Research article

Integral presentations of the solution of a boundary value problem for impulsive fractional integro-differential equations with Riemann-Liouville derivatives

  • Received: 17 September 2021 Accepted: 15 November 2021 Published: 23 November 2021
  • MSC : 34A08, 34A12, 34A38

  • Riemann-Liouville fractional differential equations with impulses are useful in modeling the dynamics of many real world problems. It is very important that there are good and consistent theoretical proofs and meaningful results for appropriate problems. In this paper we consider a boundary value problem for integro-differential equations with Riemann-Liouville fractional derivative of orders from $ (1, 2) $. We consider both interpretations in the literature on the presence of impulses in fractional differential equations: With fixed lower limit of the fractional derivative at the initial time point and with lower limits changeable at each impulsive time point. In both cases we set up in an appropriate way impulsive conditions which are dependent on the Riemann-Liouville fractional derivative. We establish integral presentations of the solutions in both cases and we note that these presentations are useful for furure studies of existence, stability and other qualitative properties of the solutions.

    Citation: Ravi Agarwal, Snezhana Hristova, Donal O'Regan. Integral presentations of the solution of a boundary value problem for impulsive fractional integro-differential equations with Riemann-Liouville derivatives[J]. AIMS Mathematics, 2022, 7(2): 2973-2988. doi: 10.3934/math.2022164

    Related Papers:

  • Riemann-Liouville fractional differential equations with impulses are useful in modeling the dynamics of many real world problems. It is very important that there are good and consistent theoretical proofs and meaningful results for appropriate problems. In this paper we consider a boundary value problem for integro-differential equations with Riemann-Liouville fractional derivative of orders from $ (1, 2) $. We consider both interpretations in the literature on the presence of impulses in fractional differential equations: With fixed lower limit of the fractional derivative at the initial time point and with lower limits changeable at each impulsive time point. In both cases we set up in an appropriate way impulsive conditions which are dependent on the Riemann-Liouville fractional derivative. We establish integral presentations of the solutions in both cases and we note that these presentations are useful for furure studies of existence, stability and other qualitative properties of the solutions.



    加载中


    [1] R. P. Agarwal, S. Hristova, D. O'Regan, Exact solutions of linear Riemann-Liouville fractional differential equations with impulses, Rocky Mountain J. Math., 50 (2020), 779–791. doi: 10.1216/rmj.2020.50.779. doi: 10.1216/rmj.2020.50.779
    [2] R. Agarwal, S. Hristova, D. O'Regan, Existence and integral representation of scalar Riemann-Liouville fractional differential equations with delays and impulses, Mathematics, 8 (2020), 607. doi: 10.3390/math8040607. doi: 10.3390/math8040607
    [3] R. Agarwal, S. Hristova, D. O'Regan, Non-instantaneous impulses in differential equations, Springer, 2017
    [4] B. Ahmad, J. J. Nieto, Riemann-Liouville fractional differential equations with fractional boundary conditions, Fixed Point Theory, 13 (2012), 329–336.
    [5] B. Ahmad, S. Sivasundaram, Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations, Nonlinear Anal.: Hybrid Syst., 3 (2009), 251–258. doi: 10.1016/j.nahs.2009.01.008. doi: 10.1016/j.nahs.2009.01.008
    [6] M. Feckan, Y. Zhou, J. R. Wang, On the concept and existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 3050–3060. doi: 10.1016/j.cnsns.2011.11.017. doi: 10.1016/j.cnsns.2011.11.017
    [7] M. Feckan, Y. Zhou, J. R. Wang, Response to "Comments on the concept of existence of solutionfor impulsive fractional differential equations [Commun Nonlinear Sci Numer Simul 2014;19:401–3.]", Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 4213–4215. doi: 10.1016/j.cnsns.2014.04.014. doi: 10.1016/j.cnsns.2014.04.014
    [8] S. Hristova, A. Zada, Comments on the paper "A. Zada, B. Dayyan, Stability analysis for a class of implicit fractional differential equations with instantaneous impulses and Riemann-Liouville boundary conditions, Ann. Univ. Craiova, Math. Comput. Sci. Ser., 47 (2020), 88–110", Ann. Univ. Craiova, Math. Comput. Sci. Ser., accepted.
    [9] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North Holland Mathematics Studies 204, Elsevier Science B.V., Amsterdam, 2006.
    [10] I. Stamova, G. Stamov, Impulsive control strategy for the Mittag-Leffler synchronization of fractional-order neural networks with mixed bounded and unbounded delays, AIMS Math., 6 (2021), 2287–2303. doi: 10.3934/math.2021138. doi: 10.3934/math.2021138
    [11] A. Pratap, R. Raja, J. Alzabut, J. Cao, G. Rajchakit, C. Huang, Mittag-Leffler stability and adaptive impulsive synchronization of fractional order neural networks in quaternion field, Math. Methods Appl. Sci., 43 (2020), 6223–6253. doi: 10.1002/mma.6367. doi: 10.1002/mma.6367
    [12] G. T. Wang, B. Ahmad, L. Zhang, J. J. Nieto, Comments on the concept of existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 401–403. doi: 10.1016/j.cnsns.2013.04.003. doi: 10.1016/j.cnsns.2013.04.003
    [13] J. R. Wang, M. Feckan, Y. Zhou, A survey on impulsive fractional differential equations, Fract. Calc. Appl. Anal., 19 (2016), 806–831. doi: 10.1515/fca-2016-0044. doi: 10.1515/fca-2016-0044
    [14] X. Wang, M. Alam, A. Zada, On coupled impulsive fractional integro-differential equations with Riemann-Liouville derivatives, AIMS Math., 6 (2020), 1561–1595, doi: 10.3934/math.2021094. doi: 10.3934/math.2021094
    [15] C. Wang, H. Zhang, H. Zhang, W. Zhang, Globally projective synchronization for Caputo fractional quaternion-valued neural networks with discrete and distributed delays, AIMS Math., 6 (2021), 14000–14012. doi: 10.3934/math.2021809. doi: 10.3934/math.2021809
    [16] G. C. Wu, D. Q. Zeng, D. Baleanu, Fractional impulsive differential equations: Exact solutions, integral equations and short memory case, Fract. Calc. Appl. Anal., 22 (2019), 180–192. doi: 10.1515/fca-2019-0012. doi: 10.1515/fca-2019-0012
    [17] A. Zada, B. Dayyan, Stability analysis for a class of implicit fractional differential equations with instantaneous impulses and Riemann-Liouville boundary conditions, Ann. Univ. Craiova, Math. Comput. Sci. Ser., 47 (2020), 111–124.
    [18] H. Zhang, J. Cheng, H. Zhang, W. Zhang, J. Cao, Quasi-uniform synchronization of Caputo type fractional neural networks with leakage and discrete delays, Chaos Solitons Fractals, 152 (2021), 111432. doi: 10.1016/j.chaos.2021.111432. doi: 10.1016/j.chaos.2021.111432
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1274) PDF downloads(69) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog