ) + I2(y, ξ) + R(y, ξ)
dy. (2.4)
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According to the periodicity of hi and βi, Γi(x, y, t, s) is periodic, that is, Γi(x, y, t + T, s + T ) =

Γi(x, y, t, s), ∀x, y ∈ Ω, t > s ≥ 0, i = 1, 2. It follows from Ei(x, a, t) = Vi(x, a, t − a) that

Ei(x, a, t) =

∫
Ω

Γi(x, y, t, t − a)
βi(y, t − a)S (y, t − a)Ii(y, t − a)

S (y, t − a) + I1(y, t − a) + I2(y, t − a) + R(y, t − a)
dy. (2.5)

Substituting (2.5) into (2.3), and dropping the Li equations from (2.3) (since they are decoupled
from the other equations), we obtain the following system:

∂S (x, t)
∂t

= DS ∆S (x, t) + µ(x, t) − d(x, t)S (x, t) + α(x, t)R(x, t)

−
β1(x, t)S (x, t)I1(x, t)

S (x, t) + I1(x, t) + I2(x, t) + R(x, t)
−

β2(x, t)S (x, t)I2(x, t)
S (x, t) + I1(x, t) + I2(x, t) + R(x, t)

,

∂Ii(x, t)
∂t

= Di∆Ii(x, t) − (δi(x, t) + ri(x, t) + d(x, t)) Ii(x, t) +

∫ τi

0
fi(a)

·

∫
Ω

Γi(x, y, t, t − a)
βi(y, t − a)S (y, t − a)Ii(y, t − a)

S (y, t − a) + I1(y, t − a) + I2(y, t − a) + R(y, t − a)
dyda,

∂R(x, t)
∂t

= DR∆R(x, t) + r1(x, t)I1(x, t) + r2(x, t)I2(x, t) − d(x, t)R(x, t)

− α(x, t)R(x, t), i = 1, 2.

(2.6)

Set τ = max{τ1, τ2} > 0. Let X := C
(
Ω̄,R4

)
be the Banach space with a supremum norm ‖ · ‖X.

Let Cτ := C([−τ, 0], X) be a Banach space with the norm ‖φ‖ = max
θ∈[−τ,0]

‖φ(θ)‖X, ∀φ ∈ Cτ. Define

X+ := C
(
Ω̄,R4

+

)
, C+

τ := C([−τ, 0], X+), the (X, X+) and (Cτ,C+
τ ) are strongly ordered spaces. For σ > 0

and a given function u(t) : [−τ, σ]→ X, we denote ut ∈ Cτ by

ut(θ) = u(t + θ), ∀θ ∈ [−τ, 0].

Similarly, define Y = C
(
Ω̄,R

)
and Y+ = C

(
Ω̄,R+

)
. Furthermore, we consider the following system:

∂ω(x,t)
∂t = DS ∆ω(x, t) − d(x, t)ω(x, t), x ∈ Ω, t > 0,

∂ω(x,t)
∂t = 0, x ∈ ∂Ω, t > 0,

ω(x, 0) = φS (x), x ∈ Ω, φS ∈ Y+.

(2.7)

By the arguments in [15], Eq (2.7) exists an evolution operator VS (t, s) : Y+ −→ Y+ for 0 ≤ s ≤ t,
which satisfies VS (t, t) = I, VS (t, s)VS (s, ρ) = VS (t, ρ), 0 ≤ ρ ≤ s ≤ t, VS (t, 0)φS = ω(x, t; φS ), x ∈
Ω, t ≥ 0, φS ∈ Y+, where ω(x, t; φS ) is the solution of (2.7).

Consider the following periodic system:
∂ω̄i(x,t)
∂t = Di∆ω̄i(x, t) − hi(x, t)ω̄i(x, t)), x ∈ Ω, t > 0,

∂ω̄i(x,t)
∂n = 0, x ∈ ∂Ω, t > 0,

ω̄i(x, 0) = φi(x), x ∈ Ω, φi ∈ Y+.

(2.8)

and 
∂ω̃R(x,t)

∂t = DR∆ω̃R(x, t) − k(x, t)ω̃R(x, t)), x ∈ Ω, t > 0,
∂ω̃R(x,t)

∂t = 0, x ∈ ∂Ω, t > 0,
ω̃R(x, 0) = φR(x), x ∈ Ω, φR ∈ Y+,

(2.9)
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where k(x, t) = α(x, t) + d(x, t). Let Vi(t, s), i = 1, 2, and VR(t, s) be the evolution operators determined
by (2.8) and (2.9), respectively. The periodicity hypothesis (H) combining with [9, Lemma 6.1] yield
that VS (t + T, s + T ) = VS (t, s), Vi(t + T, s + T ) = Vi(t, s) and VR(t + T, s + T ) = VR(t, s), t ≥ s ≥ 0.
In addition, for any t, s ∈ R and s < t. VS (t, s), Vi(t, s) and VR(t, s) are compact, analytic and strongly
positive operators on Y+. It then follows from [9, Theorem 6.6] that there exist constants Q ≥ 1, Qi ≥ 1
and c0, ci ∈ R (i = 1, 2) such that

‖VS (t, s)‖, ‖VR(t, s)‖ ≤ Qe−c0(t−s), ‖Vi(t, s)‖ ≤ Qie−ci(t−s), ∀t ≥ s, i = 1, 2.

Let c∗i := ω̄(Vi), where

ω̄(Vi) = inf{ω|∃M ≥ 1 : ∀s ∈ R, t ≥ 0, ||Vi(t + s, s)|| ≤ M · eωt}

is the exponent growth bound of the evolution operator Vi(t, s). It is clear that c∗i < 0.
Define functions FS , Fi, FR : [0,∞) −→ Y respectively by

FS (t, φ) = µ(·, t) + α(·, t)φS (·, 0) −
2∑

i=1

βi(·, 0)φS (·, 0)φi(·, 0)
φS (·, 0) + φ1(·, 0) + φ2(·, 0) + φR(·, 0)

,

Fi(t, φ) =

∫ τi

0
fi(a)

∫
Ω

Γi(x, y, t, t − a)
βi(y, t − a)φS (y,−a)φi(y,−a)

φS (y,−a) + φ1(y,−a) + φ2(y,−a) + φR(y,−a)
dyda,

FR(t, φ) = r1(·, 0)φ1(·, 0) + r2(·, 0)φ2(·, 0).

Let F = (FS , F1, F2, FR), it is clear that F is a function from [0,∞) to X. Define

U(t, s) :=


VS (t, s) 0 0 0

0 V1(t, s) 0 0
0 0 V2(t, s) 0
0 0 0 VR(t, s)

 .
Then U(t, s) is an evolution operator from X to X. Note that VS , Vi (i = 1, 2) and VR are analytic

operators, it follows that U(t, s) is an analytic operator for (t, s) ∈ R2 with t ≥ s ≥ 0. Let

D(AS (t)) =

{
ψ ∈ C2(Ω̄) |

∂

∂n
ψ = 0 on ∂Ω

}
;

[AS (t)ψ](x) = DS ∆ψ(x) − d(x, t)ψ(x), ∀ψ ∈ D(AS (t));

D(Ai(t)) =

{
ψ ∈ C2(Ω̄) |

∂

∂n
ψ = 0 on ∂Ω

}
;

[Ai(t)ψ](x) = Di∆ψ(x) − hi(x, t)ψ(x), ∀ψ ∈ D(Ai(t)),

and

D(AR(t)) =

{
ψ ∈ C2(Ω̄) |

∂

∂n
ψ = 0 on ∂Ω

}
;

[AR(t)ψ](x) = DR∆ψ(x) − k(x, t)ψ(x), ∀ψ ∈ D(AR(t)).
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Moreover, we let

A(t) :=


AS (t) 0 0 0

0 A1(t) 0 0
0 0 A2(t) 0
0 0 0 AR(t)

 .
Then (2.3) can be rewritten as the following Cauchy problem:∂u(x,t)

∂t = A(t)u(x, t) + F(t, ut), x ∈ Ω, t > 0,
u(x, ζ) = φ(x, ζ), x ∈ Ω, ζ ∈ [−τ, 0],

(2.10)

where u(x, t) = (S (x, t), I1(x, t), I2(x, t),R(x, t))T. Furthermore, it can be rewritten as the following
integral equation

u(t, φ) = U(t, 0)φ(0) +

∫ t

0
U(t, s)F(t, us)ds, t ≥ 0, φ ∈ C+

τ .

Then the solution of above integral equation is called a mild solution of (2.10).

2.2. Well-posedness

Theorem 2.1. For each φ ∈ C+
τ , system (2.6) admits a unique solution u(t, φ) on [0,+∞) with u0 = φ,

and u(t, φ) is globally bounded.

Proof. By the definition of F(t, φ) and the assumption (H), F(t, φ) is locally Lipschitz continuous on
R+ ×C+

τ . We first show

lim
θ→0+

dist(φ(0) + θF(t, φ), X+) = 0, ∀(t, φ) ∈ R+ ×C+
τ . (2.11)

Set

β̄ = max{ max
x∈Ω̄,t∈[0,τ]

β1(x, t), max
x∈Ω̄,t∈[0,τ]

β2(x, t)};

mi(x, t) =
βi(x, t)φS (x, 0)φi(x, 0)

φS (x, 0) + φ1(x, 0) + φ2(x, 0) + φR(x, 0)
;

ni(x, t) =
βi(x, t)φS (x, t)φi(x, t)

φS (x, t) + φ1(x, t) + φ2(x, t) + φR(x, t)
.

For any t ≥ 0, θ ≥ 0 and x ∈ Ω̄, φ ∈ C+
τ , we have

φ(x, 0) + θF(t, φ)(x) =


φS (x, 0) + θ[µ(x, t) + α(x, t)φR(x, 0) −

2∑
i=1

mi(x, t)]

φ1(x, 0) + θ
∫ τ1

0
f1(a)

∫
Ω

Γ1(x, y, t, t − a)φ1(y, t − a)dyda
φ2(x, 0) + θ

∫ τ2

0
f1(a)

∫
Ω

Γ2(x, y, t, t − a)φ2(y, t − a)dyda
φR(x, 0) + r1(x, t)φ1(x, 0) + r2(x, t)φ2(x, 0)



≥


φS (x, 0)

(
1 − θ

2∑
i=1

βi(x,t)φi(x,0)
φS (x,0)+φ1(x,0)+φ2(x,0)+φR(x,0)

)
φ1(x, 0)
φ2(x, 0)
φR(x, 0)
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≥


φS (x, 0)

(
1 − θβ̄

2∑
i=1

φi(x,0)
φS (x,0)+φ1(x,0)+φ2(x,0)+φR(x,0)

)
φ1(x, 0)
φ2(x, 0)
φR(x, 0)


.

The above inequality implies that (2.11) holds when θ is small enough. Consequently, by [25,
Corollary 4] with K = X+ and S (t, s) = U(t, s), system (2.6) admits a unique mild solution u(x, t; φ)
with u0(·, ·; φ) = φ, t ∈ [0, tφ]. Since U(t, s) is an analytic operator on X for any t, s ∈ R, s < t, it
follows that u(x, t; φ) is a classical solution for t > τ. Set

P(t) =

∫
Ω

S (x, t) +

2∑
i=1

(Li(x, t) + Ii(x, t)) + R(x, t)

 dx,

µmax = sup
(x,t)∈Ω̄×[0,T ]

µ(x, t), µ̄max = µmax · |Ω|, dmin = inf
(x,t)∈Ω̄×[0,T ]

d(x, t).

Then

dP(t)
dt

=

∫
Ω

µ(x, t) − d(x, t)

S (x, t) +

2∑
i=1

(Li(x, t) + Ii(x, t)) + R(x, t)


−

2∑
i=1

δi(x, t) (Li(x, t) + Ii(x, t)) −
2∑

i=1

ri(x, t)Li(x, t)dx

≤

∫
Ω

µ(x, t)dx −
∫

Ω

d(x, t)

S (x, t) +

2∑
i=1

(Li(x, t) + Ii(x, t)) + R(x, t)

 dx

≤ µ̄max − dminP(t), t > 0.

We obtain that there are l := lφ large enough and M =
µ̄max
dmin

+ 1 > 0, so that for each φ ∈ C+
τ , one has

P(t) ≤ M, ∀t ≥ lT + τ.

Then
∫

Ω
Ii(x, t)dx ≤ M, ∀t ≥ lT + τ. According to [11] and assumption (H), we obtain that

Γi(x, y, t, t − a) and βi(x, t) are uniformly bounded functions for any x, y ∈ Ω, t ∈ [a, a + T ]. Set
Bi = sup

x,y∈Ω,t∈[a,a+T ]
Γi(x, y, t, t − a)βi(y, t − a), then we obtain

∂Ii

∂t
≤ Di∆Ii − hi(x, t)Ii(x, t) +

∫ τi

0
fi(a)

∫
Ω

Γi(x, y, t, t − a)βi(y, t − a)Ii(y, t − a)dyda

≤ Di∆Ii − hi(x, t)Ii(x, t) + Bi

∫ τi

0
fi(a)

∫
Ω

Ii(y, t − a)dyda

≤ Di∆Ii − hi(x, t)Ii(x, t) + BiMFi(τi)
= Di∆Ii − hi(x, t)Ii(x, t) + BiM, x ∈ Ω, t ≥ lT + τ.

(2.12)

Consider the following equation:∂ωi(x,t)
∂t = Di∆ωi(x, t) − hi(x, t)ωi(x, t) + BiM, x ∈ Ω, t > lT + τ,

∂ωi(x,t)
∂n = 0, x ∈ ∂Ω, t > lT + τ.

(2.13)
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It is evident that system (2.13) admits a strictly positive periodic solution with the period T > 0,
which is globally attractive. According to (2.12), the first equation of system (2.6) can be dominated by
(2.13) for any t > lT +τ. So there exists B1 > 0 such that for each φ ∈ C+

τ , we can find a li = li(φ) � l(φ)
satisfying Ii(x, t; φ) ≤ B1(i = 1, 2) for x ∈ Ω̄ and t ≥ liT + τ. Thus∂R(x,t)

∂t ≤ DR∆R(x, t) − k(x, t)R(x, t) + B1(r1(x, t) + r2(x, t)), x ∈ Ω, t > liT + τ,
∂R(x,t)
∂n = 0, x ∈ ∂Ω, t > liT + τ.

(2.14)

Similarly, there exists B2 > 0 such that for each φ ∈ C+
τ , there exists lR = lR(φ) � li satisfying

R(x, t; φ) ≤ B2 for x ∈ Ω̄ and t ≥ lRT + τ. Then we have∂S (x,t)
∂t ≤ DS ∆S (x, t) + µ(x, t) − d(x, t)S (x, t) + B2α(x, t), x ∈ Ω, t > lRT + τ,

∂S (x,t)
∂n = 0, x ∈ ∂Ω, t > lRT + τ.

(2.15)

Hence, there are B3 > 0 and lS = lS (φ) � lR such that for each φ ∈ C+
τ , S (x, t; φ) ≤ B3(i = 1, 2) for

x ∈ Ω̄ and t ≥ lS T + τ, and hence, tφ = +∞. �

Theorem 2.2. System (2.6) generates a T-periodic semi-flow Φt := ut(·) : C+
τ → C+

τ , namely
Φt(φ)(x, s) = ut(φ)(x, s) = u(x, t + s; φ) for any φ ∈ C+

τ , t ≥ 0 and s ∈ [−τ, 0]. In addition, ΦT admits a
global compact attractor on C+

τ , where u(x, t; φ) is a solution of system (2.6).

Proof. By a similar argument as the proof of [26, Theorem 8.5.2], one can show that Φt(φ) is
continuous for any φ ∈ C+

τ and t ≥ 0. In addition, similarly as the proof of [36, Lemma 2.1], we can
further verify that Φt is a T-periodic semi-flow on C+

τ . According to Theorem 2.1, we obtain that Φt is
dissipative. Moreover, by the arguments similar to those in the proof of [15, Proposition 21.2], we get
that there exists n0 ≥ 1 such that Φ

n0
T = un0T is compact on C+

τ for n0T ≥ τ. Following from [23,
Theorem 2.9], we have that ΦT : C+

τ → C+
τ admits a global compact attractor. �

3. Threshold dynamics

In this section, we first analyze the threshold dynamics of a single-strain model with the help of the
basic reproduction number, and then study the threshold dynamics of model (2.6).

3.1. Threshold dynamics of single-strain SIRS model

Let I j(x, t) ≡ 0,∀x ∈ Ω, t > 0, j = 1, 2, and i , j. Then system (2.6) reduces to the following
single-strain model:

∂S
∂t

=DS ∆S +µ(x, t)−d(x, t)S +α(x, t)R(x, t)−
βi(x, t)S (x, t)Ii(x, t)

S (x, t)+Ii(x, t)+R(x, t)
,

∂Ii

∂t
=Di∆Ii(x, t)−hi(x, t)Ii(x, t)

+

∫ τi

0
fi(a)

∫
Ω

Γi(x, y, t, t−a)
βi(y, t−a)S (y, t−a)Ii(y, t − a)

S (y, t − a)+Ii(y, t − a)+R(y, t − a)
dyda,

∂R
∂t

=DR∆R(x, t) + ri(x, t)Ii(x, t) − d(x, t)R(x, t) − α(x, t)R(x, t).

(3.1)

AIMS Mathematics Volume 7, Issue 4, 6331–6355.



6341

Consider the following linear equation:∂S (x,t)
∂t = DS ∆S (x, t) + µ(x, t) − d(x, t)S (x, t), x ∈ Ω, t > 0,

∂S (x,t)
∂n = 0, x ∈ ∂Ω, t > 0.

(3.2)

According to [36, Lemma 2.1], there is an unique T-periodic solution S ∗(x, t) of (3.2). Linearizing
the Ii-equation of system (3.1) at the disease-free periodic solution (S ∗, 0, 0), we have

∂ωi(x, t)
∂t

= Di∆ωi(x, t) − hi(x, t)ωi(x, t)

+

∫ τi

0
fi(a)

∫
Ω

Γi(x, y, t, t − a)βi(y, t − a)ωi(y, t − a)dyda, x ∈ Ω, t > 0,

∂ωi(x, t)
∂n

= 0, x ∈ ∂Ω, t > 0.

(3.3)

Let
CT (Ω̄ × R,R) := {u|u ∈ C(Ω̄ × R,R), u(x, t + T ) = u(x, t), (x, t) ∈ Ω × R,T > 0},

with the supremum norm, and define C+
T as the positive cone of CT (Ω̄ × R,R), namely,

C+
T := {u ∈ CT : u(t)(x) ≥ 0, ∀t ∈ R, x ∈ Ω̄}.

Let ψi(x, t) ∈ CT (Ω̄ × R,R) be the initial distribution of infected individuals of the i-strain at the
spatial position x ∈ Ω̄ and time t ∈ R, then Vi(t − a, s)ψi(s)(s < t − a) is the density of those infective
individuals at location x who were infective at time s and retain infective at time t−a when time evolved
from s to t − a. Furthermore,

∫ t−a

−∞
Vi(t − a, s)ψi(s)ds is the density distribution of the accumulative

infective individuals at positive x and time t − a for all previous time s < t − a. Hence the density of
new infected individuals at time t and location x can be written as∫ τi

0
fi(a)

∫
Ω

Γi(x, y, t, t − a)βi(y, t − a)
∫ t−a

−∞

(Vi(t − a, s)ψi(s)) (x)dsdyda

=

∫ τi

0
fi(a)

∫
Ω

Γi(x, y, t, t − a)βi(y, t − a)
∫ +∞

a
(Vi(t − a, t − s)ψi(t − s)) (x)dsdyda.

Defining operator Ci : CT (Ω̄ × R,R) −→ CT (Ω̄ × R,R) by

(Ciψi) (x, t) =

∫ τi

0
fi(a)

∫
Ω

Γi(x, y, t, t − a)βi(y, t − a)ψi(y, t − a)dyda.

Set

Ai(ψi)(x, t) = (Ciψi)(x, t), Bi(ψi)(x, t) =

∫ +∞

a
(Vi(t, t − s + a)ψi(t − s + a)) (x)ds.

Defining other operators Li, L̂i : CT −→ CT by

(Liψi) :=
∫ τi

0
fi(a)

∫
Ω

Γi(x, y, t, t − a)βi(y, t − a)
∫ +∞

a
Vi(t − a, t − s)ψi(t − s)(x)dsdyda,(

L̂iψi

)
(x, t) :=

∫ +∞

0
Vi(t, t − s) (Ciψi) (t − s)(x)ds, t ∈ R, s ≥ 0.
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Clearly, Li = AiBi, L̂i = BiAi, Li and L̂i are compact, bounded and positive operators. Let r(Li) and
r(L̂i) are the spectral radius of Li and L̂i respectively, then r(Li) = r(L̂i). Similar to [18, 20], we define
the basic reproduction number for system (3.1), that is, Ri

0 = r(Li) = r(L̂i).
Define Q := C([−τ, 0],Y), and let ||φ||Q := max

θ∈[−τ,0]
||φ(θ)||Y for any φ ∈ Q. Denote Q+ := C([−τ, 0],Y+)

as the positive cone of Q. Then (Q,Q+) is strongly ordered Banach space. Let P := C
(
Ω̄,R3

)
be the

Banach space with supremum norm ‖ · ‖P. For τ > 0, let Dτ := C([−τ, 0], P) be the Banach space
with ‖φ‖ = max

θ∈[−τ,0]
‖φ(θ)‖P for all φ ∈ Dτ. Define P+ := C

(
Ω̄,R3

+

)
and D+

τ := C([−τ, 0], P+), then both

(P, P+) and (Dτ,D+
τ ) are strongly ordered space. By the arguments in [21, 39], we have the following

observation:

Theorem 3.1. The signs of Ri
0 − 1 and ri − 1 are same.

Consider the following equation

∂ωi(x, t)
∂t

= Di∆ωi(x, t) − hi(x, t)ωi(x, t)

+

∫ τi

0
fi(a)

∫
Ω

Γi(x, y, t, t − a)
B3βi(y, t − a)

B3 + ωi(y, t − a)
ωi(y, t − a)dyda,

x ∈ Ω, t > 0,
∂ωi(x, s) = ψi(x, s), ψi ∈ Q+, x ∈ Ω, s ∈ [−τi, 0],
∂ωi(x, t)
∂n

= 0, x ∈ ∂Ω, t > 0,

(3.4)

where B3 is the constant in the proof of Theorem 2.1.

Theorem 3.2. Assume that ωi(x, t;ψi) is the solution of (3.4) with an initial value of ψi ∈ Q. If Ri
0 = 1

and βi(x, t) > 0 for all x ∈ Ω̄, t > 0, then ωi(x, t) ≡ 0 is globally attractive.

Proof. By a straightforward computation, one has that (3.4) is dominated by (3.3). Define the map
Pno

i : Q → Q by Pno
i (ψi) = ωn0

i,T with ωn0
i,T = ωi(x, n0T + s;ψi), where ωi(x, t;ψi) is the solution of

(3.3). Similar to the argument in [18], Pno
i is strongly positive on Q+ when βi(x, t) > 0,∀x ∈ Ω̄, t > 0.

It follows from [20, Lemma 3.1] that Pno
i admits a positive and simple eigenvalue ri, and a strongly

positive eigenfunction defined by ψi, that is Pi(ψi) = riψi. It follows from the strong positivity of ψi

that ωi(x, t;ψi) � 0. According to Theorem 3.2, we have ri = 1, and hence, µi = 0. By similar
arguments as the proof of [18, Lemma 3.2], we can show that there is a positive T -periodic function
ν∗i (x, t) = e−µ

i·0ωi(x, t;ψi) = ωi(x, t;ψi) such that ν∗i (x, t) is a solution of (3.3). Then for each initial
value ψi(x, s) ∈ Q, there exists a constant k > 0 such that ψi(x, s) ≤ kν∗i (x, s) for all x ∈ Ω, t > 0.
Moreover, by the comparison principle, one has ωi(x, t;ψi) ≤ kν∗i (x, t) for all x ∈ Ω, t > 0. Let

[0, kν∗i ]Q = {u ∈ Q : 0 ≤ u(x, s) ≤ kν∗i (x, s), ∀x ∈ Ω̄, s ∈ [−τi, 0]},

then
S n0

i (ψi) := ωi(x, noTω + S ;ψI) ⊆ [0, kν∗i ]Q, ∀x ∈ Ω̄, s ∈ [−τi, 0].

Hence the positive orbit γ+(ψi) := {S kn0
i (ψi) : ∀k ∈ N} of S n0

i (·) is precompact, and S n0
i maps

[0, kν∗i ]Q into [0, kν∗i ]Q, Due to comparison principle, we get S n0
i (·) is monotone. According to [40,

Theorem 2.2.2], we obtain that ωi(x, t) ≡ 0 is globally attractive. �
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Theorem 3.3. Suppose that S̄ (x, t;ψ) = (S (x, t;ψ), Ii(x, t;ψ),R(x, t;ψ)) is the solution of (3.1) with the
initial data ψ. If Ii(x, t0;ψ) . 0 for some t0 ≥ 0, then Ii(x, t;ψ) > 0, ∀x ∈ Ω̄, t > t0.

Proof. Obviously, for the secondly equation of (3.1), we get∂Ii(x,t)
∂t ≥ Di∆Ii(x, t) − hi(x, t)Ii(x, t), x ∈ Ω, t > 0,

∂Ii(x,t)
∂n = 0, x ∈ ∂Ω, t > 0, i = 1, 2,

and Ii(x, t0;ψ) . 0, t0 ≥ 0, i = 1, 2. It follows from [15, Proposition 13.1] that Ii(x, t;ψ) > 0 for all
x ∈ Ω̄ and t > t0. �

Theorem 3.4. Suppose that S̄ (x, t;ψ) = (S (x, t;ψ), Ii(x, t;ψ),R(x, t;ψ)) be the solution of (3.1) with the
initial data ψ = (ψS , ψi, ψR) ∈ Dτ, i = 1, 2. Then one has

(1) If Ri
0 = 1 and βi(x, t) > 0 for all x ∈ Ω and t > 0, then (S ∗, 0, 0) is globally attractive;

(2) If Ri
0 < 1, then (S ∗, 0, 0) is globally attractive;

(3) If Ri
0 > 1, then there is a M > 0 such that for any ψ ∈ D+

τ , one has

lim inf
t→∞

S (x, t;ψ) > M, lim inf
t→∞

Ii(x, t;ψ) > M, lim inf
t→∞

R(x, t;ψ) > M

uniformly for x ∈ Ω̄.

Proof. (1) According to the proof of Theorem 2.1, for t > lsT +τ, we have S (x, t; φ) ≤ B3, ∀x ∈ Ω̄, φ ∈

C+
τ . Thus, when t > lsT + τ, the second equation of (3.1) is dominated by (3.4) for x ∈ Ω̄. In addition,

one has Ii(x, t;ψ) ≤ ωi(x, t) for x ∈ Ω̄ and t > lsT + τ. Since Ri
0 = 1 and βi(x, t) > 0 for x ∈ Ω̄, t > 0.

It follows from Theorem 3.5 that lim
t→∞

ωi(x, t) = 0 for all x ∈ Ω̄. In addition, one has lim
t→∞

Ii(x, t;ψ) = 0

for all x ∈ Ω̄, and lim
t→∞

R(x, t;ψ) = 0 for all x ∈ Ω̄. Hence the first equation of (3.1) is asymptotic to
(3.2). It follows from [36, Lemma 2.1] that system (3.2) admits an unique positive T-periodic solution
S ∗(x, t),which is globally attractive.

Let P = ΦT , J = ω̄(ψ) denotes the omega limit set for P. That is

J = {(φ∗S , φ
∗
i , φ

∗
R) ∈ C+

τ : ∃{ki} → ∞ s.t. lim
i→∞

Pki(φS , φi, φR) = (φ∗S , φ
∗
i , φ

∗
R)}.

It follows fron [17, Lemma 2.1] that J is an internally chain transitive sets for P. Since
lim
t→∞

Ii(x, t;ψ) = 0 and lim
t→∞

R(x, t;ψ) = 0 for all x ∈ Ω̄, then J = J1 × {0̂} × {0̂}. According to Theorem

3.5, one has 0̂ < J1. Let ω(x, t;ψS (·, 0)) be the solution of (3.2) with the initial value
ω(x, 0) = ψS (x, 0), where ψS ∈ Q+. Define

ωt(x, θ;ψS ) =

ω(x, θ + t;ψS (0)) t + θ > 0, t > 0, θ ∈ [−τ, 0],
ψ(x, θ + t) t + θ ≤ 0, t > 0, θ ∈ [−τ, 0].

Then we define the solution semiflow ωt for (3.2).
Let P̄ = ωT (ψS ), ω̄(ψS ) denotes the omega limit set of P̄. According to [36, Lemma 2.1], one has

ω̄(ψS ) = {S ∗}. Since P(J) = J and Ii(x, t; (ψS , 0̂, 0̂)) ≡ 0, R(x, t; (ψS , 0̂, 0̂)) ≡ 0, P(J) = P̄(J1)×{0̂}×{0̂},
then P̄(J1) = J1. Therefore, J1 is an internally chain transitive sets for P̄. It follows from [36, Lemma
2.1] that {S ∗} is globally attractive on Q+. In addition, J1∩WS {S ∗} = J1∩ Q+ = ∅, where WS {S ∗} is the
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stable set of S ∗. According to [40, Theorem 1.2.1], one has J1 ⊆ {S ∗}, then J1 = {S ∗}. Consequently,
J = {(S ∗, 0, 0)}. By the definition of J, we have

lim
t→∞
‖ (S (·, t;ψ), Ii(·, t;ψ),R(·, t;ψ)) − (S ∗(·, t), 0, 0) ‖= 0.

(2) Consider equation

∂ω∗i (x, t)
∂t

= Di∆ω
∗
i (x, t) − hi(x, t)ω∗i (x, t)

+

∫ τi

0
fi(a)

∫
Ω

Γi(x, y, t, t − a)(βi(y, t − a) + ε)ω∗i (y, t − a)dyda,

x ∈ Ω, t > 0,
∂ω∗i (x, t)
∂n

= 0, x ∈ ∂Ω, t > 0.

(3.5)

Since Ri
0 < 1, it follows from Theorem 2.1 that ri < 1. Thus there exists a constant ε0 > 0 such

that ri,ε < 1 for ε ∈ [0, ε0). Then µi,ε := ln ri,ε

T < 0 for ε ∈ [0, ε0). Similar to the proof of [18, Lemma
3.2], there is positive T-periodic function νεi (x, t) such that ωε

i (x, t) = eµ
i,ε
νεi (x, t) satisfies (3.5). Since

µi,ε < 0, lim
t→∞

ωε
i (x, t) = 0 uniformly for x ∈ Ω.

For x ∈ Ω, t > 0, one has

∂Ii(x, t)
∂t

≤ Di∆Ii(x, t) − hi(x, t)Ii(x, t)

+

∫ τi

0
fi(a)

∫
Ω

Γi(x, y, t, t − a)(βi(y, t − a) + ε)Ii(y, t − a)dyda,

x ∈ Ω, t > 0,
∂Ii(x, t)
∂n

= 0, x ∈ ∂Ω, t > 0.

(3.6)

For any given initial distribution ψ ∈ D+
τ , due to the boundedness of Ii(x, t;ψ), there exists α > 0

such that Ii(x, t;ψ) ≤ α · ωε
i (x, t), ∀t ∈ [kT, kT + τ], x ∈ Ω̄, and hence, Ii(x, t;ψ) ≤ α · ωε

i (x, t) for
t ≥ kT + τ. Then lim

t→∞
Ii(x, t;ψ) = 0 and lim

t→∞
R(x, t;ψ) = 0 for all x ∈ Ω̄. Furthermore, similar to the

proof of (1), we have

lim
t→∞
‖ (S (·, t;ψ), Ii(·, t;ψ),R(·, t;ψ)) − (S ∗(·, t), 0, 0) ‖= 0.

(3) Let
W i

0 = {ψ = (ψS , ψi, ψR) ∈ D+
τ : ψi(·, 0) , 0},

∂W i
0 := D+

τ \W
i
0 = {ψ = (ψS , ψi, ψR) ∈ D+

τ : ψi(·, 0) ≡ 0}.

Define Φt : D+
τ → D+

τ by Φt(ψ)(x, s) = (S (x, t + s;ψ), Ii(x, t + s;ψ),R(x, t + s;ψ)). By Theorem 3.6,
we know that Ii(x, t + s;ψ) > 0 for any ψ ∈ W0

i , x ∈ Ω̄ and t > 0. Thus there exists k ∈ N such that
Φk

n0T (W i
0) ⊆ W i

0. Define
Mi

∂ := {ψ ∈ ∂W i
0 : Φk

n0T (ψ) ∈ ∂W i
0, ∀k ∈ N}.
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Let M := (S ∗, 0, 0) and ω(ψ) be the omega limit set of the orbit γ+ := {Φk
n0T (ψ) : ∀k ∈ N}. For any

given ψ ∈ Mi
∂
, we have Φk

n0T (ψ) ∈ ∂W i
0. Thus Ii(x, t;ψ) ≡ 0, ∀x ∈ Ω̄, t ≥ 0. Therefore R(x, t;ψ) ≡ 0

for any x ∈ Ω̄ and t ≥ 0. By similar arguments as the proof of (1), we have

lim
t→∞
‖ (S (·, t;ψ), Ii(·, t;ψ),R(·, t;ψ)) − (S ∗(·, t), 0, 0) ‖= 0.

That is ω(ψ) = M for any ψ ∈ Mi
∂
.

For sufficient small θ̄ > 0, consider the following system:

∂vθi (x, t)
∂t

= Di∆vθi (x, t) − hi(x, t)vθi (x, t)

+

∫ τi

0
fi(a)

∫
Ω

Γi(x, y, t, t − a)
βi(y, t − a)(S ∗(y, t − a) − θ̄)

S ∗(y, t − a) + θ̄
vθi (y, t − a)dyda,

x ∈ Ω, t > 0,
∂vθi (x, s) = ψi(x, s), ψi ∈ Q+, x ∈ Ω, s ∈ [−τi, 0],
∂vθi (x, t)
∂n

= 0, x ∈ ∂Ω, t > 0.

(3.7)

Let vθi (x, t;ψi) be the solution of (3.7). Note vθi,n0T (ψi)(x, s) = vθi (x, s + n0T ;ψi) for all x ∈ Ω and
s ∈ [−τi, 0]. Define the poincaré map (χi

θ)
n0 : Q+ → Q+ by (χi

θ)
n0(ψi) = vθi,n0T (ψi). It is easy to prove

that (χi
θ)

n0 is a compact, strongly positive operator. Let (ri
θ)

n0 be the spectral radius of (χi
θ)

n0 . According
to [15, Theorem 7.1], there is a positive eigenvalue (ri

θ)
n0 and a positive eigenfunction ϕ̃i such that

(χi
θ)

n0 = (ri
θ)

n0ϕ̃i. Since Ri
0 > 1, it follows from Theorem 2.1 that ri > 1. Then there exists a sufficient

small number θ1 > 0 such that ri
θ > 1 for θ ∈ (0, θ1).

By the continuous dependence of solutions on initial value, there exists θ0 ∈ (0, θ1) such that

‖S (x, t; φ), Ii(x, t; φ),R(x, t; φ) − (S ∗(x, t), 0, 0)‖ < θ̄, ∀x ∈ Ω̄, t ∈ [0,T ],

if
‖(φS (x, s), φi(x, s), φR(x, s)) − (S ∗(x, s), 0, 0)‖ < θ0, x ∈ Ω̄, s ∈ [−τi, 0].

Claim. M is a uniformly weak repeller for W i
0, that is,

lim sup
k→∞

‖Φk
n0T (ψ) − M‖ ≥ θ0, ∀ψ ∈ W i

0.

Suppose, by contradiction, there exists ψ0 ∈ W i
0 such that

lim sup
k→∞

‖Φk
n0T (ψ) − M‖ < θ0.

Then there exist a k0 ∈ N such that

|S (x, kn0T + s;ψ0) − S ∗| < θ0, |Ii(x, kn0T + s;ψ0| < θ0,

|R(x, kn0T + s;ψ0| < θ0, ∀x ∈ Ω̄, s ∈ [−τi, 0], k ≥ k0.

According to (3.11), for any t > kn0T and x ∈ Ω̄,

S ∗ − θ̄ < S (x, t;ψ0) < S ∗ + θ̄, 0 < Ii(x, t;ψ0) < θ̄, 0 < R(x, t;ψ0) < θ̄.
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Therefore, for Ii-equation of (3.1), we have

∂Ii(x, t)
∂t

≥ Di∆Ii(x, t) − hi(x, t)Ii(x, t)

+

∫ τi

0
fi(a)

∫
Ω

Γi(x, y, t, t − a)
βi(y, t − a)(S ∗(y, t − a) − θ̄)

S ∗(y, t − a) + θ̄
Ii(y, t − a)dyda,

x ∈ Ω, t > (k0 + 1)n0T.

(3.8)

Since
Ii(x, t;ψ0) > 0, x ∈ Ω̄, t > (k0 + 1)n0T,

there exist some κ > 0, such that

Ii(x, (k0 + 1)n0T + s;ψ0) ≥ κϕ̃i(x, s), ∀x ∈ Ω̄, s ∈ [−τi, 0].

By (3.12) and the comparison principle, we have

Ii(x, t + s;ψ0) ≥ κνθi (x, t − (k0 + 1)n0T + s; ϕ̃i), ∀x ∈ Ω̄, t > (k0 + 1)n0T.

Therefore, we have

Ii(x, kn0T + s;ψ0) ≥ κνθi (x, k − (k0 + 1)n0T + s; ϕ̃i) = κ(ri
θ)

(k−k0−1)n0ϕ̃i(x, s), (3.9)

where k ≥ k0 + 1, s ∈ [−τi, 0]. Since ϕ̃i(x, s) > 0 for (x, s) ∈ Ω̄ × [−τi, 0], there is (xi, si) ∈ Ω̄ × [−τi, 0]
such that ϕ̂i(xi, si) > 0. It follows from (ri

θ)
n0 > 1 that Ii(xi, kn0T + si;ψ0) → +∞ as k → ∞, which

contradicts to Ii(x, t;ψ0) ∈ (0, θ̄).
Let WS (M) be the stable set of M. In conclusion, WS (M) = Mi

∂
; M is an isolated invariant set for

Φn0T in W i
0; WS (M) ∩W i

0 = Mi
∂
∩W i

0 = ∅. According to [40, Theorem 1.3.1] and [40, Remark 1.3.1],
one has there is σ̄ > o such that inf d(ω(ψ), ∂W i

0) ≥ σ̄ for any ψ ∈ W i
0. That is lim inf

t→∞
d(Φk

n0T , ∂W i
0) ≥ σ̄

for any ψ ∈ W i
0. Therefore, Φn0T : D+

τ → D+
τ is uniformly persistent with respect to (W i

0, ∂W i
0).

Similar to Theorem 2.1, it can be proved that the solution S̄ (x, t;ψ) of 3.1 is globally bounded for any
ψ ∈ D+

τ . Therefore, Φn0T : D+
τ → D+

τ is point dissipative. It is easy to prove that Φn0T is compact
on W i

0 for n0T > τi. It follows from [40, Section 1.1] that the compact map Φn0T is an α−contraction
of order 0, and an α−contraction of order 0 is α−condensing. Then according to [23, Theorem 4.5],
Φn0T : W i

0 → W i
0 admits a compact global attractor Zi

0.
Similar to the proof of [22, Theroem 4.1], let P : D+

τ → [0,+∞) by

P(ψ) = min
x∈Ω̄

ψi(x, 0), ∀ψ ∈ D+
τ .

Since Φn0T (Zi
0) = Zi

0, we have that ψi(·, 0) > 0 for any ψ ∈ Zi
0. Let Bi := ∪

t∈[0,n0T ]
Φt(Zi

0), then Bi ⊆ W i
0.

In addition, we get lim
t→∞

d(Φt(ψ), Bi) = 0 for all ψ ∈ W i
0. Since Bi is a compact subset of W i

0, we have
min
ψ∈Bi

P(ψ) > 0. Thus, there exists a σ∗ > 0 such that lim inf
t→∞

Ii(·, t;ψ) ≥ σ∗. Furthermore, according to

Theorem 3.6, there exists M > 0 such that lim inf
t→∞

Ii(·, t;ψ) ≥ M. �
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3.2. Threshold dynamics of two-strain SIRS model

3.2.1. Coexistence

Consider the following equation:

∂S̄ (x, t)
∂t

=DS̄ ∆S̄ (x, t) + µ(x, t) − d(x, t)S̄ (x, t) − β1(x, t)S̄ (x, t)

− β2(x, t)S̄ (x, t), x ∈ Ω, t > 0,
∂S̄ (x, t)
∂n

=0, x ∈ ∂Ω, t > 0, i = 1, 2.

(3.10)

According to [36, Lemma 2.1], equation (3.10) admits a unique positive solution S̄ ∗, which is T-
periodic with respect to t ∈ R. Obviously, for the S -equation of (2.6), we have

∂S (x, t)
∂t

≥DS ∆S (x, t) + µ(x, t) − d(x, t)S (x, t) − β1(x, t)S (x, t),

− β2(x, t)S (x, t), x ∈ Ω, t > 0,
∂S (x, t)
∂n

=0, x ∈ ∂Ω, t > 0, i = 1, 2.

(3.11)

It follows from the comparison principle, one has

lim inf
t→∞

S (x, t) ≥ S̄ ∗(x, t), ∀x ∈ Ω̄.

According to Theorem 2.1, there exist constants B1, B2 and lR, such that

Ii(x, t; φ) ≤ B1(i = 1, 2), R(x, t; φ) ≤ B2

for t ≥ lRT + τ. Consider the following equation:

∂ui(x, t)
∂t

=Di∆ui(x, t) − hi(x, t)ui(x, t)

+

∫ τi

0
fi(a)

∫
Ω

Γi(x, y, t, t − a)βi(y, t − a)
S̄ ∗(x, t)

S̄ ∗(x, t) + B1 + B2
ui(y, t − a)dyda,

x ∈ Ω, t > 0,
∂ui(x, t)
∂n

=0, x ∈ ∂Ω, t > 0, i = 1, 2.

(3.12)

Let ui(x, t; φi) be the solution of (3.12) for φi ∈ Q, (x, s) ∈ Ω̄ × [−τ, 0]. Define P̄i : Q → Q by
P̄i(φi) = ui,T (φi) for any φi ∈ Q, where ui,T (φi)(x, t) = ui(x, s + T ; φi), (x, s) ∈ Ω̄ × [−τ, 0]. Let ρ0

i be the
spectral of P̄i. We define the linear operator L̄i : CT → CT by:

L̄i(ψi)(x, t) =

∫ τi

0
fi(a)

∫
Ω

Γi(x, y, t, t − a)βi(y, t − a)
S ∗(x, t)

S ∗(x, t) + B1 + B2

·

∫ ∞

a
(Vi(t − a, t − s)ψi(t − s))(y)dsdyda.

Then the operator L̄i is positive and bounded on CT (Ω̄ × R,R). Let r(L̄i) denote the spectral radius
of L̄i. Similar to [18, 20], define the invasion number R̂i

0 for strain i by R̂i
0 := r(L̄i), and we have the

following result.
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Theorem 3.5. The signs of R̂i
0 − 1 and ρ0

i − 1 are same.

By the arguments similar to those in the proof of [38, Proposition 5.10], we further have the
following observation.

Theorem 3.6. If R̂i
0 > 1, then Ri

0 > 1, i = 1, 2.

Theorem 3.7. Suppose that R̂i
0 > 1 (i = 1, 2). Then for any ψ = (ψS , ψ1, ψ2, ψR) ∈ C+

τ , ψi . 0 (i = 1, 2),
there is an η > 0 such that

lim inf
t→∞

S (x, t;ψ) ≥ η, lim inf
t→∞

Ii(x, t;ψ) ≥ η, i = 1, 2.

Proof. According to Theorem 3.6 and R̂i
0 > 1 (i = 1, 2), one has Ri

0 > 1 (i = 1, 2). Let

Z0 = {ψ = (ψS , ψ1, ψ2, ψR) ∈ C+
τ : ψ1(·, 0) . 0 ψ2(·, 0) . 0},

∂Z0 := C+
τ \W0 = {ψ = (ψS , ψ1, ψ2, ψR) ∈ C+

τ : ψ1(·, 0) ≡ 0 ψ2(·, 0) ≡ 0},

and
Z∂ := {ψ ∈ ∂Z0 : Φk

n0T (ψ) ∈ ∂Z0, ∀k ∈ N}.

Define Φt : C+
τ → C+

τ by Φt(ψ)(x, s) = S̃ (x, t + s;ψ), ∀ψ ∈ C+
τ and Φk

n0T (ψ) := S̃ (x, n0T + s;ψ) for
k ∈ N and (x, s) ∈ Ω̄ × [−τ, 0]. It is easy to obtain that Φt(Z0) ∈ Z0 for t > 0. Let

E0 := (S̄ ∗, 0, 0, 0), E1 := {(ψS , ψ1, 0, ψR)}, E2 := {(ψS , 0, ψ2, ψR)},

and ω̄(ψ) denotes the omega limit set of the orbit γ+ := {Φk
n0T (ψ) : ∀k ∈ N} for ψ ∈ Z∂, we then have

the following claims.
Claim 1. ∪

ψ∈Z∂
ω̄(ψ) = E0 ∪ E2 ∪ E2.

For any Φk
n0T (ψ) ∈ Z∂, it can be see that Φk

n0T (ψ) ∈ Z∂, ∀k ∈ N. Then I1(x, t;ψ) ≡ 0 or I2(x, t;ψ) ≡ 0
for x ∈ Ω̄ and t > 0. Suppose, by contradiction, if there exists ti > 0 such that Ii(x, t;ψ) . 0 on
x ∈ Ω̄, i = 1, 2. Then the strong positivity of Vi(t, s)(t > s) implies that Ii(x, t;ψ) > 0 for all t > ti and
x ∈ Ω̄, i = 1, 2, which contradicts with the fact Φk

n0T (ψ) ∈ Z∂. If I1(x, t;ψ) ≡ 0 on (x, t) ∈ Ω̄ × R+, it
follows from Theorem 3.7 that ω̄(ψ) = E0 ∪ E2. If I2(x, t;ψ) ≡ 0 on (x, t) ∈ Ω̄ × R+. Similarly, one has
ω̄(ψ) = E0 ∪ E1. Therefore, Claim 1 holds.
Claim 2. E0 is a uniformly weak repeller for Z0, in the sense that,

lim sup
k→∞

‖Φk
n0T (ψ) − E0| ≥ ε0, ∀ψ ∈ Z0

for ε0 > 0. The proof of Claim 2 is similar to those in Theorem 3.4(3), so we omit it.
Claim 3. E1 and E2 is a uniformly weak repeller for Z0, in the sense that,

lim sup
k→∞

‖Φk
n0T (ψ) − Ei| ≥ ε0, ∀ψ ∈ Z0, i = 1, 2

for some ε0 > 0 small enough. We only give the proof for E1, the proof of E2 is similar. Due to
Theorem 2.1, there are B1, B2 and lR � 0, such that

Ii(x, t; φ) ≤ B1 (i = 1, 2), R(x, t; φ) ≤ B2
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for t ≥ lRT + τ. For sufficient small ε > 0, we consider the following system:

∂ωε
2

∂t
=D2∆ω

ε
2(x, t) − h2(x, t)ωε

2(x, t)

+

∫ τ2

0
f2(a)

∫
Ω

Γ2(x, y, t, t − a)β2(y, t − a)
S̄ ∗(x, t) − ε

S̄ ∗(x, t) + B1 + B2
ωε

2(y, t − a)dyda,

x ∈ Ω, t > 0,
∂ωε

2

∂n
=0, x ∈ ∂Ω, t > 0, i = 1, 2,

(3.13)

where S̄ ∗ is the positive periodic solution of (3.11). Let ωε
2(x, t;ψ2) be the solution of (3.13) with initial

data ωε
2(x, s) = ψ2(x, s), ψ2 ∈ Q+, x ∈ Ω, s ∈ [−τ, 0]. Note ωε

2,n0T (ψ2)(x, s) = ωε
2(x, s + n0T ;ψ2) for

all x ∈ Ω and s ∈ [−τ1, 0]. Define (Ψε
2)n0 : Q+ → Q+ by (Ψε

2)n0(ψ2) = ωε
2,n0T (ψ2). Let r̂2

ε and (r̂2
ε)

n0 be
the spectral radius of Ψε

2 and (Ψε
2)n0 , respectively. It is easy to prove that (Ψε

2)n0 is compact, strongly
positive operator. According to [15, Theorem 7.1], we get that (Ψε

2)n0 admits a positive and simple
eigenvalue (r̂2

ε)
n0 and a positive eigenfunction ϕ2 satisfying (Ψε

2)n0 = (r̂2
ε)

n0ϕ2. Since R2
0 > 1, it follows

from Theorem 3.5 that ρ0
2 > 1, then there exists a sufficient small number ε1 > 0 such that r2

ε > 1 for
any ε ∈ (0, ε1).

By the continuous dependence of solution on initial value, there exists ε0 ∈ (0, ε1) such that

‖Φk
T (ψ) − E1‖ < ε̄, ∀x ∈ Ω̄, t ∈ [0,T ], (3.14)

if
‖φ(x, s) − E1‖ < ε0, x ∈ Ω̄, s ∈ [−τ, 0].

Suppose, by contradiction, there exists ψ0 ∈ W0 such that

lim sup
k→∞

‖Φk
n0T (ψ) − E1‖ < ε0.

That is, there is k0 ∈ N such that

S̄ ∗ − ε̄ < S (x, t;ψ0) < S̄ ∗ + ε̄; 0 < I1(x, t;ψ0) < B1;

and
0 < I2(x, t;ψ0) < ε̄; 0 < R(x, t;ψ0) < B2

for all k ≥ k0. Therefore, for I2-equation of (2.6), we have

∂I2(x, t)
∂t

≥D2∆I2(x, t) − h2(x, t)I2(x, t)

+

∫ τ2

0
f1(a)

∫
Ω

Γ2(x, y, t, t − a)β2(y, t − a)
S̄ ∗(y, t − a) − ε̄
S̄ ∗ + B1 + B2

I2(y, t − a)dyda
(3.15)

for x ∈ Ω and t > (k0 + 1)n0T . Since

I2(x, t;ψ0) > 0, ∀x ∈ Ω̄, t > (k0 + 1)n0T,
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there is some κ > 0, such that

I2(x, (k0 + 1)n0T + s;ψ0) ≥ κϕ2(x, s), ∀x ∈ Ω̄, s ∈ [−τ2, 0].

By (3.15) and the comparison principle, we have

I2(x, t + s;ψ0) ≥ ωε
2(x, t − (k0 + 1)n0T + s;ϕ2), ∀x ∈ Ω̄, t > (k0 + 1)n0T.

Therefore, we have

I2(x, kn0T + s;ψ0) ≥ κωε
2(x, k − (k0 + 1)n0T + s;ϕ2) = κ(r̂2

ε)
(k−k0−1)n0ϕ2(x, s), (3.16)

where k ≥ k0 +1, s ∈ [−τ2, 0]. Since ϕ2(x, s) > 0 for (x, s) ∈ Ω̄× [−τ2, 0], there is (x2, s2) ∈ Ω̄× [−τ2, 0]
such that ϕ2(x2, s2) > 0. It follows from (r2

ε)
n0 > 1 that I2(x2, kn0T + s2;ψ0) → +∞ as k → ∞, which

contradicts to I2(x, t;ψ0) ∈ (0, ε̄).
Let Θ := E0 ∪ E1 ∪ E2, WS (Θ) be the stable set of Θ. In conclusion, WS (Θ) = Z∂; Θ is an

isolated invariant set for Φn0T in Z0, WS (Θ) ∩ Z0 = Z∂ ∩ Z0 = ∅. According to [10, Theorem 1.3.1]
and [10, Remark 1.3.1], there exists σ̄ > 0 such that inf d(ω(ψ), ∂Z0) ≥ σ̄ for all ψ ∈ Z0. That is,
lim inf

t→∞
d(Φk

n0T , ∂Z0) ≥ σ̄ for any ψ ∈ Z0. Therefore, Φn0T : C+
τ → C+

τ is uniformly persistent with

respect to (Z0, ∂Z0). Similar to Theorem 2.1, it can be proved that the solution S̃ (x, t;ψ) of (2.6) is
globally bounded for any ψ ∈ D+

τ . Therefore, Φn0T : C+
τ → C+

τ is point dissipative. It is easy to prove
that Φn0T is compact on Z0 for n0T > τ1. It then follows from [40, Section 1.1] that the compact map
Φn0T is an α−contraction of order 0, and an α−contraction of order 0 is α−condensing. Then according
to [23, Theorem 4.5], we obtain that Φn0T : Z0 → Z0 admits a compact global attractor N0.

Similar to the proof of [22, Theroem 4.1], let P : C+
τ → [0,+∞) by

P(ψ) = min{min
x∈Ω̄

ψ1(x, 0),min
x∈Ω̄

ψ2(x, 0)}, ∀ψ ∈ C+
τ .

Since Φn0T (N0) = N0, we have ψi(·, 0) > 0 for any ψ ∈ N0. Let B0 := ∪
t∈[0,n0T ]

Φt(N0), then B0 ⊆ Z0.

In addition, we get lim
t→∞

d(Φt(ψ), B0) = 0 for all ψ ∈ Z0. Since B0 is a compact subset of Z0. We have
min
ψ∈B0

P(ψ) > 0. Thus, there exists η > 0 such that lim inf
t→∞

I1(·, t;ψ) ≥ η. �

3.2.2. Competitive exclusion

In this subsection, under the condition that the invasion numbers on two strains are greater than 1, it
is proved that two strains will always persist uniformly. By the arguments similar to those in the proof
of Theorems 3.7 and 3.2, we have the following observations.

Theorem 3.8. Suppose that S̃ (x, t;ψ) = (S (x, t;ψ), I1(x, t;ψ), I2(x, t;ψ),R(x, t;ψ)) is the solution of
(2.6) with initial data ψ = (ψS , ψ1, ψ2, ψR) ∈ Cτ. If R1

0 > 1 > R2
0 and ψ1(·, 0) . 0, then

lim
t→∞

I2(x, t;ψ) = 0,

and there is P > 0 such that
lim inf

t→∞
I1(x, t;ψ) ≥ P, (3.17)

uniformly for x ∈ Ω̄.
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Theorem 3.9. Suppose that R1
0 > 1 = R2

0 and β2(x, t) > 0 on (x, t) ∈ Ω̄ × [0,∞). If C+
τ satisfies

ψ1(·, 0) . 0, then we have
lim
t→∞

I2(x, t;ψ) = 0,

and there is P > 0 such that
lim inf

t→∞
I1(x, t;ψ) ≥ P,

uniformly for x ∈ Ω̄.

Theorem 3.10. Suppose that R2
0 > 1 > R1

0, if ψ ∈ C+
τ satisfies ψ2(·, 0) . 0, then we have

lim
t→∞

I1(x, t;ψ) = 0,

and there is P > 0 such that
lim inf

t→∞
I2(x, t;ψ) ≥ P, (3.18)

uniformly for x ∈ Ω̄.

Theorem 3.11. Suppose that R2
0 > 1 = R1

0 and β1(x, t) > 0 on (x, t) ∈ Ω̄ × [0,∞). If ψ ∈ C+
τ satisfies

ψ2(·, 0) . 0, then we have
lim
t→∞

I1(x, t;ψ) = 0,

and there is P > 0 such that
lim inf

t→∞
I2(x, t;ψ) ≥ P,

uniformly for x ∈ Ω̄.

3.2.3. Global extinction

Finally, we show that the periodic solution (S ∗, 0, 0, 0) of (2.6) is globally attractive under some
conditions.

Theorem 3.12. Suppose that Ri
0 < 1 for i = 1, 2. Then the periodic (S ∗, 0, 0, 0) of (2.6) is globally

attractive.

Proof. Due to Ri
0 < 1, i = 1, 2, similar to Theorem 3.4, one has

lim
t→∞

Ii(x, t;ψ) = 0, ∀x ∈ Ω̄, ψ ∈ C+
τ , i = 1, 2.

By using the theory of chain transitive sets, we get

lim
t→∞

S (x, t;ψ) = S ∗(x, t),∀x ∈ Ω̄, ψ ∈ C+
τ .

Therefore
lim
t→∞
‖ (S (·, t;ψ), I1(·, t;ψ), I2(·, t;ψ)£R(·, t;ψ)) − (S ∗(·, t), 0, 0, 0) ‖= 0.

That is (S ∗, 0, 0, 0) is globally attractive. �

Theorem 3.13. Suppose that Ri
0 = 1 and βi(x, t) > 0 on Ω̄ × [0,∞) for both i = 1, 2. Then the periodic

(S ∗, 0, 0, 0) of (2.6) is globally attractive.
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Proof. The proof is similar to Theorem 3.12 by using Theorem 3.2. �

Combining Theorem 3.12 with Theorem 3.13, furthermore, we have the following conclusion.

Theorem 3.14. If Ri
0 < 1, R j

0 = 1 and β j(x, t) > 0 on (x, t) ∈ Ω̄ × [0,∞), i, j = 1, 2, i , j, then the
periodic (S ∗, 0, 0, 0) of (2.6) is globally attractive.

4. Conclusions

In this paper, we proposed and investigated a two-strain SIRS epidemic model with distributed
delay and spatiotemporal heterogeneity. The model is well suitable for simulating the pathogen
mutation which is widely founded in variety viral infectious diseases. We have to remark that when
the spatiotemporal heterogeneity and distributed delay are incorporated simultaneously, the analysis
for the model becomes more difficult. To overcome these difficulties, we used the theory of chain
transitive sets and persistence. After introducing the basic reproduction number Ri

0 and the invasion
number R̂i

0 for each strain i, i = 1, 2, we established the threshold dynamics for single-strain model
and two-strain model, respectively. For the single-strain case, the threshold dynamics results shows
that the basic reproduction number Ri

0 is a threshold to determine whether the strain i can be
persistent. In addition, in such case, we obtained a sufficient condition for the global attraction of the
disease free equilibrium when Ri

0 = 1, i = 1, 2. Under the condition that two strains is incorporated,
we showed that if both of the invasion numbers R̂i

0 are all larger than unit, then the two strains will be
persistent uniformly. However, if only one of the reproduction numbers is larger than unit, that is, the
other is less than unit, then the strain with larger reproduction number persists, while the strain with
the smaller reproduction number dies out. This phenomenon is so called ”competitive exclusion”[33].
Further, if both of the two reproduction numbers Ri

0 are all less than unit, then the corresponding
disease free equilibrium is globally attractive.

Apparently, the dynamical properties of the two-strain model are much more complicated than that
of the single-strain case. The most fascinating phenomenon is the appearance of “competitive
exclusion” in the two strain model. Generally speaking, the strain with highest basic reproduction
number will eliminate the other strain. As is well known, in reality, proper vaccination is a critical for
the prevention and control of the most viral infectious disease. Thereby, with the mutating of viruses,
the main thing is to ensure the vaccine as safe and effective as possible. However, it is easy to make
vaccine administration error. Although some improperly administered vaccines may be valid,
sometimes such errors increases the possibility of vaccine recipients being unprotected against viral
infection. This paper incorporated the distributed delay, seasonal factor effects and spatial
heterogeneity into a two-strain SIRS simultaneously, so the model is more in line with reality.
Further, based on these realistic factors, we obtained some valuable results for proper vaccination to
viral infection theoretically.
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