Research article

Ulam-Hyers-Rassias stability for a class of nonlinear implicit Hadamard fractional integral boundary value problem with impulses

  • Received: 12 October 2021 Accepted: 22 November 2021 Published: 25 November 2021
  • MSC : 34A08, 34B10, 34B37, 34D20

  • This paper considers a class of nonlinear implicit Hadamard fractional differential equations with impulses. By using Banach's contraction mapping principle, we establish some sufficient criteria to ensure the existence and uniqueness of solution. Furthermore, the Ulam-Hyers stability and Ulam-Hyers-Rassias stability of this system are obtained by applying nonlinear functional analysis technique. As applications, an interesting example is provided to illustrate the effectiveness of main results.

    Citation: Kaihong Zhao, Shuang Ma. Ulam-Hyers-Rassias stability for a class of nonlinear implicit Hadamard fractional integral boundary value problem with impulses[J]. AIMS Mathematics, 2022, 7(2): 3169-3185. doi: 10.3934/math.2022175

    Related Papers:

  • This paper considers a class of nonlinear implicit Hadamard fractional differential equations with impulses. By using Banach's contraction mapping principle, we establish some sufficient criteria to ensure the existence and uniqueness of solution. Furthermore, the Ulam-Hyers stability and Ulam-Hyers-Rassias stability of this system are obtained by applying nonlinear functional analysis technique. As applications, an interesting example is provided to illustrate the effectiveness of main results.



    加载中


    [1] J. Hadamard, Essai sur L'étude des éfonctions données par leur développment de Taylor, J. Math. Pure. Appl., 8 (1892), 101–186.
    [2] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
    [3] B. Ahmad, A. Alsaedi, S. Ntouyas, J. Tariboon, Hadamard-type fractional differential equations, inclusions and inequalities, Berlin: Springer, 2017. doi: 10.1007/978-3-319-52141-1.
    [4] I. Podlubny, Fractional differential equations, New York: Academic Press, 1993.
    [5] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional calculus: Models and numerical methods, Singapore: World Scientific, 2012.
    [6] K. Miller, B. Ross, An introduction to the fractional calculus and differential equations, New York: Wiley, 1993.
    [7] K. Oldham, J. Spanier, The fractional calculus, New York: Academic, 1974.
    [8] K. Diethelm, The analysis of fractional differential equations, Heidelberg: Springer-Verlag, 2010. doi: 10.1007/978-3-642-14574-2_8.
    [9] Y. Zhou, Basic theory of fractional differential equations, Singapore: World Scientific, 2014.
    [10] G. W. Scott-Blair, The role of psychophysics in rheology, J. Colloid Sci., 2 (1947), 21–32. doi: 10.1016/0095-8522(47)90007-X. doi: 10.1016/0095-8522(47)90007-X
    [11] A. N. Gerasimov, A generalization of linear laws of deformation and its application to problems of internal friction problem, Prikl. Mat. Mekh., 12 (1948), 251–260.
    [12] Y. J. Yu, L. J. Zhao, Fractional thermoelasticity revisited with new definitions of fractional derivative, Eur. J. Mech. A-Solid., 84 (2020), 104043. doi: 10.1016/j.euromechsol.2020.104043. doi: 10.1016/j.euromechsol.2020.104043
    [13] Y. J. Yu, Z. C. Deng, Fractional order theory of Cattaneo-type thermoelasticity using new fractional derivatives, Appl. Math. Model., 87 (2020), 731–751. doi: 10.1016/j.apm.2020.06.023. doi: 10.1016/j.apm.2020.06.023
    [14] K. M. Saad, M. Alqhtani, Numerical simulation of the fractal-fractional reaction diffusion equations with general nonlinear, AIMS Math., 6 (2021), 3788–3804. doi: 10.3934/math.2021225. doi: 10.3934/math.2021225
    [15] M. M. Khader, K. M. Saad, Z. Hammouch, D. Baleanu, A spectral collocation method for solving fractional KdV and KdV-Burgers equations with non-singular kernel derivatives, Appl. Numer. Math., 161 (2021), 137–146. doi: 10.1016/j.apnum.2020.10.024. doi: 10.1016/j.apnum.2020.10.024
    [16] K. M. Saad, E. H. F. AL-Sharif, Comparative study of a cubic autocatalytic reaction via different analysis methods, Discrete Cont. Dyn-S., 12 (2019), 665–684. doi: 10.3934/dcdss.2019042. doi: 10.3934/dcdss.2019042
    [17] K. H. Zhao, L. P. Suo, Y. Z. Liao, Boundary value problem for a class of fractional integro-differential coupled systems with hadamard fractional calculus and impulses, Bound. Value Probl., 2019 (2019), 105. doi: 10.1186/s13661-019-1219-8. doi: 10.1186/s13661-019-1219-8
    [18] B. Ahmad, S. Ntouyas, On Hadamard fractional integro-differential boundary value problems, Appl. Math. Comput., 47 (2015), 119–131. doi: 10.1007/s12190-014-0765-6. doi: 10.1007/s12190-014-0765-6
    [19] S. Ahmad, S. Ntouyas, Boundary value problems of Hadamard-type fractional differential equations and inclusions with nonlocal conditions, Vietnam J. Math., 45 (2017), 409–423. doi: 10.1007/s10013-016-0213-z. doi: 10.1007/s10013-016-0213-z
    [20] W. Yukunthorn, S. Suantai, S. K. Ntouyas, J. Tariboon, Boundary value problems for impulsive multi-order Hadamard fractional differential equations, Bound. Value Probl., 2017 (2015), 148. doi: 10.1186/s13661-015-0414-5. doi: 10.1186/s13661-015-0414-5
    [21] M. Benchohra, S. Bouriah, J. R. Graef, Boundary value problems for nonlinear implicit Caputo-Hadamard-Type fractional differential equations with impulses, Mediterr. J. Math., 2017 (2017), 206. doi: 10.1007/s00009-017-1012-9. doi: 10.1007/s00009-017-1012-9
    [22] S. M. Ulam, A collection of mathematical problems, New York: Interscience, 1960.
    [23] D. Hyers, On the stability of the linear functional equation, P. Natl. Acad. Sci. USA, 27 (1941), 2222–2240. doi: 10.1093/jahist/jav119. doi: 10.1093/jahist/jav119
    [24] C. Wang, T. Xu, Hyers-Ulam stability of fractional linear differential equations involving Caputo fractional derivatives, Appl. Math. Comput., 60 (2015), 383–393. doi: 10.1007/s10492-015-0102-x. doi: 10.1007/s10492-015-0102-x
    [25] S. Peng, J. R. Wang, Existence and Ulam-Hyers stability of ODEs involving two Caputo fractional derivatives, Electron. J. Qual. Theo., 2015 (2015), 52. doi: 10.14232/ejqtde.2015.1.52. doi: 10.14232/ejqtde.2015.1.52
    [26] J. R. Wang, X. Li, Ulam-Hyers stability of fractional Langevin equations, Appl. Math. Comput., 258 (2015), 72–83. doi: 10.1016/j.amc.2015.01.111. doi: 10.1016/j.amc.2015.01.111
    [27] A. Zada, S. Ali, Y. Li, Ulam-type stability for a class of implicit fractional differential equations with non-instantaneous integral impulses and boundary condition, Adv. Differ. Equ., 2017 (2017), 317. doi: 10.1186/s13662-017-1376-y. doi: 10.1186/s13662-017-1376-y
    [28] J. R. Wang, Y. Zhou, Ulam's type stability of impulsive ordinary differential equations, J. Math. Anal. Appl., 395 (2012), 258–264. doi: 10.1016/j.jmaa.2012.05.040. doi: 10.1016/j.jmaa.2012.05.040
    [29] K. Shah, A. Ali, S. Bushnaq, Hyers-Ulam stability analysis to implicit Cauchy problem of fractional differential equations with impulsive conditions, Math. Method. Appl. Sci., 41 (2018), 8329–8343. doi: 10.1002/mma.5292. doi: 10.1002/mma.5292
    [30] K. H. Zhao, S. K. Deng, Existence and Ulam-Hyers stability of a kind of fractional-order multiple point BVP involving noninstantaneous impulses and abstract bounded operator, Adv. Differ. Equ., 2021 (2021), 44. doi: 10.1186/s13662-020-03207-6. doi: 10.1186/s13662-020-03207-6
    [31] A. Granas, J, Dugundji, Fixed point theory, New York: Springer, 2003. doi: 10.1016/j.gene.2008.12.007.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1277) PDF downloads(64) Cited by(5)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog