Research article

An existence theorem for nonlinear functional Volterra integral equations via Petryshyn's fixed point theorem

  • Received: 11 October 2021 Revised: 06 December 2021 Accepted: 13 December 2021 Published: 10 January 2022
  • MSC : 47H10

  • Using the method of Petryshyn's fixed point theorem in Banach algebra, we investigate the existence of solutions for functional integral equations, which involves as specific cases many functional integral equations that appear in different branches of non-linear analysis and their applications. Finally, we recall some particular cases and examples to validate the applicability of our study.

    Citation: Soniya Singh, Satish Kumar, Mohamed M. A. Metwali, Saud Fahad Aldosary, Kottakkaran S. Nisar. An existence theorem for nonlinear functional Volterra integral equations via Petryshyn's fixed point theorem[J]. AIMS Mathematics, 2022, 7(4): 5594-5604. doi: 10.3934/math.2022309

    Related Papers:

    [1] Ateq Alsaadi, Manochehr Kazemi, Mohamed M. A. Metwali . On generalization of Petryshyn's fixed point theorem and its application to the product of $ n $-nonlinear integral equations. AIMS Mathematics, 2023, 8(12): 30562-30573. doi: 10.3934/math.20231562
    [2] Rahul, Nihar Kumar Mahato, Sumati Kumari Panda, Manar A. Alqudah, Thabet Abdeljawad . An existence result involving both the generalized proportional Riemann-Liouville and Hadamard fractional integral equations through generalized Darbo's fixed point theorem. AIMS Mathematics, 2022, 7(8): 15484-15496. doi: 10.3934/math.2022848
    [3] Lakshmi Narayan Mishra, Vijai Kumar Pathak, Dumitru Baleanu . Approximation of solutions for nonlinear functional integral equations. AIMS Mathematics, 2022, 7(9): 17486-17506. doi: 10.3934/math.2022964
    [4] Naveed Iqbal, Azmat Ullah Khan Niazi, Ikram Ullah Khan, Rasool Shah, Thongchai Botmart . Cauchy problem for non-autonomous fractional evolution equations with nonlocal conditions of order $ (1, 2) $. AIMS Mathematics, 2022, 7(5): 8891-8913. doi: 10.3934/math.2022496
    [5] Ateq Alsaadi, Mohamed M. A. Metwali . On existence theorems for coupled systems of quadratic Hammerstein-Urysohn integral equations in Orlicz spaces. AIMS Mathematics, 2022, 7(9): 16278-16295. doi: 10.3934/math.2022889
    [6] Rahul, Nihar Kumar Mahato . Existence solution of a system of differential equations using generalized Darbo's fixed point theorem. AIMS Mathematics, 2021, 6(12): 13358-13369. doi: 10.3934/math.2021773
    [7] Mohamed M. A. Metwali, Shami A. M. Alsallami . Discontinuous solutions of delay fractional integral equation via measures of noncompactness. AIMS Mathematics, 2023, 8(9): 21055-21068. doi: 10.3934/math.20231072
    [8] Songkran Pleumpreedaporn, Chanidaporn Pleumpreedaporn, Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Jehad Alzabut . On a novel impulsive boundary value pantograph problem under Caputo proportional fractional derivative operator with respect to another function. AIMS Mathematics, 2022, 7(5): 7817-7846. doi: 10.3934/math.2022438
    [9] Iman Ben Othmane, Lamine Nisse, Thabet Abdeljawad . On Cauchy-type problems with weighted R-L fractional derivatives of a function with respect to another function and comparison theorems. AIMS Mathematics, 2024, 9(6): 14106-14129. doi: 10.3934/math.2024686
    [10] R. T. Matoog, M. A. Abdou, M. A. Abdel-Aty . New algorithms for solving nonlinear mixed integral equations. AIMS Mathematics, 2023, 8(11): 27488-27512. doi: 10.3934/math.20231406
  • Using the method of Petryshyn's fixed point theorem in Banach algebra, we investigate the existence of solutions for functional integral equations, which involves as specific cases many functional integral equations that appear in different branches of non-linear analysis and their applications. Finally, we recall some particular cases and examples to validate the applicability of our study.



    Functional integral equations (FIEs) have many application in mechanical vibrations, kinetic theory of gases, radiative transfer, mathematical physics, control theory, and engineering. The theory of FIEs is speedily growing with the help of different studies of fixed point theory, topology, and non-linear analysis (cf. [2,3,4,7,8,10,11,14,15,18,20,25,31]).

    This article is dedicated to study the following FIEs.

    z(φ)=q(φ,f(φ,z(α(φ))),h(φ,z(β(φ))),θ(φ)0p(φ,s,z(γ(s)))ds), (1.1)

    for all φIb=[0,b] in the Banach algebra C(Ib).

    Equation (1.1) contains many particular cases see for example [12,19,21,22,23,26]. Moreover, many previous studies examined the existence of the solutions for different FIEs by Darbo's fixed point theorem in different spaces (cf. [5,6,9,16,17,24,28,30]). We generalize these results by using Petryshyn's fixed point theorem.

    This article is motivated by studying non-linear FIE under a general set of assumptions by using the theory of MNC and Petryshyn's fixed point theorem. Moreover, the bounded condition explains that the "sublinear condition" that has been recognized in literature will not play a meaningful role here. Finally, we present some particular cases and examples that show the utilization of FIEs.

    In this article, let R be the set of real numbers, F be real Banach space and Bρ=B(z,ρ) be a closed ball centered at z with radius ρ.

    Definition 2.1. [1] Let GF and

    α(G)=inf{σ>0:G=ni=1Gi with diamGiσ, i=1,2,...,n}

    is called the Kuratowski MNC.

    Definition 2.2. [1] The Hausdroff MNC

    ϑ(G)=inf{σ>0:afiniteσnetforGinF}, (2.1)

    where, by a finite σ net for G in F it involves, as a set {z1,z2,...,zn}F such that the ball Bσ(F,z1),Bσ(F,z2),...,Bσ(F,zn) over G. Those MNC are commonly related that is

    ϑ(G)α(G)2ϑ(G)

    for any bounded set GF.

    Theorem 2.3. Let G,ˆGF and λR. Then

    (ⅰ) ϑ(G)=0 if and only if G is pre-compact;

    (ⅱ) GˆG ϑ(G)ϑ(ˆG);

    (ⅲ) ϑ(ConvG)=ϑ(G);

    (ⅳ) ϑ(GˆG)=max{ϑ(G),ϑ(ˆG)};

    (ⅴ) ϑ(λG)=|λ|ϑ(G), where λG={λz:zG};

    (ⅵ) ϑ(G+ˆG)ϑ(G)+ϑ(ˆG).

    In the sequel, C[0,b] consisting of all real valued continuous function defined on Ib=[0,b] with the usual norm

    ||z||=sup{|z(φ)|:φ[0,b]}.

    The space C[0,b] is also the structure of Banach algebra. The modulus of continuity of zC[0,b] is defined as

    ω(z,σ)=sup{|z(φ)z(ˆφ)|:φ,ˆφ[0,b],|φˆφ|σ}.

    and

    ω(G,σ)=sup{ω(z,σ):zG},
    ω0(G)=limσ0ω(G,σ).

    Theorem 2.4. [19] The Hausdorff MNC is similar to

    ϑ(G)=limσ0supω(z,σ) (2.2)

    for all bounded sets GC[0,b].

    Theorem 2.5. [27] Assume T:FF be a continuous mapping of Banach space F. T is called a k-set contraction if for all HF with H bounded, T(H) is bounded and

    α(TH)kα(H),fork(0,1).

    Moreover, if

    α(TH)<α(H),α(H)>0,

    then T is called densifying or condensing map.

    Theorem 2.6. [29] Suppose that T:BρF be a condensing mapping which satisfying the boundary condition,

    ifT(z)=kz,forsomezBρthenk1,

    then the set of fixed points in Bρ is non-empty. This is called Petryshyn's fixed point theorem.

    Now, we investigate the existence of the Eq (1.1) under the following assumptions;

    (1) qC(Ib×R×R×R,R), f,hC(Ib×R,R), pC(Ib×[0,D]×R,R), and θ:IbR+, γ:[0,D]Ib, α,β:IbIb, are continuous such that θ(φ)D,φIb,D0.

    (2) There exist non-negative constants pi,i=1,5, such that

    |q(φ,u,v,w)q(φ,ˆu,ˆv,ˆw|p1|uˆu|+p2|vˆv|+p3|wˆw|;
    |f(φ,z)f(φ,ˆz)|p4|zˆz|;
    |h(φ,z)h(φ,ˆz)|p5|zˆz|.

    (3) There exists ρ>0 such that q satisfy the inequality

    sup{|q(φ,u,v,w)|:φIb,u,v[ρ,ρ],w[DH1,DH1]}ρ,

    where

    H1=sup{|p(φ,s,z)|:φIb,s[0,D]andz[ρ,ρ]}.

    Theorem 3.1. Under the assumptions (1)(3) and if p1p4+p2p5<1, zIb. Then Eq (1.1) has at least one solution in F=C(Ib).

    Proof. Define the operator T:BρF, where Bρ={zC(Ib):zρ} in the following form

    (Tz)(φ)=q(φ,f(φ,z(α(φ))),h(φ,z(β(φ))),θ(φ)0p(φ,s,z(γ(s)))ds).

    Now, we show that T is continuous on Bρ. Choose σ>0 and any z,xBρ such that zx<σ. We get

    |(Tz)(φ)(Tx)(φ)|=|q(φ,f(φ,z(α(φ))),h(φ,z(β(φ))),θ(φ)0p(φ,s,z(γ(s)))ds)q(φ,f(φ,x(α(φ))),h(φ,x(β(φ))),θ(φ)0p(φ,s,x(γ(s)))ds)||q(φ,f(φ,z(α(φ))),h(φ,z(β(φ))),θ(φ)0p(φ,s,z(γ(s)))ds)q(φ,f(φ,x(α(φ))),h(φ,z(β(φ))),θ(φ)0p(φ,s,z(γ(s)))ds)|+|q(φ,f(φ,x(α(φ))),h(φ,z(β(φ))),θ(φ)0p(φ,s,z(γ(s)))ds)q(φ,f(φ,x(α(φ))),h(φ,x(β(φ))),θ(φ)0p(φ,s,z(γ(s)))ds)|+|q(φ,f(φ,x(α(φ))),h(φ,x(β(φ))),θ(φ)0p(φ,s,z(γ(s)))ds)q(φ,f(φ,x(α(φ))),h(φ,x(β(φ))),θ(φ)0p(φ,s,x(γ(s)))ds)|p1|f(φ,z(α(φ)))f(φ,x(α(φ)))|+p2|h(φ,z(α(φ)))h(φ,x(α(φ)))|+p3θ(φ)0|p(φ,s,z(γ(s)))p(φ,s,x(γ(s)))|dsp1p4|z(α(φ))x(α(φ))|+p2p5|z(β(φ))x(β(φ))|+p3Dω(p,σ)p1p4zx+p2p5zx+p3Dω(p,σ),

    where

    ω(p,σ)=sup{|p(φ,s,z)p(φ,s,x)|:φIb,s[0,D],z,x[ρ,ρ],|zx|σ}.

    From the uniform continuity of p(φ,s,z) on the subset Ib×[0,D]×R, we infer that ω(p,σ)0 as σ0. Thus, we prove that the operator T is continuous on Bρ.

    Next, we show that T satisfy the densifying map. Take arbitrary σ>0 and zG, where G is bounded subset of F, φ1,φ2Ib with |φ1φ2|σ, we have

    |(Tz)(φ2)(Tz)(φ1)|=|q(φ2,f(φ2,z(α(φ2))),h(φ2,z(β(φ2))),θ(φ2)0p(φ2,s,z(γ(s)))ds)q(φ1,f(φ1,z(α(φ1))),h(φ1,z(β(φ1))),θ(φ1)0p(φ1,s,z(γ(s)))ds)||q(φ2,f(φ2,z(α(φ2))),h(φ2,z(β(φ2))),θ(φ2)0p(φ2,s,z(γ(s)))ds)q(φ2,f(φ2,z(α(φ2))),h(φ2,z(β(φ2))),θ(φ1)0p(φ1,s,z(γ(s)))ds)|+|q(φ2,f(φ2,z(α(φ2))),h(φ2,z(β(φ2))),θ(φ1)0p(φ1,s,z(γ(s)))ds)q(φ2,f(φ2,z(α(φ2))),h(φ1,z(β(φ2))),θ(φ1)0p(φ1,s,z(γ(s)))ds)|+|q(φ2,f(φ2,z(α(φ2))),h(φ1,z(β(φ2))),θ(φ1)0p(φ1,s,z(γ(s)))ds)q(φ2,f(φ1,z(α(φ1))),h(φ1,z(β(φ1))),θ(φ1)0p(φ1,s,z(γ(s)))ds)|+|q(φ2,f(φ1,z(α(φ1))),h(φ1,z(β(φ1))),θ(φ1)0p(φ1,s,z(γ(s)))ds)q(φ1,f(φ1,z(α(φ1))),h(φ1,z(β(φ1))),θ(φ1)0p(φ1,s,z(γ(s)))ds)|p1|f(φ2,z(α(φ2))f(φ2,z(α(φ1))|+p1|f(φ2,z(α(φ1))f(φ1,z(α(φ1))|+p2|h(φ2,z(β(φ2))h(φ2,z(β(φ1))|+p1|h(φ2,z(β(φ1))h(φ1,z(β(φ1))|+p3|θ(φ1)0(p(φ2,s,z(γ(s))p(φ1,s,z(γ(s)))ds+θ(φ2)θ(φ1)p(φ2,s,z(γ(s)))ds|+ωp(Ib,σ),

    where

    ωf(Ib,σ)=sup{|f(φ,z)f(ˆφ,z)|:|φˆφ|σ,φ,ˆφIb,z[ρ,ρ]},
    ωh(Ib,σ)=sup{|h(φ,z)h(ˆφ,z)|:|φˆφ|σ,φ,ˆφIb,z[ρ,ρ]},
    ωq(Ib,σ)=sup{|q(φ,u,v,w)q(ˆφ,u,v,w)|:|φˆφ|σ,φ,ˆφIb,u,v[ρ,ρ],w[DH1,DH1]},
    ωp(Ib,σ)=sup{|p(φ,s,z)p(ˆφ,s,z)|:|φˆφ|σ,φ,ˆφIb,s[0,D],z[ρ,ρ]},
    ω(θ,σ)=sup{|θ(φ)θ(ˆφ)|:φ,ˆφIb  and  |φˆφ|<σ}.

    From above relations, we have

    |(Tz)(φ2)(Tz)(φ1)|p1p4|z(α(φ2)z(α(φ1)|+p1ωf(Ib,σ)+p2p5|z(β(φ2)z(β(φ1)|+p2ωh(Ib,σ)+k3Dωp(Ib,σ)+k3H1ω(α,σ)+ωq(Ib,σ).

    Taking limit as σ0, we get

    ω(Tz,σ)(p1p4+p2p5)ω(z,σ).

    This provide the following inequality

    ϑ(TG)(p1p4+p2p5)ϑ(G).

    Hence T is a condensing map. Now, let zBρ and if Tz=kz then Tz=kz=kρ and by (3), then

    |Tz(φ)|=|q(φ,f(φ,z(α(φ))),h(φ,z(β(φ))),θ(φ)0p(φ,s,z(γ(s)))ds)|ρ.

    for all φIb, hence Tzρ i.e k1. This completes the proof.

    Corollary 3.2. Assume that

    (1) qC(Ib×R×R×R,R), hC(Ib×R,R), pC(Ib×[0,D]×R,R), and θ:IbR+, γ:[0,D]Id, β:IbIb, are continuous such that θ(φ)D,φIb,D0.

    (2) There exist non-negative constants pi,i=1,4 with p2p4<1 such that

    |q(φ,u,v,w)q(φ,ˆu,ˆv,ˆw|p1|uˆu|+p2|vˆv|+p3|wˆw|;
    |h(φ,z)h(φ,ˆz)|p4|zˆz|.

    (3) There exists ρ>0 such that q satisfy the inequality

    sup{|q(φ,u,v,w)|:φIb,u,v[ρ,ρ],w[DH1,DH1]}ρ,

    where,

    H1=sup{|p(φ,s,z)|:forallφIb,s[0,D]andz[ρ,ρ]}.

    Then

    z(φ)=q(φ,z(α(φ)),h(φ,z(β(φ))),θ(φ)0p(φ,s,z(γ(s)))ds), (3.1)

    has at least one solution in C(Ib).

    Corollary 3.3. Let

    (1) qC(Ib×R×R,R), f,hC(Ib×R,R), pC(Ib×[0,D]×R,R), and θ:IbR+, γ:[0,D]Id, β:IbIb, are continuous such that θ(φ)D,φIb,D0.

    (2) There exist non-negative constants pi,i=1,4 with p4+p1p3<1 such that

    |q(φ,v,w)q(φ,ˆv,ˆw|p1|vˆv|+p2|wˆw|;
    |h(φ,z)h(φ,ˆz)|p3|zˆz|;
    |f(φ,z)f(φ,ˆz)|p4|zˆz|.

    (3) There exists ρ>0 such that q satisfy the inequality

    sup{|f(φ,u)+q(φ,v,w)|:φIb,u,[ρ,ρ],v[ρ,ρ],w[DH1,DH1]}ρ,

    where,

    H1=sup{|p(φ,s,z)|:forallφIb,s[0,D]andz[ρ,ρ]}.

    Then

    z(φ)=f(φ,z(α(φ)))+q(φ,h(φ,z(β(φ))),θ(φ)0p(φ,s,z(γ(s)))ds) (3.2)

    has at least one solution in C(Ib).

    Example 4.1. If q(φ,u,v,w)=1+vw,β(φ)=θ(φ)=γ(φ)=φ,h(φ,z(β(φ)))=z(φ) and p(φ,s,z)=φφ+sϕ(s)z. Then Eq (1.1) has the Chandrasekhar integral equation type in radiative transfer [3].

    z(φ)=1+z(φ)φ0φφ+sϕ(s)z(s)ds,φIb=[0,b].

    Example 4.2. Let q(φ,u,v,w)=q(φ,v,w), then the Eq (1.1) takes the form

    z(φ)=q(φ,h(φ,z(β(φ))),θ(φ)0p(φ,s,z(γ(s)))ds),φIb=[0,b],

    which is studied in [13].

    Example 4.3. Let q(φ,u,v,w)=q(φ,vw),γ(φ)=θ(φ)=φ, then Eq (1.1) takes the form

    z(φ)=h(φ,z(β(φ)))φ0p(φ,s,z(s))ds,φIb=[0,b],

    which is examined in [22].

    Example 4.4. Let q(φ,u,v,w)=q(φ,u,v,w),f(φ,z)=h(φ,z)=z, then Eq (1.1) takes the form

    z(φ)=q(φ,z(α(φ)),z(β(φ)),θ(φ)0p(φ,s,z(γ(s)))ds),φIb=[0,b],

    which is examined in [19].

    Example 4.5. Let q(φ,u,v,w)=u+q(φ,w,v),h(φ,z)=z and γ(φ)=θ(φ)=α(φ)=φ, then Eq (1.1) takes the form

    z(φ)=f(φ,z(φ))+q(φ,θ(φ)0p(φ,s,z(γ(s)))ds,z(β(φ))),φIb=[0,b],

    which is studied in [21].

    Example 4.6. Let q(φ,u,v,w)=u+vw, then Eq (1.1) takes the form

    z(φ)=f(φ,z(α(φ)))+h(φ,z(β(φ)))θ(φ)0p(φ,s,z(γ(s)))ds,φIb=[0,b],

    which is studied in [28].

    Example 4.7. Let the following Volterra non-linear FIE:

    z(φ)=eφ2+(eφφ23+3φ4)ln(1+|z(φ)|)+(φ44+4φ4)arctan(|z(φ)|)+12φ0e3s(es4+φcos(s2)+12z(s2))ds,φ[0,1]. (4.1)

    Equation (4.1) is special case of Eq (1.1) with

    α(φ)=φ,β(φ)=θ(φ)=γ(φ)=φ,φ[0,1]

    and

    q(φ,u,v,w)=q1(φ,u,v)+q2(φ,w),

    where

    q1(φ,u,v)=13u+14v,u=(eφφ21+φ4)ln(1+|z(φ)|),
    v=(φ41+φ4)arctan(|z(φ)|),q2(φ,w)=w2,
    w=θ(φ)0p(φ,s,z(γ(s)))ds,p(φ,s,z)=e3s(es4+φcos(s2)+12z(s2)).

    It is obvious that assumptions (1) and (2) of Theorem 3.1 are satisfied. We need to check that assumption (3) holds true. So, choose ρ=3+34e, then H15e8+52 and

    sup{|q(φ,u,v,w)|:φ[0,1],u,v[ρ,ρ],w[DH1,DH1]}sup{|13u(φ)+14v+12w|;φ[0,1],(5e8+52)w(5e8+52)}3+34e.

    All conditions of Theorem 3.1 are satisfied, Hence Eq (4.1) has at least one solution in C[0,1].

    In this article, we have examined the existence of the solutions of non-linear functional integral equations in Banach algebra by utilizing a strategy, which is distinguishable from different authors technique (see [12,16,17,21,22,23,26]). The advantage of Theorem 2.6 among the others (Darbo and Schauder fixed point theorems) lies in that in using the theorem, one does not require to confirm the involved operator maps a closed convex subset onto itself.

    The authors are thankful to the anonymous referees and the editorial board for their thorough reading and valuable guidance on the improvement of the paper.

    The authors declare that there is no conflict of interest regarding the publication of this article.



    [1] J. Banas, K. Goebel, Measures of noncompactness in Banach spaces, Marcel Dekker, New York, 1980.
    [2] M. Cichoń, M. Metwali, On monotonic integrable solutions for quadratic functional integral equations, Mediterr. J. Math., 10 (2013), 909–926. https://doi.org/10.1007/s00009-012-0218-0 doi: 10.1007/s00009-012-0218-0
    [3] S. Chandrasekhar, Radiative transfer, Oxford Univ. Press, London, 1950.
    [4] C. Corduneanu, Integral equations and applications, Cambridge University Press, New York, 1990.
    [5] A. Deep, Deepmala, J. R. Roshan, Solvability for generalized non-linear integral equations in Banach spaces with applications, J. Integral Equ. Appl., 33 (2021), 19–30.
    [6] A. Deep, Deepmala, M. Rabbani, A numerical method for solvability of some non-linear functional integral equations, Appl. Math. Comput., 402 (2021), 125–637.
    [7] A. Deep, Deepmala, R. Ezzati, Application of Petryshyn's fixed point theorem to solvability for functional integral equations, Appl. Math. Comput., 395 (2021), 125878. https://doi.org/10.1016/j.amc.2020.125878 doi: 10.1016/j.amc.2020.125878
    [8] A. Deep, D. Dhiman, S. Abbas, B. Hazarika, Solvability for two dimensional functional integral equations via Petryshyn's fixed point theorem, RACSAM Rev. R. Acad. A, 115 (2021).
    [9] A. Deep, Deepmala, B. Hazarika, An existence result for Hadamard type two dimensional fractional functional integral equations via measure of noncompactness, Chaos Soliton. Fract., 147 (2021), 110874. https://doi.org/10.1016/j.chaos.2021.110874 doi: 10.1016/j.chaos.2021.110874
    [10] K. Deimling, Nonlinear functional analysis, Springer-Verlag, 1985. https://doi.org/10.1007/978-3-662-00547-7
    [11] S. Deng, X. B. Shu, J. Mao, Existence and exponential stability for impulsive neutral stochastic functional differential equations driven by fBm with noncompact semigroup via Mönch fixed point, J. Math. Anal. Appl., 467 (2018), 398–420. https://doi.org/10.1016/j.jmaa.2018.07.002 doi: 10.1016/j.jmaa.2018.07.002
    [12] B. C. Dhage, On α-condensing mappings in Banach algebras, Math. Stud., 63 (1994), 146–152.
    [13] B. C. Dhage, V. Lakshmikantham, On global existence and attractivity results for nonlinear functional integral equations, Nonlinear Anal.-Theor., 70 (2010), 2219–2227. https://doi.org/10.1016/j.na.2009.10.021 doi: 10.1016/j.na.2009.10.021
    [14] Y. Guo, M. Chen, X. B. Shu, F. Xu, The existence and Hyers-Ulam stability of solution for almost periodical fractional stochastic differential equation with fBm, Stoch. Anal. Appl., 39 (2021). https://doi.org/10.1080/07362994.2020.1824677 doi: 10.1080/07362994.2020.1824677
    [15] Y. Guo, X. B. Shu, Y. Li, F. Xu, The existence and Hyers-Ulam stability of solution for an impulsive Riemann-Liouville fractional neutral functional stochastic differential equation with infinite delay of order 1<β<2, Bound. Value Probl., 2019 (2019).
    [16] B. Hazarika, H. M. Srivastava, R. Arab, M. Rabbani, Application of simulation function and measure of noncompactness for solvability of nonlinear functional integral equations and introduction to an iteration algorithm to find solution, Appl. Math. Comput., 360 (2019), 131–146. https://doi.org/10.1016/j.amc.2019.04.058 doi: 10.1016/j.amc.2019.04.058
    [17] B. Hazarika, R. Arab, H. K. Nashine, Applications of measure of noncompactness and modified simulation function for solvability of nonlinear functional integral equations, Filomat, 33 (2019), 5427–5439. https://doi.org/10.2298/FIL1917427H doi: 10.2298/FIL1917427H
    [18] S. Hu, M. Khavanin, W. Zhuang, Integral equations arising in the kinetic theory of gases, Appl. Anal., 34 (1989), 261–266.
    [19] M. Kazemi, R. Ezzati, Existence of solutions for some nonlinear Volterra integral equations via Petryshyn's fixed point theorem, Int. J. Anal. Appl., 9 (2018).
    [20] C. T. Kelly, Approximation of solutions of some quadratic integral equations in transport theory, J. Integral Equ., 4 (1982), 221–237.
    [21] K. Maleknejad, K. Nouri, R. Mollapourasl, Existence of solutions for some nonlinear integral equations, Commun. Nonlinear Sci., 14 (2009), 2559–2564. https://doi.org/10.1016/j.cnsns.2008.10.019 doi: 10.1016/j.cnsns.2008.10.019
    [22] K. Maleknejad, K. Nouri, R. Mollapourasl, Investigation on the existence of solutions for some nonlinear functional-integral equations, Nonlinear Anal.-Theor., 71 (2009), 1575–1578.
    [23] M. Metwali, K. Cichoń, On solutions of some delay Volterra integral problems on a half line, Nonlinear Anal.-Model., 26 (2021), 661–677. https://doi.org/10.15388/namc.2021.26.24149 doi: 10.15388/namc.2021.26.24149
    [24] M. Metwali, On a class of quadratic Uryshon-Hammerstein integral equations of mixed-type and initial value problem of fractional order, Mediterr. J. Math., 13 (2016), 2691–2707. https://doi.org/10.1007/s00009-015-0647-7 doi: 10.1007/s00009-015-0647-7
    [25] H. Nashine, R. Arab, R. Agarwal, Existence of solutions of system of functional-integral equations using measure of noncompactness, Int. J. Nonlinear Anal., 12 (2021), 583–595.
    [26] H. Nashine, R. Ibrahim, R. Agarwal, N. Can, Existence of local fractional integral equation via a measure of non-compactness with monotone property on Banach spaces, Adv. Differ. Equ., 2020 2020,697. https://doi.org/10.1186/s13662-020-03153-3 doi: 10.1186/s13662-020-03153-3
    [27] R. D. Nussbaum, The fixed point index and fixed point theorem for k set contractions, Proquest LLC, Ann Arbor, MI, 1969.
    [28] I. Ozdemir, U. Cakan, B. Iihan, On the existence of the solution for some noninear Volterra integral equations, Abstr. Appl. Anal., 5 (2013).
    [29] W. V. Petryshyn, Structure of the fixed points sets of k-set-contractions, Arch. Ration. Mech. An., 40 (1971), 312–328. https://doi.org/10.1007/BF00252680 doi: 10.1007/BF00252680
    [30] M. Rabbani, A. Deep, Deepmala, On some generalized non-linear functional integral equations of two variables via measures of non-compactness and numerical method to solve it, Math. Sci., 2021.
    [31] S. Singh, B. Singh, K. S. Nisar, A. Hyder, M. Zakarya, Solvability for generalized nonlinear two dimensional functional integral equations via measure of noncompactness, Adv. Differ. Equ., 2021 (2021). https://doi.org/10.1186/s13662-021-03506-6 doi: 10.1186/s13662-021-03506-6
  • This article has been cited by:

    1. Tahair Rasham, Muhammad Nazam, Hassen Aydi, Ravi P. Agarwal, Existence of Common Fixed Points of Generalized ∆-Implicit Locally Contractive Mappings on Closed Ball in Multiplicative G-Metric Spaces with Applications, 2022, 10, 2227-7390, 3369, 10.3390/math10183369
    2. Saurabh Kumar, Vikas Gupta, An approach based on fractional-order Lagrange polynomials for the numerical approximation of fractional order non-linear Volterra-Fredholm integro-differential equations, 2023, 69, 1598-5865, 251, 10.1007/s12190-022-01743-w
    3. Harsh V. S. Chauhan, Beenu Singh, Cemil Tunç, Osman Tunç, On the existence of solutions of non-linear 2D Volterra integral equations in a Banach Space, 2022, 116, 1578-7303, 10.1007/s13398-022-01246-0
    4. Ateq Alsaadi, Mohamed M. A. Metwali, On existence theorems for coupled systems of quadratic Hammerstein-Urysohn integral equations in Orlicz spaces, 2022, 7, 2473-6988, 16278, 10.3934/math.2022889
    5. Ateq Alsaadi, Mohamed M. A. Metwali, On existence theorems for coupled systems of quadratic Hammerstein-Urysohn integral equations in Orlicz spaces, 2022, 7, 2473-6988, 16278, 10.3934/math.20222022889
    6. Ali Turab, Norhayati Rosli, Wajahat Ali, Juan J. Nieto, The existence and uniqueness of solutions to a functional equation arising in psychological learning theory, 2023, 56, 2391-4661, 10.1515/dema-2022-0231
    7. Manochehr Kazemi, Reza Ezzati, Amar Deep, On the solvability of non-linear fractional integral equations of product type, 2023, 14, 1662-9981, 10.1007/s11868-023-00532-8
    8. Hasanen A. Hammad, Hassen Aydi, Manuel De la Sen, Solving nonlinear fractional equations and some related integral equations under a measure of noncompactness, 2025, 44, 2238-3603, 10.1007/s40314-025-03084-3
    9. Manochehr Kazemi, AliReza Yaghoobnia, Behrouz Parsa Moghaddam, Alexandra Galhano, Analytical and Computational Investigations of Stochastic Functional Integral Equations: Solution Existence and Euler–Karhunen–Loève Simulation, 2025, 13, 2227-7390, 427, 10.3390/math13030427
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2553) PDF downloads(142) Cited by(9)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog