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Abstract: Riemann-Liouville fractional differential equations with impulses are useful in modeling
the dynamics of many real world problems. It is very important that there are good and consistent
theoretical proofs and meaningful results for appropriate problems. In this paper we consider a
boundary value problem for integro-differential equations with Riemann-Liouville fractional derivative
of orders from (1,2). We consider both interpretations in the literature on the presence of impulses in
fractional differential equations: With fixed lower limit of the fractional derivative at the initial time
point and with lower limits changeable at each impulsive time point. In both cases we set up in
an appropriate way impulsive conditions which are dependent on the Riemann-Liouville fractional
derivative. We establish integral presentations of the solutions in both cases and we note that these
presentations are useful for furure studies of existence, stability and other qualitative properties of the
solutions.
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1. Introduction

Fractional differential equations with various types of fractional derivatives arise in modeling some
dynamical processes (see, for example, [15] for the globally projective synchronization of Caputo
fractional-order quaternion-valued neural networks with discrete and distributed delays, [18] for the
quasi-uniform synchronization issue for fractional-order neural networks with leakage and discrete
delays and [11] for Mittag-Leffler stability and adaptive impulsive synchronization of fractional order
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neural networks in quaternion field). In contrast to the classical derivative the fractional derivative is
nonlocal and it depends significantly on its lower limit. As it is mentioned in [13], this leads to some
obstacles for studying impulsive fractional differential equations.

Since many phenomena are characterized by abrupt changes at certain moments it is important to
consider differential equations with impulses. In the literature there are two main approaches used to
introduce impulses to fractional equations:

(1) With a fixed lower limit of the fractional derivative at the initial time- the fractional derivative of
the unknown function has a lower limit equal to the initial time point over the whole interval of
study;

(i1) With a changeable lower limit of the fractional derivative at each time of impulse- the fractional
derivative on each interval between two consecutive impulses is changed because the lower limit
of the fractional derivative is equal to the time of impulse.

Both interpretations of impulses are based on corresponding interpretations of impulses in ordinary
differential equation, which coincide in the case of integer derivatives. However this is not the case for
fractional derivatives. In the literature both types of interpretations are discussed and studied for Caputo
fractional differential equations of order @ € (0, 1). We refer the reader to the papers [6, 7, 12, 13, 16]
as well as the monograph [3].

We note in the case of the Caputo fractional derivative there is a similarity between both the initial
conditions and the impulsive condition between fractional equations and ordinary equations (see, for
example, [10] concerning the impulsive control law for the Caputo delay fractional-order neural
network model). However for Riemann-Liouville fractional differential equations both the initial
condition and impulsive conditions have to be appropriately given (which is different in the case of
ordinary derivatives as well as the case of Caputo fractional derivatives). Riemann-Liouville
fractional differential equations are considered, for example, in [1, 2] for integral presentation of
solutions in the case of the fractional order @ € (0, 1), [5, 8, 17] for the case of the fractional order
a € (1,2).

In [14] the authors studied the following coupled impulsive fractional integro-differential equations
with Riemann-Liouville derivatives of the form
Du(t) — ¢ (t, T°u@), IPv(t)) =0 fortel, t+¢t, i=1,2,...,p,
Au(ty) — Eju(t)) =0,  Auw'(t) - Eu(t) =0, j=12,...,p,
VD Puli=o = w1, pul=r + 2l u()l=r = us,

DPv(t) — ¢o(t, Tou(t), IPv(t)) =0 fortel, t#¢t, k=1,2,...,q,
Av(t) — &) =0,  AV(1) - &) =0, k=1,2,....q,
3P (Olio = vi,  oV(Oli=r + va TP V(D=1 = 2,

(1.1)

where o, € (1,2], I = [0,T], ¢1,¢> : I X R xR — R are continuous functions, Au(t;) = u(t;.’) -
ut;), Aw'(t) = u' () —u'(f;), Av(ty) = v(t)) = v(t), AV (1)) = V' (5)) = V(5;), where u(}), v(t;)
and v(tJT), v(t,) are the right limits and left limits respectively, &;, Sj,Sk,SZ : R — R are continuous
functions, and D%, 7* are the a-order Riemann-Liouville fractional derivative and integral operators
respectively and DF~2 = 7275,

Since fractional integrals and derivatives have memories, and their lower limits are very important
we will use the notations **D?, and I, respectively, instead of D and 7%, i.e. the Riemann-Liouville

a,t’

fractional derivative is defined by (see, for example [9])
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1 ( d )2 ! u(s)

RLDQ ) = -
i) rQ-a)\dt’ J, (t—s)*!

ds, t>a, a€(l,2), (1.2)

and the Riemann-Liouville fractional integral Ify, of order @ > 0 is defined by (see, for example, [9])

2u@) = FL(B) f (t — sV 'u(s)ds, t > a, (1.3)

where a > 0, 8 > 0 are given numbers.
Note there are some unclear parts in the statement of coupled impulsive fractional
integro-differential equations with Riemann-Liouville derivatives (1.1), such as:

a). The presence of two different integers p and ¢ in (1.1) leads to different domains of both the
unknown functions u and v. For example, in Corollary 1 [14] the solutions u(f) and v(¢) are
defined on [0, #,,] and [0, #,.,] respectively, which causes some problems in the definitions of
formulas (3.7) or (3.8) ([14]);

b). The impulsive functions &;, &, j = 1,2,...,p, k = 1,2,...,q are assumed different but they
are not (it is clear for example, for j = k = 1). The same is about the functions 8;,8,’;, Jj =
,2,....,p, k=1,2,...,q.

In this paper we sort out the above mentioned points by setting up the cleared statement of the
boundary value problem with the Riemann-Liouville (RL) fractional integral for the impulsive
Riemann-Liouville fractional differential equation studied in [14], and we prove a new the integral
presentations of the solutions. To be more general, we study two different interpretations for the
presence of impulses in fractional differential equations. The first one is the case of the fixed lower
limit of the RL fractional derivative at the initial time O and the second one is the case of the changed
lower limit of the fractional RL derivative at any point of impulse. In both cases the integral
presentation of the solution is provided.

2. RL-fractional derivatives with fixed lower limit

2.1. Statement of the problem

Define two different sequences of points of impulses
O=to<thi<thy<--<ty<tp=T and O0=79 <7 <T2 < <7, <7y =T,

where p, g are given natural numbers.
We will consider the following nonlinear boundary value problem for the coupled impulsive
fractional integro-differential equations with Riemann-Liouville derivatives with a lower limit at O

RLDE u(t) = (e, I3 (), I v(1) =0 fortel, t# 8, i=1,2,...,p,
Au(t)) - Eu(t) =0,  Aw(t) - Eut) =0, j=1,2...,p,
~I2Ulmo = ur,  pu(Olr + i I8 UuOlr = us,

RLDg,zV(t) — (1, I&,u(t),lﬁtv(t)) =0 fortel, t#1, k=1,2,...,q,
AT - Sl (m) =0, AV(T) - SivT) =0, k=1,2,...,4,
TPOleo = vis VOl + Va5 VDl = v,

2.1)
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where o, € (1,2], I = [0,T], ¢1,o : I Xx R x R — R are continuous functions,
Au(t)) = u(t}) —u(ty), Au'(ty) = u'(t7) —u'(f}), Av(Ti) = v(T7) —v(T), AV(Ti) = V(7)) = V' (7)),
where u(t}), v(ty), w'(t7),v'(t;) and u(t}), v(5,), u'(f;), v'(f;) are the right limits and left limits
respectively, &;,85,8,S; : R — R are continuous functions, and RLDgt,I @ are the a-order
Riemann-Liouville fractional derivative and integral operators, respectively, w;, v;, ux, v, i = 1,2, are
given constants.

In the statement of the problem (2.1) some parts of (1.1) are cleared: there are two different points
of impulses; the lower limits of the fractional integrals and fractional integrals are written; different
functions at different points of impulses are used.

In our proofs we will use the following well known properties for fractional integrals (see, for
example [9]).

2.0 u = 15°u(n), a,p >0,

(g +1 2.2
It - a) = T@rD e 050,951 > a (&2
INg+a+1)

We will apply the following auxiliary result which is a generalization of the result in [4] for an
arbitrary lower limit of the fractional derivative:

Lemma 1. ([4]). The general solution of the Riemann-Liouville fractional differential equation
REDe w) =g, te(aT], ac(l,2) (2.3)
is given by
w(t) = ci(t—a)*" + ot —a)* ™ + 1", g

2.4
f( 5)*"'g(s)ds, t € (a, T, -

=cit—a) " + ot —a)* + m

where cy, c1,a > 0 are arbitrary real constants.

2.2. Integral presentation of the linear problem

We will consider an appropriate boundary value problem for a scalar impulsive linear equation, we
will prove a formula for its solution and later we will apply it to obatin the main result.

Consider the following boundary value problem for the linear impulsive fractional differential
equation with Riemann-Liouville derivatives of the form

RLpe ut) = f(1), t€O,T] t#1, j=1,2,...p, ac(l,2),
Au(t)) = Ei(u(ty),  Au'(t) = Eu(ty) j=1,2,....p, (2.5)

2— -1
Iy u@®l=0 = w1, pu(l=r + vilg, u@®l=r = ua,

where f : [0,T] — R is a continuous function, &;, 8; : R — IR are continuous functions, u;, u, € R.
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Lemma 2. The solution of (2.5) satisfies the integral equation

cot* ™ + it + r<a) fo(f— )"~ f(s)ds, e 0,0l

cot® ' + (Zk 1[f2 “E(u)] — (@ —2) Zk:l tll_aak(u(tk))])ta_l

u(t) = . )
+(F(a’ 1) + (CZ 1) Zi:l t]%_aak(u(tk)) - Zi:l t]f—aa]t(u(tk)))ta_z
+iay o = 9 f(9)ds, te€(t),tjal,
where
p+1 p+1

—( DI E )] — (@ = 2) Y [5 Exu(t))])
k=1 k=1

p+1 p+1

+(@-1) Z £ Ex(u(ty) Z B E u(t)) T

(F( 1y

a-1
— mf (T - S) f(S)dS

- f (T — )" u(s)ds + ,u_

/.llTa lr(a
Proof. We will use induction.
For t € (0,1,] we apply Lemma 1 with a = 0 and we get

u(t) = cot* ' + ¢ f (t— 5" f(s)ds
0 ) f

and

w'(t) = cola — D" + cy(a — )1 + r( ) f (t — $)* 2 f(s)ds.
From the initial condition Ig;“u(t)l,zo = u; and equalities (2.2), (2.7) we get

o I'(@) I'(e-1)

ISJ u(®l=o = Comﬂz:o + Clwhzo + Ig,;f(t)h:o =cl(a-1),

1.e. c1 = =l

Ta-1)"
For t € (#, ;] by Lemma 1 with a = 0 we get

u(t) = bot™ ' + by1*” r( ) f (t— ) f(s)ds

and
w'(f) = bola — D12 + by(a — 213 +

From the impulsive condition u(#; + 0) — u(t; — O) = &;(u(t;)) we obtain

f (- 9% f(s)ds

ZL+ =b ta/—l b ta—Z
u(1) of;  + D14 r()

a-1 _ U

el = Fa 1)ff‘2 - m f (ti — )" f(s)ds
=(bo — co)t{ " + (b1 — ) = E(un)).

T(a —1)

1 ' a-2
F(a/—l)fo(t_s) f(s)ds.

(2.6)

2.7)

(2.8)

(2.9)

(2.10)

(2.11)
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and from the impulsive condition u’'(#; + 0) — u'(t;) = &} (u(t))) we get

W (t) =bo(a@ — Dty + by(a — 2)197° + — 5)" 2 f(s)ds

—%m—DﬁQ—HJti—mﬁ4 _Dj\m—@“%mms

=(by — co)a — DI{ % + (by — Na - 2)t = & (u(n)).

(—1)

Thus we get the linear system w.r.t. by and b,

(bo — co)a — D} + (by - Na =2t = Ej(ut)))

(—1)

(bo = co)t§ ™" + (by — )2 = & (1))

F( - 1)
or
by = co + 1, °E}(u(tr)) — (@ — 2)t,*Er(u(ty))
= (@ = D& ) = & wt) + oty
Therefore,

umzwﬁ“(”%mmm—m—m#%mmmV4
+ (0= AT E @) - 77 E ) + o 1))“-2

+$j;(t—s)“_1f(s)ds, 1€ (t, 1]

Assume the integral presentation of u() is correct on (¢;_, ], 1.

Jj-1 Jj-1
u(t) = ct"" + (> 8 aazw(tk))—<a—2>Zt,1-“8k<u<rk>>)t“-‘
k=1

(a -1) Z 6 Eu(n) - Z 1 E(u(n) + T(a 1)) 7

+ﬁ5£0ﬂwwmmta%@}

Denote

Jj-1 J-1
mo = co+ ) 1 Ewt)) — (@ =2) ) (7 Eu(t)
k=1 k=1

and

j-1 Jj—1
mi = (- 1) ; frEelu(te) — ; B E ut) + F(ozul_ 1)’

(2.12)

(2.13)

(2.14)
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Lett e (tj,ts1], j=2,...,p,. By Lemma 1 with a = 0 we get

u(t) = kot + ky1°72 r( ) f (t — ) f(s)ds, (2.15)

and
w'(1) = kol — D" + ky(a — )13 +

t
t—$)* 2 f(s)ds. 2.16
o | a9 2.16)
From the impulsive conditions and the equality (2.14) we obtain the linear system w.r.t. ky and k;
(ko — mo)(e — )7 + (ky — my)(@ = 2)157° = &;(u(r))
(ko = mo)t3™" + (ky = m)t5~> = E(ult)))

or
J J
ko= co+ ) [ Ewt)] - (@ = 2) ) [ " Euty)]
k=1 k=1
k= —2 L (a- 1)Zj]t2—“8 (u(t)) — Zj:ﬁ—aa*(u(r )
I_F(a—l) - k k k £ k k k))-
Therefore,

u(t) = cot"”" + Z[ri "Eu(t))] - (a - 2)2 “E(u(t))] )

+ (F( Ml_ D +(@-1) Z £ 6 (u(t)) — ; tz_“(c),t(u(tk)))t“‘z (2.17)

r( )f(t—s)“ Yf(s)ds, te(t,til, j=1,2,...,p

From the boundary condition g u(t)|.=7 + viZ% 'u(t)|,=r = u, we get

1 T
Ia_lu(l‘)lz:T = m‘f; (T - S)a_zu(s)ds

and

u(l=r +vi 2 u(@)l=r

p+1 p+1
= meoT™ ™" + i ) [ Epur)] - (@ = 2) D [0 " Elu(@))])T*™!
. p+1 k;:—l
* ul(m +(@=1) Z £ (1)) - ; (1)) T o1
ulm f (T = 51 g1, T2 (). I w(s))ds
a2
Vi F(a ) [) (T — )" “u(s)ds
= Up.
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From (2.18) we have (2.6).

We will give an example to illustrate the claim of Lemma 2.

Example 1. Consider the following boundary value problem for the scalar RL fractional differential
equation with an impulse at t = 1

REDgu() =1, 1€ (0,110 (1,2],
Au(D)=1, A1) =0, (2.19)
Iu®l=0 =0,  u(®l= + 1§ u(®)l=2 = 1.

The solution of (2.19) satisfies the integral equation

. 05 0.266667>3
u(t) = { cot: rt<053)5+ Fs) N 1€ (0,1]
] 25
cot”” + 0.5¢ +(m+05) +W’ 16(1,2],
where
1.50849 1 2

=0.25- - 2 -0.5 ds. 2.20
Co 20~5F(1.5) ZO‘SF(O,S) ‘L ( S) u(s) K ( )

Consider the boundary value problem for the nonlinear impulsive fractional integro-differential
equations with Riemann-Liouville derivatives of the form

KD u(t) = ¢ (1, I u(0)), 1€ (0, T, t#1;, j=1,2,...p, a€(1,2)
Au(t)) = E;(u(ty), A (ty) = E ) j=1,2,...,p, (2.21)
I u@lo = w1, u@lr + vi 1§ u@®li=r = ua,

where ¢; : [0,7] x R — R is a continuous function, 8]-,8}*. : R — R are continuous functions,
up, up € R.

Corollary 1. The solution of (2.21) satisfies the integral equation

ot + 50t [ = ) (s, I3 u(s), )ds, 1€ (0,1]
u(t) = ot + (Z] 1[f2_a8;t(u(lk))] -(@-2) Zizl[t,i_“Sk(u(tk))])t“‘l 02)
+(F(a ) +(@—1) X, 77 E(u(ty)) — Zizlti_QSZ(u(tk)))t“‘Q
trs [ = )T i (s I u(s)ds, 1€ (. 151],
where
p+l p+l
¢ = ~( DI & )] - (@ = 2) ) [0 Eulun))])
k=1 k=1
p+l p+l
-1 2— ¥ _ 3— agk T_
( Fat 1) +(a )Zrk (1)) Zrk o) .

‘m fo (T = )" ¢1(s. I3 u(s), I v(s))ds

4 T 125}
- T — )" u(s)ds + —.
m T T (@ = 1) Jo ( Jr) Hi
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The proof of Corollary 1 is similar to the one of Lemma 2 with f(7) = ¢,(t, Ig’ ,u(1)) and we omit it.

Remark 1. Corollary 1 and the integral presentation (2.22) correct Theorem 3.1 and the formula
(3.2) [14]. The main mistake in the proof of formula (3.2) [14] is the incorrect application of Lemma 1
with a = 0 on (1, ;] and taking the lower limit of the integral in (3.5) [14] incorrectly at t,(0) instead
of 0. A similar comment applies to all the other intervals (t;,1j.].

2.3. Integral presentation of the problem (2.1)

Following the proof of Lemma 2 and the integral presentation (2.22) of problem (2.21), we have the
following result:
Theorem 1. The solution of (2.1) satisfies the integral equations
cot + s 2 [ — )™y (5. 0 u(s). I v(s)ds, 1€ (0.1],

cot*™ + (T [ E )] = (@ - 2) XL [ Exluto) )i

f) = 4 . 2.24
"0 Hrls + (@ = D) B, 2 8ut) = T, 6708 (1)) (224
s [ = )T i (5. 15 u(s), I v()ds, 1€ (1) 171],
and
bot™ ™+ 71272 4 T [ — )2 (s, I3 (), Iy v(s))ds, 1€ (0,11]
a—1 J 2—a Q* _ _ J l-a a—1
o< | Bt +u.( 7 S{00) - (@ - D B O ik(z(rk))])r " 025
+(Fls + (@ = D) X1, 208 v(1) — Zi_, 170 S;00(t))r
s [ = ) o, IS u(s). I v(s))ds, 1€ (t17.1],
where
p+l p+1
co = ~( D I E )] = (@ = 2) )[4 " Eu(t))])
k=1 k=1
p+1 p+1
- (r(a”l_ TR ; 28 (u(ty)) - ; (78 (u(t)) T~
1 T
" T T fo (T = 5) 'y (s, I&Su(s),lg’sv(s))ds
T
V1 a2 uy
- T — ds + —=
IulTa/—ll"(a _ 1) L‘ ( S) M(S) s + i (2 26)
p+1 p+1 ’
by = —( D[ SivE)] - (@ = 2) ) [ Siv(t)])
k=1 k=1
p+1 p+1
(= @ - D) Y ES0m) — Y . S ()T
Mo = 1) k=1 k=1

1 T
T T () fo (T = )" po(s, I3 u(s), I v(s))ds

V2

_ &)
T ' T(a—1) '

T
f (T — )% 2v(s)ds +
0

j2%)
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The proof is similar to the one of Lemma 2 applied twice to each of the both components u and v of
the coupled system (2.1) for impulsive points #;, i = 1,2,...,pand 7;, i = 1,2,..., p and the functions
£ = ¢t I3 u(®), I v(1)) and f(£) = o (t, IS u(?), I (D)) respectively.

Remark 2. Note the integral presentation (2.24), (2.25) of the solutions of the coupled system is the
correction of Corollary 1 and integral presentation (3.7), (3.8) in [14].

3. RL fractional derivatives with changeable lower limits

3.1. Statement of the problem with changeable lower limit of the RL fractional derivatives

Consider the following nonlinear boundary value problem for the coupled impulsive fractional
integro-differential equations with Riemann-Liouville derivatives with lower limits at impulsive
points t;, i =0,1,2,...,p—land 7, k=0,1,2,...,9 — 1, respectively,

RLDZJM(Z) - ¢1(l, I&tu(t), Ig,zv(l)) =0 forte (ti’ ti+1] i= O, 1’ 2’ oD
I?j;au,(t)lt:tj = P]M(t]) + Q], ] =1,2,... , Ds

I u@l=o = w1, u@l=r +viI§; u@li=r = ua,

* raV(D) = 20, Igtu(t),lg’tv(t)) =0 forte (t,7ks1] £=0,1,2,...,q,
I‘%k_,;tu,(t)ltzrk = in(Tk) + ij*’ k = 1’ 2, ceesq,

2— —1
I PvOleo = vi, V@l + vl V(Olier = va,

3.1

where @,8 € (1,2], ¢1,¢, : I x RXR — R are continuous functions, P;,Q;, j = 1,2,...,p, and

P.Q;, j = 1,2,...,q, are real numbers, **Df, and RLpf | are the a-order Riemann-Liouville
fractional derivatives with lower limits at ¢; and 74, respectively, g, v, ug, vi, i = 1,2, are given
constants.

Remark 3. Note problem (3.1) differs from problem (2.1):

- The lower limits of the RL fractional derivatives RLDZ_J and RLka’, in (3.1) are changed at any
time of impulse t; and Ty, respectively.

- The impulsive conditions are changed in (3.1). This is because the values of the unknown
functions after the impulse, u(t; + 0) and v(ti + 0), respectively, are considered as initial values
at that point. But the RL fractional derivative has a singularity at its lower limit. It requires the
chang of the impulsive conditions for the unknown functions.

3.2. Integral presentation of the linear problem

Consider the following boundary value problem for the scalar linear impulsive fractional equation
with Riemann-Liouville derivatives of the form

KD u(r) = f(1), forte (1], i=0,1,2,...,p, @€(1,2)
Izi;au,(t)lt:tj = Pju(tj) + Qj’ ] = 1’ 2’ Y 2 (32)
I§;"u(t)lt:o =uy, pu(t)|=r + Vll&,_lu(f)h:T = uy,

where the function f : [0,7] — R is a continuous function, P;,Q;, j = 1,2,..., p are real numbers,
up, Uy € R.
Now we will provide an integral presentation of the solution of (3.2).
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Lemma 3. The solution of (3.2) satisfies the integral equation

cot™ ! + wat Fa!™” P+ IS f(0), 1€(0,1]

1 m Pt

_ ) oo+ mries o = ) TIE TS
u(t) = Pul_| o f =+

@ a1 vm 1 m Ptj=tj-)""!
+Itm’,f(t) +(t = 1) Zk:I (a-Dl(a-1) Hj:k+1 (@=Dl(a-1) ’
for te(tm’tm+1]’m: 1923-'°ap9

where

L
W =1
M Z L 1S Oli=y + Qi Pty —ti1)""

co = Z—Z(T — 1) M - (T = 1) MU f(Dlir

(@-DM@-1) L1 (@-Dl@-1)
), | - (3.3)
- —(T-t)"™ "M f (T — 5)* 2u(s)ds,
H g Ila-1) Jo
)4
M= (-1 -D[ [Pt -t
k=1
Proof. We will use induction.
For € (0,1,] similar to Lemma 2 we get
1
u(t) = cot® ! + 1% r( ) (z— $)* 7 f(s)ds (3.4)
where ¢; = F(Zl_l).
For t € (¢, 1,] by Lemma 1 with a = #; we get
u(t) = bo(t — 1)+ byt — 1) + m f (t—5)*  f(s)ds (3.5)
and
wW(t) =bola— Dt —1)2 +bi(@-2)t—1)"" + @2 £(s5)ds. (3.6)

From the impulsive condition I2 U (Ol=r, = Pru(ty) + Q, equahtles (2 2) and If , f(D))l=, = 0 we
obtain

Lo () = byl — DL (1= 1) 2+ bi(@ =)Lt — 1) + LI f(0) a7
= bo(a = DI(@ = 1) + bi(@ = DL (1 = 1) + I f(2) '

and
L0 (Dliey = bola = DI(@ = 1) + by(a = DLt = 1) Ny, = Prulty) + Q) < o0 (3.8)
Since the integral 12 =) 3 does not converge, it follows that b; = 0 and

P

= — a-1 U _ a-1 o'
by = (@~ Dla@- 1)(Co(n 1) + T )(t1 1) + 12 f(O)limyy) +

Q
(- Dl(a-1)
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Thus,
_ U Pt = o) et
u(t) = (co + s 1))(a e 1)(t— 1)
Pl a-1
+ (a, _ 1)1"( 1) t() tf(t)ll l‘l(t tl) (39)
Q

_ ol a
+(C¥—1)F(a/—1)(t 0T+ LS.

Similarly, for ¢ € (¢;,¢;111, j=1,2,..., p, by Lemma 1 with a = t; we get

u®) = kot — ;)" +ky(t — ;)" + T) f (t = )" p1(s, 1§ u(s), I v(s))ds (3.10)

and

W(t) =kola—D)(t=1) " +ki(@=2)(t—1,)"" +

r(a _ 1) L (t_ S)a_2¢1(sa I(()l,su(s)’ Ig’sv(s))ds. (311)

From the impulsive conditions we obtain k; = 0 and

P, Q
@-Dre-0" Y G- hre-Dn

From the boundary condition g, u(f)|,=r + viZ* 'u(t)|,=r = u, we get

k():

a—1 _
I uWher = p—y

T
f (T — 5)*2u(s)ds
0
and
(=t + i T u(®)=r

Pty — 1)

_ U _ a—1
“uleot )T -0 G hra -
Ey Pl fOli=y + Qv Pit; — ;1)
a _ a—1 k-1, k J\*J J 3.12
+ ] fOlir + (T = 1,) ;} @ @D Ll @ tra-1 (3.12)
1 ’ 5
+ Vlm fo (T — )" “u(s)ds
=up
and we obtain (3.3).
O

Example 2. Consider the equation

KDyPu(r) =1, 1€ (0,1], REDVu(n) =1, t€(1,2],
LW (0Dl = 1, (3.13)
I7u@®lzo =0, u(®lea + I u(®li— = 1.
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Note the Eq (3.13) is similar to (2.19) but the lower limit of the fractional derivative is changed at
the point of the impulse. The solution of (3.13) satisfies the integral equation

0.2666671>>
e, 1€ (0,1],
u(l,) — { (1.5

s (<04 — 127 4+ 25000 4 G e (1,21,

3 (0.5)1(0.5)°

It is clear the change of the lower limits of the fractional derivatives has a huge influence on the
solution of the equation.

3.3. Integral presentation of the problem (3.1)

Based on the integral presentation of the linear problem (3.2) and Lemma 3, we obtain the following
result:

Theorem 2. The solution of (3.1) satisfies the integral equations

Cot™ !+ T 4 I8 1 (1, I3 u0), I v(D), 1€ (0,1]

I'(e-1) 1
uj a1 Preletic)™
(CO+ m)("tm)ﬁ [Ti=1 Tora
uty =1+ b1t I3 ), I v(1)

Pr I DI GIG DI Oy ¥ Qe 0 Pty

a—1 \'m
= 1n)" Xz (a=DI(a—1) Jj=k+1 "(a=D(a—1) *
fOr te(tM$tm+l]$m: 1$25'*'ap$

and

bot™ ™! + (st 4 I3 (8 IS u(®), Iy v(0)), 1€ (0,74]

=gyt Ty, D)
(bo + nF(a—l))(t Tm)ﬁ k=1 (a-DI(a-1)
v(t) =4+ (15 u(D), I v(1)

PrIE | a1 w0, 15 ()= +Q; Pirj=Tj)!

a—1 m m
+( = TW)* X (a=DI(a—1) 1_[j=k+1 “(@-Dl(a-1) *
for te (T, Tunal,m=12,...,q,

where
Uy
Hl'la-1)
= (T = 1) " MU 1 (&, I 1), Ty (D)1

P Pklzczfl,z¢l(t’ I&tu(t)’ I'g,,V(t))h:zk + Qk d Pj(l‘j - fj_l)a_l
—M; (= DI'(e=1) H (- DI'(e—-1)

Co = @(T - tp)l_aM -
M1

Jj=k+1

- AT - )1_"/\/(—1 fT(T — )" ?u(s)ds
Hi g F@-1) Jo ’

p
M= (@-1YTa- D[ [Pt -1,
k=1
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Vi
1@ —-1)
~(T -1 "C I} (1, I&u(r) V(O)er
P ot 10 u(®), I v(O)ir, + Q;

q _ q
P (af,l)l“(aoil) |1

by = 2(T —7,)'C -
J25)

Pj‘(Tj - Tj_])a_l

k=1 j=k+1 (@ = DI(a - 1)
V2 1-a (L/ 2
- 2T - T -
B 1) f ( u(s)ds.
C=(a—- 1T a-1) ]—[ Pty — i)' ™

k=1
The proof is similar to the one of Lemma 3 applied twice to each of the both components u and v of
the coupled system (3.1) for impulsive points #;, i 1 ,2,...,pand1;, i = 1,2,..., p and the functions

f(t) = ¢1(2, I [u(t),lg’tv(t)) and f(r) = (1, I 0. (), I v(t)) respectively.
4. Conclusions

In this paper we set up and study a scalar nonlinear integro-differential equation with
Riemann-Liouville fractional derivative and impulses. We consider a boundary value problem for the
studied equation with Riemann-Liouville fractional derivative of order in (1,2). Note for
Riemann-Liouville fractional differential equations both the initial condition and impulsive conditions
have to be appropriately given (which is different in the case of ordinary derivatives as well as the
case of Caputo fractional derivatives). We consider both interpretations in the literature on the
presence of impulses in fractional differential equations: With fixed lower limit of the fractional
derivative at the initial time point and with lower limits changeable at each impulsive time point. In
both cases we set up in an appropriate way impulsive conditions which are dependent on the
Riemann-Liouville fractional derivative. We obtain integral presentations of the solutions in both
cases. These presentations could be successfully used for furure studies of existence, stability and
other qualitative properties of the solutions of the integro-differential equations with
Riemann-Liouville fractional derivative of order in (1, 2) and impulses.
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