Loading [MathJax]/jax/element/mml/optable/GeometricShapes.js
Research article

Fixed point theorems for controlled neutrosophic metric-like spaces

  • Received: 03 August 2022 Revised: 08 September 2022 Accepted: 14 September 2022 Published: 26 September 2022
  • MSC : 47H10, 54H25

  • In this paper, we establish the concept of controlled neutrosophic metric-like spaces as a generalization of neutrosophic metric spaces and provide several non-trivial examples to show the spuriousness of the new concept in the existing literature. Furthermore, we prove several fixed point results for contraction mappings and provide the examples with their graphs to show the validity of the results. At the end of the manuscript, we establish an application to integral equations, in which we use the main result to find the solution of the integral equation.

    Citation: Fahim Uddin, Umar Ishtiaq, Naeem Saleem, Khaleel Ahmad, Fahd Jarad. Fixed point theorems for controlled neutrosophic metric-like spaces[J]. AIMS Mathematics, 2022, 7(12): 20711-20739. doi: 10.3934/math.20221135

    Related Papers:

    [1] Muhammad Suhail Aslam, Mohammad Showkat Rahim Chowdhury, Liliana Guran, Isra Manzoor, Thabet Abdeljawad, Dania Santina, Nabil Mlaiki . Complex-valued double controlled metric like spaces with applications to fixed point theorems and Fredholm type integral equations. AIMS Mathematics, 2023, 8(2): 4944-4963. doi: 10.3934/math.2023247
    [2] Fahim Ud Din, Khalil Javed, Umar Ishtiaq, Khalil Ahmed, Muhammad Arshad, Choonkil Park . Existence of fixed point results in neutrosophic metric-like spaces. AIMS Mathematics, 2022, 7(9): 17105-17122. doi: 10.3934/math.2022941
    [3] Muhammad Riaz, Umar Ishtiaq, Choonkil Park, Khaleel Ahmad, Fahim Uddin . Some fixed point results for ξ-chainable neutrosophic and generalized neutrosophic cone metric spaces with application. AIMS Mathematics, 2022, 7(8): 14756-14784. doi: 10.3934/math.2022811
    [4] A. M. Zidan, Z. Mostefaoui . Double controlled quasi metric-like spaces and some topological properties of this space. AIMS Mathematics, 2021, 6(10): 11584-11594. doi: 10.3934/math.2021672
    [5] Hasanen A. Hammad, Maryam G. Alshehri . Generalized Ξ-metric-like space and new fixed point results with an application. AIMS Mathematics, 2023, 8(2): 2453-2472. doi: 10.3934/math.2023127
    [6] Umar Ishtiaq, Khaleel Ahmad, Muhammad Imran Asjad, Farhan Ali, Fahd Jarad . Common fixed point, Baire's and Cantor's theorems in neutrosophic 2-metric spaces. AIMS Mathematics, 2023, 8(2): 2532-2555. doi: 10.3934/math.2023131
    [7] Ahmed Alamer, Faizan Ahmad Khan . Boyd-Wong type functional contractions under locally transitive binary relation with applications to boundary value problems. AIMS Mathematics, 2024, 9(3): 6266-6280. doi: 10.3934/math.2024305
    [8] Mazhar Mehmood, Abdullah Shoaib, Nabil Mlaiki . Fixed point results on triple controlled quasi rectangular metric like spaces. AIMS Mathematics, 2023, 8(5): 10049-10066. doi: 10.3934/math.2023509
    [9] Anas A. Hijab, Laith K. Shaakir, Sarah Aljohani, Nabil Mlaiki . Double composed metric-like spaces via some fixed point theorems. AIMS Mathematics, 2024, 9(10): 27205-27219. doi: 10.3934/math.20241322
    [10] Zhenhua Ma, Jamshaid Ahmad, Abdullah Eqal Al-Mazrooei . Fixed point results for generalized contractions in controlled metric spaces with applications. AIMS Mathematics, 2023, 8(1): 529-549. doi: 10.3934/math.2023025
  • In this paper, we establish the concept of controlled neutrosophic metric-like spaces as a generalization of neutrosophic metric spaces and provide several non-trivial examples to show the spuriousness of the new concept in the existing literature. Furthermore, we prove several fixed point results for contraction mappings and provide the examples with their graphs to show the validity of the results. At the end of the manuscript, we establish an application to integral equations, in which we use the main result to find the solution of the integral equation.



    The foundation of fixed point theory is the idea of metric spaces and the Banach contraction principle. An enormous number of academics are motivated to the axiomatic interpretation of metric space because of its spaciousness. The metric space has experienced numerous generalizations until

    now. This demonstrates the attraction, enchantment, and development of the idea of metric spaces.

    After being given the notion of fuzzy sets (FSs) by Zadeh [1], researchers provided various generalizations for classical structures [2,3,4,5]. In this continuation, Kramosil and Michalek [6] originated the approach of fuzzy metric spaces, while George and Veeramani [7] introduced the concept of fuzzy metric spaces. Garbiec [8] gave the fuzzy interpretation of Banach contraction principle in fuzzy metric spaces.

    The idea of fuzzy extended b-metric spaces was first established by Mehmood [9]. Metric-like spaces (MLSs), which is generalization of the idea of metric spaces, were introduced by Harandi [10]. The notions controlled metric type spaces and controlled metric-like spaces were first introduced by Mlaiki [11,12]. Recently, Sezen [13] generalized the concept of controlled type metric spaces and introduced the concept of Controlled fuzzy metric spaces (CFMS). Shukla and Abbas [14] reformulated the definition of MLSs and introduced the concept of fuzzy metric like spaces (FMLSs). Later, Javed et al. [15] obtained fixed point results in the context of fuzzy b-metric-like spaces. The approach of intuitionistic fuzzy metric spaces was tossed by Park [16] that deals with membership and non-membership functions.

    Smarandache [17] established the concept of neutrosophic logic and the concept of neutrosophic set in 1998. The concept of neutrosophic sets have three functions, which are membership function, non-membership function and naturalness respectively. Thus, neutrosophic sets are the more general form of fuzzy sets [1] and intuitionistic fuzzy sets [18]. Hence, researchers in [19,20,21,22] have made studies on the concept of neutrosophic sets. Recently, Aslan et al. [23] obtained decision making applications for neutrosophic modeling of Talcott Parsons's Action and Kargın et al. [24] introduced decision making applications for law based on generalized set valued neutrosophic quadruple numbers. Şahin et al. [25] studied adequacy of online education using Hausdorff Measures based on neutrosophic quadruple sets. Also, Researchers in [26,27] studied types of metric space based on neutrosophic theory. Recently, Şahin and Kargın [28] obtained neutrosophic triplet metric spaces and neutrosophic triplet normed spaces. Kirişci and Simsek [29] established the concept of neutrosophic metric spaces (NMSs) that deals with membership, non-membership and naturalness functions. Şahin and Kargın [30] studied neutrosophic triplet v-generalized metric spaces and Şahin et al. [31] introduced the concept of neutrosophic triplet bipolar metric spaces. Simsek and Kirişci [32] derived various fixed point theorems for neutrosophic metric space. Şahin and Kargın [33] introduced the concept of neutrosophic triplet b–metric space. Şahin and Kargın [32] established neutrosophic triplet b-metric space and Sowndrarajan et al. [34] studied contradiction mapping results for neutrosophic metric space. Saleem et al. [35,36,37] proved various fixed point results for contraction mappings. Khater [38] did nice work on diverse solitary and Jacobian solutions in a continually laminated fluid with respect to shear flows through the Ostrovsky equation and Khater [39] worked on numerical simulations of Zakharov's (ZK) non-dimensional equation arising in Langmuir and ion-acoustic waves.

    In this manuscript, we introduce the notion of controlled neutrosophic metric-like spaces as a generalization of a NMSs introduced in [29]. We replaced the following conditions of NMS

    P(ϖ,ν,τ)=1 for all τ>0, if  and  only if ϖ=ν,
    Q(ϖ,ν,τ)=1 for all τ>0, if and only if ϖ=ν,
    S(ϖ,ν,τ)=1 for all τ>0, if  and  only if ϖ=ν,

    with

    P(ϖ,ν,τ)=1 implies ϖ=ν,
    Q(ϖ,ν,τ)=1 implies ϖ=ν,
    S(ϖ,ν,τ)=1 implies ϖ=ν.

    Also, we used a controlled function ϕ:Ξ×Ξ[1,) in the triangle inequalities of NMS. These both things generalized the defined notions existing in the literature. We also, derived several fixed-point results for contraction mappings in the context of new introduced space with non-trivial examples and graphical structure. At the end, we established an application to integral equation to show the validity of our main result.

    In Section 2, we give basic definitions and basic properties for fuzzy metric spaces and neutrosophic metric spaces from [4,10,12,13,14,15,16,29]. In Section 3, we define controlled neutrosophic metric-like spaces and definitions of open ball, G-convergent sequence, G-Cauchy sequence, G-complete space and some examples for controlled neutrosophic metric-like spaces. Also, we give some fixed point (FP) results and illustrative examples. In Section 4, we give conclusions.

    The following definitions are useful in the sequel.

    Definition 2.1. [15] A binary operation : [0, 1]× [0, 1] [0, 1] is called a continuous triangle norm (briefly CTN), if it meets the below assertions:

    1) 𝛶ϱ=ϱ𝛶,()𝛶,ϱ[0,1];

    2) is continuous;

    3) 𝛶1=𝛶,()𝛶[0,1];

    4) (𝛶ϱ)ϰ=𝛶(ϱϰ),()𝛶,ϱ,ϰ[0,1];

    5) If 𝛶ϰ and ϱd, with 𝛶,ϱ,ϰ,d[0,1], then 𝛶ϱϰd.

    Example 2.1. [4,15] Some fundamental examples of t-norms are: 𝛶ϱ=𝛶ϱ,𝛶ϱ=min{𝛶,ϱ} and 𝛶ϱ=max{𝛶+ϱ1,0}.

    Definition 2.2. [15] A binary operation : [0, 1] \times [0, 1] \to [0, 1] is called a continuous triangle conorm (briefly CTCN) if it meets the below assertions:

    1) 𝛶○\varrho = \varrho ○𝛶, \ \mathrm{f}\mathrm{o}\mathrm{r}\ \mathrm{a}\mathrm{l}\mathrm{l}\ 𝛶, \varrho \in \left[0, 1\right];

    2) is continuous;

    3) 𝛶○0 = 0, \ \mathrm{f}\mathrm{o}\mathrm{r}\ \mathrm{a}\mathrm{l}\mathrm{l}\ 𝛶\in \left[0, 1\right];

    4) \left(𝛶○\varrho \right)○\varkappa = 𝛶○\left(\varrho ○\varkappa \right), \ \mathrm{f}\mathrm{o}\mathrm{r}\ \mathrm{a}\mathrm{l}\mathrm{l}\ 𝛶, \varrho, \varkappa \in \left[0, 1\right];

    5) If 𝛶\le \varkappa and \varrho \le d, with 𝛶, \varrho, \varkappa, d\in \left[0, 1\right], then 𝛶○\varrho \le \varkappa ○d.

    Example 2.2. [15] 𝛶○\varrho = \mathrm{max}\left\{𝛶, \varrho \right\}\ \mathrm{a}\mathrm{n}\mathrm{d}\ 𝛶○\varrho = \mathrm{min}\left\{𝛶+\varrho, 1\right\} are examples of CTCNs.

    Definition 2.3. [10] Suppose {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\ne \varnothing be a set. A mapping {\mathit{\Theta}} :{\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\times {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\to \left[1, \infty \right) is known as a metric-like, if it satisfying the following conditions:

    1) {\mathit{\Theta}} \left(\varpi, \nu \right) = 0\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{s}\varpi = \nu;

    2) {\mathit{\Theta}} \left(\varpi, \nu \right) = {\mathit{\Theta}} \left(\nu, \varpi \right);

    3) {\mathit{\Theta}} \left(\varpi, \nu \right)\le {\mathit{\Theta}} \left(\varpi, \mathit{\boldsymbol{\lambda }}\right)+{\mathit{\Theta}} \left(\mathit{\boldsymbol{\lambda }}, \nu \right);

    for all \varpi, \nu, \mathit{\boldsymbol{\lambda }}\in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}.

    Also, \left({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, {\mathit{\Theta}} \right) is called a metric-like space.

    Definition 2.4. [12] Let {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\ne \varnothing, \psi :{\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\times {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\to \left[1, \infty \right) be a function and {\mathit{\Theta}} :{\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\times {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\to {\mathbb{R}}^{+} . If the following properties are satisfied:

    1) {\mathit{\Theta}} \left(\varpi, \nu \right) = 0\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{s}\varpi = \nu;

    2) {\mathit{\Theta}} \left(\varpi, \nu \right) = {\mathit{\Theta}} \left(\nu, \varpi \right);

    3) {\mathit{\Theta}} \left(\varpi, \nu \right)\le \psi (\left(\varpi, \mathit{\boldsymbol{\lambda }}\right){\mathit{\Theta}} \left(\varpi, \mathit{\boldsymbol{\lambda }}\right)+\psi \left(\mathit{\boldsymbol{\lambda }}, \varpi \right){\mathit{\Theta}} \left(\mathit{\boldsymbol{\lambda }}, \nu \right);

    for all \varpi, \nu, \mathit{\boldsymbol{\lambda }}\in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, then {\mathit{\Theta}} is said to be a controlled metric-like and \left({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, \mathrm{{\mathit{\Theta}} }\right) is known as a controlled metric-like space.

    Definition 2.5. [13] Suppose {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\ne \varnothing , h:{\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\times {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\to \left[1, \infty \right) be a mapping, ∗ is a CTN and {{\mathit{\Delta}} }_{h} is a FS on {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\times {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\times (0, \infty) . Four-tuple \left({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, {{\mathit{\Delta}} }_{h}, *, h\right) is called CFMS if it meets the below assertions for all \varpi, \nu, \mathit{\boldsymbol{\lambda }}\in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\ \mathrm{a}\mathrm{n}\mathrm{d}\ {\mathit{\boldsymbol{\tau }}}, \mathit{\boldsymbol{ \boldsymbol{\varsigma } }} > 0 :

    h1)\ {{\mathit{\Delta}} }_{h}\left(\varpi, \nu, 0\right) = 0;

    h2) \ {{\mathit{\Delta}} }_{h}\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 1⟺\varpi = \nu;

    h3) \ {{\mathit{\Delta}} }_{h}\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = {{\mathit{\Delta}} }_{h}\left(\nu, \varpi, {\mathit{\boldsymbol{\tau }}}\right);

    h4)\ {{\mathit{\Delta}} }_{h}\left(\varpi, \mathit{\boldsymbol{\lambda }}, ({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }})\right)\ge {{\mathit{\Delta}} }_{h}\left(\varpi, \nu, \frac{{\mathit{\boldsymbol{\tau }}}}{h\left(\varpi, \nu \right)}\right)*{{\mathit{\Delta}} }_{h}\left(\nu, \mathit{\boldsymbol{\lambda }}, \frac{\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}}{h\left(\nu, \mathit{\boldsymbol{\lambda }}\right)}\right);

    h5) {{\mathit{\Delta}} }_{h}\left(\varpi, \nu, \cdot \right):\left(0, \infty \right)\to \left[\mathrm{0, 1}\right] is continuous.

    Definition 2.6. [16] Let {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\ne \varnothing , \text{*} be a CTN, P be a FSs on {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\times {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\times \left(0, \infty \right) . If triplet ({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, {\mathit{\Theta}}, \text{*)} verifies the following for all \varpi, \nu, \mathit{\boldsymbol{\lambda }}\in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\ \mathrm{a}\mathrm{n}\mathrm{d}\ \mathit{\boldsymbol{ \boldsymbol{\varsigma } }}, {\mathit{\boldsymbol{\tau }}} > 0:

    1) {\mathit{\Theta}} \left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) > 0;

    2) {\mathit{\Theta}} \left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 1⟺\varpi = \nu;

    3) {\mathit{\Theta}} \left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = {\mathit{\Theta}} \left(\nu, \varpi, {\mathit{\boldsymbol{\tau }}}\right);

    4) {\mathit{\Theta}} \left(\varpi, \mathit{\boldsymbol{\lambda }}, b\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)\right)\ge {\mathit{\Theta}} \left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right)\text{*}{\mathit{\Theta}} \left(\nu, \mathit{\boldsymbol{\lambda }}, {\mathit{\boldsymbol{\tau }}}\right);

    5) {\mathit{\Theta}} \left(\varpi, \nu, \cdot \right) : \left(0, \infty \right) \to [0, 1] is a continuous mapping.

    then ({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, {\mathit{\Theta}}, \text{*)} is called an FMLS.

    Definition 2.7. [14] Let {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} be a universal set. For \forall \varpi \in E, {0}^{-}\le {T}_{\mathcal{A}}\left(\varpi \right)+{I}_{\mathcal{A}}\left(\varpi \right)+{F}_{\mathcal{A}}\left(\varpi \right)\le {3}^{+} , by the help of the functions {T}_{\mathcal{A}}:E\to ] 0, {1}^{+} [, {I}_{\mathcal{A}}:E\to ] 0, {1}^{+} [and {F}_{\mathcal{A}}:E\to ] 0, {1}^{+} [a neutrosophic set \mathcal{A} on {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} is defined by

    \mathcal{A} = \left\{\left\langle{\varpi , {T}_{\mathcal{A}}\left(\varpi \right), {I}_{\mathcal{A}}\left(\varpi \right), {F}_{\mathcal{A}}\left(\varpi \right)}\right\rangle:\varpi \in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\right\}

    Here, {T}_{\mathcal{A}}\left(\varpi \right), {I}_{\mathcal{A}}\left(\varpi \right) and {F}_{\mathcal{A}}\left(\varpi \right) are the degrees of trueness, indeterminacy and falsity of \varpi \in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} respectively.

    Definition 2.8. [29] Let \Xi \ne \varnothing , * is a CTN, be a CTCN and

    \mathcal{A} = \left\{⟨\varpi , {\mathit{\Theta}} \left(\varpi \right), Q\left(\varpi \right), S\left(\varpi \right)⟩:\varpi \in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\right\}

    be a neutrosophic set such that \mathcal{A} : {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\times {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\times \left(0, \infty \right)\to [0, 1]. If for all \varpi, \nu, \mathit{\boldsymbol{\lambda }}\in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, the below circumstances are satisfying:

    1) 0 \le { P}\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) \le 1, 0 \le Q\left(\varpi, \nu, \tau \right) \le 1 and 0 \le S\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) \le 1,

    2) { P}\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right)+Q\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right)+S\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right)\le 3;

    3) { P}\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) > 0;

    4) { P}\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 1\ \mathrm{f}\mathrm{o}\mathrm{r}\ \mathrm{a}\mathrm{l}\mathrm{l}\ {\mathit{\boldsymbol{\tau }}} > 0, \ \mathrm{i}\mathrm{f}\ \mathrm{a}\mathrm{n}\mathrm{d}\ \mathrm{o}\mathrm{n}\mathrm{l}\mathrm{y}\ \mathrm{i}\mathrm{f}\ \varpi = \nu;

    5) { P}\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = { P}\left(\nu, \varpi, {\mathit{\boldsymbol{\tau }}}\right);

    6) { P}\left(\varpi, \mathit{\boldsymbol{\lambda }}, {\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)\ge { P}\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right)*{ P}\left(\nu, \lambda, \varsigma \right);

    7) { P}\left(\varpi, \nu, \cdot \right):\left(0, \infty \right)\to \left[\mathrm{0, 1}\right] is continuous and \underset{{\mathit{\boldsymbol{\tau }}}\to \infty }{\mathrm{lim}}{ P}\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 1 ;

    8) Q\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) < 1;

    9) Q\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 0\ \mathrm{f}\mathrm{o}\mathrm{r}\ \mathrm{a}\mathrm{l}\mathrm{l}\ {\mathit{\boldsymbol{\tau }}} > 0, \ \mathrm{i}\mathrm{f}\ \mathrm{a}\mathrm{n}\mathrm{d}\ \mathrm{o}\mathrm{n}\mathrm{l}\mathrm{y}\ \mathrm{i}\mathrm{f}\ \varpi = \nu;

    10) Q\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = Q\left(\nu, \varpi, {\mathit{\boldsymbol{\tau }}}\right);

    11) Q\left(\varpi, \mathit{\boldsymbol{\lambda }}, {\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)\le Q\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right)○Q\left(\nu, \mathit{\boldsymbol{\lambda }}, \mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right);

    12) Q\left(\varpi, \nu, \cdot \right):\left(0, \infty \right)\to \left[\mathrm{0, 1}\right] is continuous and \underset{{\mathit{\boldsymbol{\tau }}}\to \infty }{\mathrm{lim}}Q\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 0 ;

    13) S\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) < 1;

    14) S\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 0\ \mathrm{f}\mathrm{o}\mathrm{r}\ \mathrm{a}\mathrm{l}\mathrm{l}\ {\mathit{\boldsymbol{\tau }}} > 0, \ \mathrm{i}\mathrm{f}\ \mathrm{a}\mathrm{n}\mathrm{d}\ \mathrm{o}\mathrm{n}\mathrm{l}\mathrm{y}\ \mathrm{i}\mathrm{f}\ \varpi = \nu;

    15) S\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = S\left(\nu, \varpi, {\mathit{\boldsymbol{\tau }}}\right);

    16) S\left(\varpi, \mathit{\boldsymbol{\lambda }}, {\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)\le S\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right)○S\left(\nu, \mathit{\boldsymbol{\lambda }}, \mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right);

    17) S\left(\varpi, \nu, \cdot \right):\left(0, \infty \right)\to \left[\mathrm{0, 1}\right] is continuous and \underset{{\mathit{\boldsymbol{\tau }}}\to \infty }{\mathrm{lim}}S\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 0;

    18) If {\mathit{\boldsymbol{\tau }}}\le 0, then { P}\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 0, Q\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 1\ \mathrm{a}\mathrm{n}\mathrm{d}\ S\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 1.

    then four-tuple \left({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, \mathcal{A}, \mathcal{*}, ○\right) is called an NMS.

    Where; { P}\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) is degree of nearness, Q\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) is degree of neutralness and S\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) is degree of non-nearness.

    In this section, we introduce the notion of a CNMLS and prove some related FP results.

    Definition 3.1. Suppose {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\ne \varnothing , assume a six tuple ({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, {{ P}}_{\phi }{, Q}_{\phi }{, R}_{\phi }\text{, *, ○)} where \text{*} is a CTN, \text{○} is a CTCN, \phi :{\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\times {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\to \left[1, \infty \right) be a function and {{ P}}_{\phi }{, Q}_{\phi }{, R}_{\phi } are neutrosophic sets (NSs) on {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\times {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\times \left(0, \infty \right) . If ({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, {{ P}}_{\phi }{, Q}_{\phi }, {, R}_{\phi }\text{, *, ○)} meet the below circumstances for all \varpi, \nu, \mathit{\boldsymbol{\lambda }}\in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\ \mathrm{a}\mathrm{n}\mathrm{d}\ \mathit{\boldsymbol{ \boldsymbol{\varsigma } }}, {\mathit{\boldsymbol{\tau }}} > 0:

    1) {{ P}}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right)+{Q}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right)+{R}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right)\le 3,

    2) {{ P}}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) > 0,

    3) {{ P}}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 1\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{s}\varpi = \nu,

    4) {{ P}}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = {{ P}}_{\phi }\left(\nu, \varpi, {\mathit{\boldsymbol{\tau }}}\right),

    5) {{ P}}_{\phi }\left(\varpi, \mathit{\boldsymbol{\lambda }}, \left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)\right)\ge {{ P}}_{\phi }\left(\varpi, \nu, \frac{{\mathit{\boldsymbol{\tau }}}}{\phi \left(\varpi, \nu \right)}\right)\text{*}{{ P}}_{\phi }\left(\nu, \mathit{\boldsymbol{\lambda }}, \frac{\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}}{\phi \left(\nu, \mathit{\boldsymbol{\lambda }}\right)}\right),

    6) {{ P}}_{\phi }\left(\varpi, \nu, \cdot \right) is ND function of {\mathbb{R}}^{+} and \underset{{\mathit{\boldsymbol{\tau }}}\to \infty }{\mathrm{lim}}{{ P}}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 1,

    7) {Q}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) < 1,

    8) {Q}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 0 \mathrm{i}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{s}\varpi = \nu,

    9) {Q}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = {Q}_{\phi }\left(\nu, \varpi, {\mathit{\boldsymbol{\tau }}}\right),

    10) {Q}_{\phi }\left(\varpi, \mathit{\boldsymbol{\lambda }}, \left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)\right)\le {Q}_{\phi }\left(\varpi, \nu, \frac{{\mathit{\boldsymbol{\tau }}}}{\phi \left(\varpi, \nu \right)}\right)○{Q}_{\phi }\left(\nu, \mathit{\boldsymbol{\lambda }}, \frac{\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}}{\phi \left(\nu, \mathit{\boldsymbol{\lambda }}\right)}\right),

    11) {Q}_{\phi }\left(\varpi, \nu, \cdot \right) is NI function of {\mathbb{R}}^{+} and \underset{{\mathit{\boldsymbol{\tau }}}\to \infty }{\mathrm{lim}}{Q}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 0,

    12) {R}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) < 1,

    13) {R}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 0 \mathrm{i}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{s}\varpi = \nu,

    14) {R}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = {R}_{\phi }\left(\nu, \varpi, {\mathit{\boldsymbol{\tau }}}\right),

    15) {R}_{\phi }\left(\varpi, \mathit{\boldsymbol{\lambda }}, \left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)\right)\le {R}_{\phi }\left(\varpi, \nu, \frac{{\mathit{\boldsymbol{\tau }}}}{\phi \left(\varpi, \nu \right)}\right)○{R}_{\phi }\left(\nu, \mathit{\boldsymbol{\lambda }}, \frac{\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}}{\phi \left(\nu, \mathit{\boldsymbol{\lambda }}\right)}\right),

    16) {R}_{\phi }\left(\varpi, \nu, \cdot \right) is NI function of {\mathbb{R}}^{+} and \underset{{\mathit{\boldsymbol{\tau }}}\to \infty }{\mathrm{lim}}{R}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 0,

    17) If {\mathit{\boldsymbol{\tau }}}\le 0 , then {{ P}}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 0, {Q}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 1 and {R}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 1.

    Then five-tuple \left({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, {\mathcal{A}}_{\phi }, \phi, *, ○\right) is called a CNMLS.

    Where; {{ P}}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) is degree of nearness, {Q}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) is degree of neutralness and {R}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) is degree of non-nearness.

    Example 3.1. Let {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} = \left(0, \infty \right), \ \mathrm{d}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{e}\ {{ P}}_{\phi }, {Q}_{\phi }, {R}_{\phi }:{\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\times {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\times \left(0, \infty \right)\to \left[\mathrm{0, 1}\right] by

    {{ P}}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right) = \frac{{\mathit{\boldsymbol{\tau }}}}{{\mathit{\boldsymbol{\tau }}}+{\mathrm{max}\left\{\varpi , \nu \right\}}^{2}}, {Q}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right) = \frac{{\mathrm{max}\left\{\varpi , \nu \right\}}^{2}}{{\mathit{\boldsymbol{\tau }}}+{\mathrm{max}\left\{\varpi , \nu \right\}}^{2}}, {R}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right) = \frac{{\mathrm{max}\left\{\varpi , \nu \right\}}^{2}}{{\mathit{\boldsymbol{\tau }}}}

    for all \varpi, \nu \in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\ \mathrm{a}\mathrm{n}\mathrm{d}\ {\mathit{\boldsymbol{\tau }}} > 0, define CTN "\text{*"} by 𝛶*\varrho = 𝛶\cdot \varrho and CTCN "\text{○"} by 𝛶○\varrho = \mathrm{max}\left\{𝛶, \varrho \right\} and define "\phi " by

    \phi \left(\varpi , \nu \right) = \left\{\begin{array}{l}1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\rm{if}}\ \varpi = \nu , \\ \frac{1+\mathrm{max}\left\{\varpi , \nu \right\}}{\mathrm{min}\left\{\varpi , \nu \right\}}\ {\rm{if}}\ \varpi \ne \nu .\end{array}\right.

    Then five-tuple \left({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, {\mathcal{A}}_{\phi }, \phi, *, ○\right) is a CNMS.

    Proof. \left(\mathrm{i}\right)-\left(\mathrm{i}\mathrm{v}\right), \left(\mathrm{v}\mathrm{i}\right)-\left(\mathrm{i}\mathrm{x}\right), \left(\mathrm{i}\mathrm{x}\right)-\left(\mathrm{x}\mathrm{i}\mathrm{v}\right), \left(\mathrm{x}\mathrm{v}\mathrm{i}\right)\ \mathrm{a}\mathrm{n}\mathrm{d}\ \left(\mathrm{x}\mathrm{v}\mathrm{i}\mathrm{i}\right) are trivial, here we examine \left(\mathrm{v}\right), \left(\mathrm{x}\right)\ \mathrm{a}\mathrm{n}\mathrm{d}\ \left(\mathrm{x}\mathrm{v}\right),

    {\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}\le \phi \left(\varpi , \nu \right){\mathrm{max}\left\{\varpi , \nu \right\}}^{2}+\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right){\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}

    Therefore,

    {\mathit{\boldsymbol{\tau }}}\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}\le \phi \left(\varpi , \nu \right)\left({\mathit{\boldsymbol{\tau }}}\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}+{\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}}^{2}\right){\mathrm{max}\left\{\varpi , \nu \right\}}^{2}+\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right)\left({\mathit{\boldsymbol{\tau }}}\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}+{{\mathit{\boldsymbol{\tau }}}}^{2}\right){\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2} ,
    \Rightarrow {\mathit{\boldsymbol{\tau }}}\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}\le \phi \left(\varpi , \nu \right)\left({\mathit{\boldsymbol{\tau }}}+\varsigma \right)\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}{\mathrm{max}\left\{\varpi , \nu \right\}}^{2}+\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right)\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right){\mathit{\boldsymbol{\tau }}}{\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2} ,
    \Rightarrow {\mathit{\boldsymbol{\tau }}}\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)+{\mathit{\boldsymbol{\tau }}}\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2} ,
    \le {\mathit{\boldsymbol{\tau }}}\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)+\phi \left(\varpi , \nu \right)\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}{\mathrm{max}\left\{\varpi , \nu \right\}}^{2}+\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right)\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right){\mathit{\boldsymbol{\tau }}}{\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}

    That is,

    {\mathit{\boldsymbol{\tau }}}\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\left[\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)+{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}\right]\le \left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)\left[{\mathit{\boldsymbol{\tau }}}\varsigma +\phi \left(\varpi , \nu \right)\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}{\mathrm{max}\left\{\varpi , \nu \right\}}^{2}+\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right){\mathit{\boldsymbol{\tau }}}{\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}\right] ,
    \Rightarrow {\mathit{\boldsymbol{\tau }}}\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\left[\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)+{\mathrm{max}\left\{\varpi , \lambda \right\}}^{2}\right] ,
    \le \left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)\left[{\mathit{\boldsymbol{\tau }}}\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}+\phi \left(\varpi , \nu \right)\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}{\mathrm{max}\left\{\varpi , \nu \right\}}^{2}+\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right){\mathit{\boldsymbol{\tau }}}{\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}+\\ \phi \left(\varpi , \nu \right)\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right){\mathrm{max}\left\{\varpi , \nu \right\}}^{2}{\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}\right] ,
    \Rightarrow {\mathit{\boldsymbol{\tau }}}\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\left[\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)+{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}\right]\le \left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)\left[{\mathit{\boldsymbol{\tau }}}+\phi \left(\varpi , \nu \right){\mathrm{max}\left\{\varpi , \nu \right\}}^{2}\left]\right[\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}+{\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right)\mathrm{max}\{\nu , \mathit{\boldsymbol{\lambda }}\}}^{2}\right]

    Then,

    \frac{\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)}{\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)+{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}\ge \frac{{\mathit{\boldsymbol{\tau }}}\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}}{\left[{\mathit{\boldsymbol{\tau }}}+\phi \left(\varpi , \nu \right){\mathrm{max}\left\{\varpi , \nu \right\}}^{2}\left]\right[\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}+{\phi \left(\nu , \lambda \right)\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}\right]},
    \Rightarrow \frac{\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)}{\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)+{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}\ge \frac{{\mathit{\boldsymbol{\tau }}}}{{\mathit{\boldsymbol{\tau }}}+\phi \left(\varpi , \nu \right){\mathrm{max}\left\{\varpi , \nu \right\}}^{2}}.\frac{\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}}{\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}+{\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right)\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}},
    \Rightarrow \frac{\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)}{\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)+{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}\ge \frac{\frac{{\mathit{\boldsymbol{\tau }}}}{\phi \left(\varpi , \nu \right)}}{\frac{{\mathit{\boldsymbol{\tau }}}}{\phi \left(\varpi , \nu \right)}\ \ +{\mathrm{max}\left\{\varpi , \nu \right\}}^{2}}.\frac{\frac{\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}}{\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right)}}{\frac{\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}}{\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right)}\ \ +{\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}

    Hence,

    {{ P}}_{\phi }\left(\varpi , \mathit{\boldsymbol{\lambda }}, \left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)\right)\ge {{ P}}_{\phi }\left(\varpi , \nu , \frac{{\mathit{\boldsymbol{\tau }}}}{\phi \left(\varpi , \nu \right)}\right)\text{*}{{ P}}_{\phi }\left(\nu , \mathit{\boldsymbol{\lambda }}, \frac{\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}}{\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right)}\right)

    ({\rm{v}}) is satisfied.

    {\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2} = {\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}\mathrm{max}\left\{\mathrm{1, 1}\right\}

    Therefore,

    {\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2} = {\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}\mathrm{max}\left\{\frac{{\mathrm{max}\left\{\varpi , \nu \right\}}^{2}}{{\mathrm{max}\left\{\varpi , \nu \right\}}^{2}}, \frac{{\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}{{\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}\right\}
    {\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}\le \left[\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)+{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}\right]\mathrm{max}\left\{\frac{{\mathrm{max}\left\{\varpi , \nu \right\}}^{2}}{{\mathrm{max}\left\{\varpi , \nu \right\}}^{2}}, \frac{{\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}{{\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}\right\}
    {\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}\le \left[\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)+{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}\right]\mathrm{max}\left\{\frac{\phi \left(\varpi , \nu \right){\mathrm{max}\left\{\varpi , \nu \right\}}^{2}}{{\phi \left(\varpi , \nu \right)\mathrm{max}\{\varpi , \nu \}}^{2}}, \frac{\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right){\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}{{\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right)\mathrm{max}\{\nu , \mathit{\boldsymbol{\lambda }}\}}^{2}}\right\}

    Then,

    \frac{{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}{\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)+{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}\le \mathrm{max}\left\{\frac{\phi \left(\varpi , \nu \right){\mathrm{max}\left\{\varpi , \nu \right\}}^{2}}{{\mathit{\boldsymbol{\tau }}}+\phi \left(\varpi , \nu \right){\mathrm{max}\left\{\varpi , \nu \right\}}^{2}}, \frac{\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right){\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}{\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}+\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right){\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}\right\}

    That is,

    \frac{{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}{\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)+{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}\le \mathrm{max}\left\{\frac{{\mathrm{max}\left\{\varpi , \nu \right\}}^{2}}{\frac{{\mathit{\boldsymbol{\tau }}}}{\phi \left(\varpi , \nu \right)}\ \ +{\mathrm{max}\left\{\varpi , \nu \right\}}^{2}}, \frac{{\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}{\frac{\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}}{\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right)}\ \ +{\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}\right\}

    Hence,

    {Q}_{\phi }\left(\varpi , \mathit{\boldsymbol{\lambda }}, \left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)\right)\le {Q}_{\phi }\left(\varpi , \nu , \frac{{\mathit{\boldsymbol{\tau }}}}{\phi \left(\varpi , \nu \right)}\right)\text{*}{Q}_{\phi }\left(\nu , \mathit{\boldsymbol{\lambda }}, \frac{\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}}{\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right)}\right)

    ({\rm{x}}) is satisfied.

    It is easy to see that

    \frac{{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}{{\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}}\le \mathrm{max}\left\{\frac{{\phi \left(\varpi , \nu \right)\mathrm{max}\{\varpi , \nu \}}^{2}}{{\mathit{\boldsymbol{\tau }}}}, \frac{\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right){\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}{\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}}\right\}

    That is,

    \frac{{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}{\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)}\le \mathrm{max}\left\{\frac{{\mathrm{max}\left\{\varpi , \nu \right\}}^{2}}{\frac{{\mathit{\boldsymbol{\tau }}}}{\phi \left(\varpi , \nu \right)}}, \frac{{\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}{\frac{\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}}{\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right)}}\right\}

    Hence,

    {R}_{\phi }\left(\varpi , \mathit{\boldsymbol{\lambda }}, \left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)\right)\le {R}_{\phi }\left(\varpi , \nu , \frac{{\mathit{\boldsymbol{\tau }}}}{\phi \left(\varpi , \nu \right)}\right)\text{*}{R}_{\phi }\left(\nu , \mathit{\boldsymbol{\lambda }}, \frac{\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}}{\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right)}\right)

    ({\rm{xv}}) is satisfied.

    Remark 3.1. If we let, 𝛶*\varrho = \mathrm{min}\left\{𝛶, \varrho \right\} and 𝛶○\varrho = \mathrm{max}\left\{𝛶, \varrho \right\}, then above example is also a CNMLS.

    Example 3.2. Suppose \mathrm{\Xi } = \left(0, \infty \right), \ \mathrm{d}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{e}\ {{ P}}_{\phi }, {Q}_{\phi }, {R}_{\phi }:{\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\times {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\times \left(0, \infty \right)\to \left[\mathrm{0, 1}\right] by

    {{ P}}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right) = \frac{{\mathit{\boldsymbol{\tau }}}}{{\mathit{\boldsymbol{\tau }}}+\mathrm{max}\left\{\varpi , \nu \right\}}
    {Q}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right) = \frac{\mathrm{max}\left\{\varpi , \nu \right\}}{{\mathit{\boldsymbol{\tau }}}+\mathrm{max}\left\{\varpi , \nu \right\}},

    and

    {R}_{\phi }\left(\varpi , \nu , \tau \right) = \frac{\mathrm{max}\left\{\varpi , \nu \right\}}{{\mathit{\boldsymbol{\tau }}}}

    for all \varpi, \nu \in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\ \mathrm{a}\mathrm{n}\mathrm{d}\ {\mathit{\boldsymbol{\tau }}} > 0, define CTN "\text{*"} by 𝛶*\varrho = 𝛶\cdot \varrho and CTCN "\text{○"} by 𝛶○\varrho = \mathrm{max}\left\{𝛶, \varrho \right\} and define "\phi " by

    \phi \left(\varpi , \nu \right) = 1+\varpi +\nu

    Then \left({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, {{ P}}_{\phi }, {Q}_{\phi }, {R}_{\phi }, *, ○\right) be a CNMLS.

    Remark 3.2. The above Examples 3.1 and 3.2 are not neutrosophic metric spaces.

    Definition 3.2. Let \left({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, {{ P}}_{\phi }, {Q}_{\phi }, {R}_{\phi }, *, ○\right) is a CNMLS, then we define an open ball B\left(\varpi, r, {\mathit{\boldsymbol{\tau }}}\right) with centre \varpi, radius r, 0 < r < 1 and {\mathit{\boldsymbol{\tau }}} > 0 as follows:

    B\left(\varpi , r, {\mathit{\boldsymbol{\tau }}}\right) = \left\{\nu \in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}:{ P}\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right) > 1-r, Q\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right) < r, R\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right) < r\right\}.

    Definition 3.3. Let \left({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, {{ P}}_{\phi }, {Q}_{\phi }, {R}_{\phi }, *, ○\right) be a CNMLS. Then

    1) a sequence \left\{{\varpi }_{n}\right\} in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} is named to be G-Cauchy sequence (GCS) if and only if for all q > 0\ \mathrm{a}\mathrm{n}\mathrm{d}\ {\mathit{\boldsymbol{\tau }}} > 0,

    \underset{n\to \infty }{\mathrm{lim}}{{ P}}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+q}, {\mathit{\boldsymbol{\tau }}}\right), \underset{n\to \infty }{\mathrm{lim}}{Q}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+q}, {\mathit{\boldsymbol{\tau }}}\right)\ \mathrm{a}\mathrm{n}\mathrm{d}\ \underset{n\to \infty }{\mathrm{lim}}{R}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+q}, {\mathit{\boldsymbol{\tau }}}\right) \ {\rm{exists}}\ {\rm{and}}\ {\rm{finite}}

    2) a sequence \left\{{\varpi }_{n}\right\} in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} is named to be G-convergent (GC) to \varpi in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} , if and only if for all {\mathit{\boldsymbol{\tau }}} > 0,

    \underset{n\to \infty }{\mathrm{lim}}{{ P}}_{\phi }\left({\varpi }_{n}, \varpi , {\mathit{\boldsymbol{\tau }}}\right) = {{ P}}_{\phi }\left(\varpi , \varpi , {\mathit{\boldsymbol{\tau }}}\right), \underset{n\to \infty }{\mathrm{lim}}{Q}_{\phi }\left({\varpi }_{n}, \varpi , {\mathit{\boldsymbol{\tau }}}\right) = {Q}_{\phi }\left(\varpi , \varpi , {\mathit{\boldsymbol{\tau }}}\right)
    \ \mathrm{a}\mathrm{n}\mathrm{d}\ \underset{n\to \infty }{\mathrm{lim}}{R}_{\phi }\left({\varpi }_{n}, \varpi , {\mathit{\boldsymbol{\tau }}}\right) = {R}_{\phi }\left(\varpi , \varpi , {\mathit{\boldsymbol{\tau }}}\right).

    3) a CNMLS is named to be complete if each GCS is convergent i.e.,

    \underset{n\to \infty }{\mathrm{lim}}{{ P}}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+q}, {\mathit{\boldsymbol{\tau }}}\right) = \underset{n\to \infty }{\mathrm{lim}}{{ P}}_{\phi }\left({\varpi }_{n}, \varpi , {\mathit{\boldsymbol{\tau }}}\right) = {{ P}}_{\phi }\left(\varpi , \varpi , {\mathit{\boldsymbol{\tau }}}\right),
    \underset{n\to \infty }{\mathrm{lim}}{Q}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+q}, {\mathit{\boldsymbol{\tau }}}\right) = \underset{n\to \infty }{\mathrm{lim}}{Q}_{\phi }\left({\varpi }_{n}, \varpi , {\mathit{\boldsymbol{\tau }}}\right) = {Q}_{\phi }\left(\varpi , \varpi , {\mathit{\boldsymbol{\tau }}}\right),
    \underset{n\to \infty }{\mathrm{lim}}{R}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+q}, {\mathit{\boldsymbol{\tau }}}\right) = \underset{n\to \infty }{\mathrm{lim}}{R}_{\phi }\left({\varpi }_{n}, \varpi , {\mathit{\boldsymbol{\tau }}}\right) = {R}_{\phi }\left(\varpi , \varpi , {\mathit{\boldsymbol{\tau }}}\right)

    Theorem 3.1. Suppose \left({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, {{ P}}_{\phi }, {Q}_{\phi }, {R}_{\phi }, *, ○\right) be a G-complete CNMLS with \phi :{\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\times {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\to \left[1, \infty \right) and assume that

    \underset{{\mathit{\boldsymbol{\tau }}}\to \infty }{\mathrm{lim}}{{ P}}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right) = 1, \underset{{\mathit{\boldsymbol{\tau }}}\to \infty }{\mathrm{lim}}{Q}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right) = 0\ \mathrm{a}\mathrm{n}\mathrm{d}\ \underset{{\mathit{\boldsymbol{\tau }}}\to \infty }{\mathrm{lim}}{R}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right) = 0 (1)

    for all \varpi, \nu \in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} and {\mathit{\boldsymbol{\tau }}} > 0 . Suppose \xi :{\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\to {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} be a mapping verifying

    \begin{array}{*{20}{c}} {{{ P}}_{\phi }\left(\xi \varpi , \xi \nu , £ {\mathit{\boldsymbol{\tau }}}\right)\ge {{ P}}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right),}\\ {{Q}_{\phi }\left(\xi \varpi , \xi \nu , £ {\mathit{\boldsymbol{\tau }}}\right)\le {Q}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right)\ \mathrm{a}\mathrm{n}\mathrm{d}\ {R}_{\phi }\left(\xi \varpi , \xi \nu , £ {\mathit{\boldsymbol{\tau }}}\right)\le {R}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right)} \end{array} (2)

    for all \varpi, \nu \in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} , 0 < £ < 1 and {\mathit{\boldsymbol{\tau }}} > 0. Also assume that for every \varpi \in { Z},

    \underset{n\to \infty }{\mathrm{lim}}\phi \left({\varpi }_{n}, \nu \right) \ {\rm{and}} \ \underset{n\to \infty }{\mathrm{lim}}\phi \left(\nu , {\varpi }_{n}\right) (3)

    exists and finite. Then \zeta has a unique fixed point in { Z}. Then \xi has a unique FP.

    Proof. Let {\varpi }_{0} be an arbitrary point of {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} and define a sequence {\varpi }_{n} by {\varpi }_{n} = {\xi }^{n}{\varpi }_{0} = \xi {\varpi }_{n-1} , n\in \mathbb{N}. By utilizing \left(2\right) for all {\mathit{\boldsymbol{\tau }}} > 0, we get

    {{ P}}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+1}, £ {\mathit{\boldsymbol{\tau }}}\right) = {{ P}}_{\phi }\left({\xi \varpi }_{n-1}, \xi {\varpi }_{n}, £ {\mathit{\boldsymbol{\tau }}}\right)\ge {{ P}}_{\phi }\left({\varpi }_{n-1}, {\varpi }_{n}, {\mathit{\boldsymbol{\tau }}}\right)\ge {{ P}}_{\phi }\left({\varpi }_{n-2}, {\varpi }_{n-1}, \frac{{\mathit{\boldsymbol{\tau }}}}{£ }\right)
    \ge {{ P}}_{\phi }\left({\varpi }_{n-3}, {\varpi }_{n-2}, \frac{{\mathit{\boldsymbol{\tau }}}}{{£ }^{2}}\right)\ge \cdots \ge {{ P}}_{\phi }\left({\varpi }_{0}, {\varpi }_{1}, \frac{{\mathit{\boldsymbol{\tau }}}}{{£ }^{n-1}}\right),
    {Q}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+1}, £ {\mathit{\boldsymbol{\tau }}}\right) = {Q}_{\phi }\left({\xi \varpi }_{n-1}, \xi {\varpi }_{n}, £ {\mathit{\boldsymbol{\tau }}}\right)\le {Q}_{\phi }\left({\varpi }_{n-1}, {\varpi }_{n}, {\mathit{\boldsymbol{\tau }}}\right)\le {Q}_{\phi }\left({\varpi }_{n-2}, {\varpi }_{n-1}, \frac{{\mathit{\boldsymbol{\tau }}}}{£ }\right)
    \le {Q}_{\phi }\left({\varpi }_{n-3}, {\varpi }_{n-2}, \frac{{\mathit{\boldsymbol{\tau }}}}{{£ }^{2}}\right)\le \cdots \le {Q}_{\phi }\left({\varpi }_{0}, {\varpi }_{1}, \frac{{\mathit{\boldsymbol{\tau }}}}{{£ }^{n-1}}\right)

    and

    {R}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+1}, £ {\mathit{\boldsymbol{\tau }}}\right) = {R}_{\phi }\left({\xi \varpi }_{n-1}, \xi {\varpi }_{n}, £ {\mathit{\boldsymbol{\tau }}}\right)\le {R}_{\phi }\left({\varpi }_{n-1}, {\varpi }_{n}, {\mathit{\boldsymbol{\tau }}}\right)\le {R}_{\phi }\left({\varpi }_{n-2}, {\varpi }_{n-1}, \frac{{\mathit{\boldsymbol{\tau }}}}{£ }\right)
    \le {R}_{\phi }\left({\varpi }_{n-3}, {\varpi }_{n-2}, \frac{{\mathit{\boldsymbol{\tau }}}}{{£ }^{2}}\right)\le \cdots \le {R}_{\phi }\left({\varpi }_{0}, {\varpi }_{1}, \frac{{\mathit{\boldsymbol{\tau }}}}{{£ }^{n-1}}\right)

    We obtain

    \begin{array}{*{20}{c}} { {{ P}}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+1}, £ {\mathit{\boldsymbol{\tau }}}\right)\ge {{ P}}_{\phi }\left({\varpi }_{0}, {\varpi }_{1}, \frac{{\mathit{\boldsymbol{\tau }}}}{{£ }^{n-1}}\right), }\\ {{Q}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+1}, £ {\mathit{\boldsymbol{\tau }}}\right)\le {Q}_{\phi }\left({\varpi }_{0}, {\varpi }_{1}, \frac{{\mathit{\boldsymbol{\tau }}}}{{£ }^{n-1}}\right)\ \mathrm{a}\mathrm{n}\mathrm{d}\ {R}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+1}, £ {\mathit{\boldsymbol{\tau }}}\right)\le {R}_{\phi }\left({\varpi }_{0}, {\varpi }_{1}, \frac{{\mathit{\boldsymbol{\tau }}}}{{£ }^{n-1}}\right)} \end{array} (4)

    for any q\in \mathbb{N}, \mathrm{u}\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}\left(\mathrm{v}\right), \left(\mathrm{x}\right)\ \mathrm{a}\mathrm{n}\mathrm{d}\ \left(\mathrm{x}\mathrm{v}\right) , we deduce

    {{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\ge {{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)*{{ P}}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    \ge {{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)*{{ P}}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    *{{ P}}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    \ge {{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)*{{ P}}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    *{{ P}}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    *{{ P}}_{\phi }\left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    \ge {{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)*{{ P}}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    *{{ P}}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    *{{ P}}_{\phi }\left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+4}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{4}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+4}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)*\ \ \cdots\ \ *
    {{ P}}_{\phi }\left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    *{{ P}}_{\phi }\left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)\ \ ,\ \
    {Q}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le {Q}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{Q}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    \le {Q}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{Q}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{Q}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    \le {Q}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{Q}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{Q}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{Q}_{\phi }\left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    \le {Q}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{Q}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{Q}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{Q}_{\phi }\left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+4}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{4}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+4}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○\ \ \cdots\ \ ○
    {Q}_{\phi }\left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{Q}_{\phi }\left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)

    and

    {R}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le {R}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{R}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    \le {R}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{R}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{R}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    \le {R}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{R}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{R}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{R}_{\phi }\left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    \le {R}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{R}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{R}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{R}_{\phi }\left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+4}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{4}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+4}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○\ \ \cdots\ \ ○
    {R}_{\phi }\left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{R}_{\phi }\left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)

    Using (4) in the above inequalities, we deduce

    \ge {{ P}}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2{\left(£ \ \ \ \ \right)}^{n-1}\ \ \left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)*{{ P}}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}{\left(£ \ \ \ \ \right)}^{n}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    *{{ P}}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}{\left(£ \ \ \ \ \right)}^{n+1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    *{{ P}}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{4}{\left(£ \ \ \ \ \right)}^{n+2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+4}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    *\ \ \cdots\ \ *
    {{ P}}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}{\left(£ \ \ \ \ \right)}^{n+q-2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    *{{ P}}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}{\left(£ \ \ \ \ \right)}^{n+q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)\ \ ,\ \
    \le {Q}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2{\left(£ \ \ \ \ \right)}^{n-1}\ \ \left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{Q}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}{\left(£ \ \ \ \ \right)}^{n}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{Q}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}{\left(£ \ \ \ \ \right)}^{n+1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{Q}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{4}{\left(£ \ \ \ \ \right)}^{n+2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+4}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○\ \ \cdots\ \ ○
    {Q}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}{\left(£ \ \ \ \ \right)}^{n+q-2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{Q}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}{\left(£ \ \ \ \ \right)}^{n+q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)

    and

    \le {R}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2{\left(£ \ \ \ \ \right)}^{n-1}\ \ \left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{R}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}{\left(£ \ \ \ \ \right)}^{n}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{R}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}{\left(£ \ \ \ \ \right)}^{n+1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{R}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{4}{\left(£ \ \ \ \ \right)}^{n+2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+4}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○\ \ \cdots\ \ ○
    {R}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}{\left(£ \ \ \ \ \right)}^{n+q-2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{R}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}{\left(£ \ \ \ \ \right)}^{n+q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)

    Using (1), \ \mathrm{f}\mathrm{o}\mathrm{r}\ n\to \infty, we deduce

    \underset{n\to \infty }{\mathrm{lim}}{{ P}}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+q}, {\mathit{\boldsymbol{\tau }}}\right) = 1*1*\cdots *1 = 1,
    \underset{n\to \infty }{\mathrm{lim}}{Q}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+q}, {\mathit{\boldsymbol{\tau }}}\right) = 0○0○\cdots ○0 = 0,
    \ \mathrm{a}\mathrm{n}\mathrm{d}\
    \underset{n\to \infty }{\mathrm{lim}}{R}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+q}, {\mathit{\boldsymbol{\tau }}}\right) = 0○0○\cdots ○0 = 0

    i.e., \left\{{\varpi }_{n}\right\} is a GCS. Therefore, \left({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, {{ P}}_{\phi }, {Q}_{\phi }, {R}_{\phi }, *, ○\right) be a G-complete CNMS, there exists \varpi \in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}.

    Now investigate that \varpi is a FP of \xi , using \left(\mathrm{v}\right), \left(\mathrm{x}\right), \left(\mathrm{x}\mathrm{v}\right)\ \mathrm{a}\mathrm{n}\mathrm{d}\ \left(1\right), we obtain

    {{ P}}_{\phi }\left(\varpi \ \ ,\ \ \xi \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\ge {{ P}}_{\phi }\left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)*{{ P}}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    {{ P}}_{\phi }\left(\varpi \ \ ,\ \ \xi \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\ge {{ P}}_{\phi }\left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)*{{ P}}_{\phi }\left({\xi \varpi }_{n}\ \ ,\ \ \xi \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    {{ P}}_{\phi }\left(\varpi \ \ ,\ \ \xi \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\ge {{ P}}_{\phi }\left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)*{{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2£ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)\to 1*1 = 1
    \mathrm{a}\mathrm{s}\ n\to \infty \ \ ,\ \
    {Q}_{\phi }\left(\varpi \ \ ,\ \ \xi \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le {Q}_{\phi }\left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{Q}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    {Q}_{\phi }\left(\varpi \ \ ,\ \ \xi \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le {Q}_{\phi }\left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{Q}_{\phi }\left({\xi \varpi }_{n}\ \ ,\ \ \xi \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    {Q}_{\phi }\left(\varpi \ \ ,\ \ \xi \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le {Q}_{\phi }\left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{Q}_{\phi }\left({\varpi }_{n}\ \ ,\ \ \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2£ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)\to 0○0 = 0

    \mathrm{a}\mathrm{s}\ n\to \infty, and

    {R}_{\phi }\left(\varpi \ \ ,\ \ \xi \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le {R}_{\phi }\left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{R}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    {R}_{\phi }\left(\varpi \ \ ,\ \ \xi \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le {R}_{\phi }\left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{R}_{\phi }\left({\xi \varpi }_{n}\ \ ,\ \ \xi \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    {R}_{\phi }\left(\varpi \ \ ,\ \ \xi \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le {R}_{\phi }\left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{R}_{\phi }\left({\varpi }_{n}\ \ ,\ \ \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2£ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)\to 0○0 = 0

    \mathrm{a}\mathrm{s}\ n\to \infty. This implies that \xi \varpi = \varpi, a FP. Now we show the uniqueness, suppose \xi c = c for some c\in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} , then

    1\ge {{ P}}_{\phi }\left(c, \varpi , {\mathit{\boldsymbol{\tau }}}\right) = {{ P}}_{\phi }\left(\xi c, \xi \varpi , {\mathit{\boldsymbol{\tau }}}\right)\ge {{ P}}_{\phi }\left(c, \varpi , \frac{{\mathit{\boldsymbol{\tau }}}}{£ }\right) = {{ P}}_{\phi }\left(\xi c, \xi \varpi , \frac{{\mathit{\boldsymbol{\tau }}}}{£ }\right)
    \ge {{ P}}_{\phi }\left(c, \varpi , \frac{{\mathit{\boldsymbol{\tau }}}}{{£ }^{2}}\right)\ge \cdots \ge {{ P}}_{\phi }\left(c, \varpi , \frac{{\mathit{\boldsymbol{\tau }}}}{{£ }^{n}}\right)\to 1\ \mathrm{a}\mathrm{s}\ n\to \infty ,
    0\le {Q}_{\phi }\left(c, \varpi , {\mathit{\boldsymbol{\tau }}}\right) = {Q}_{\phi }\left(\xi c, \xi \varpi , {\mathit{\boldsymbol{\tau }}}\right)\le {Q}_{\phi }\left(c, \varpi , \frac{{\mathit{\boldsymbol{\tau }}}}{£ }\right) = {Q}_{\phi }\left(\xi c, \xi \varpi , \frac{{\mathit{\boldsymbol{\tau }}}}{£ }\right)
    \le {Q}_{\phi }\left(c, \varpi , \frac{{\mathit{\boldsymbol{\tau }}}}{{£ }^{2}}\right)\le \cdots \le {Q}_{\phi }\left(c, \varpi , \frac{{\mathit{\boldsymbol{\tau }}}}{{£ }^{n}}\right)\to 0\ \mathrm{a}\mathrm{s}\ n\to \infty ,

    and

    0\le {R}_{\phi }\left(c, \varpi , {\mathit{\boldsymbol{\tau }}}\right) = {R}_{\phi }\left(\xi c, \xi \varpi , {\mathit{\boldsymbol{\tau }}}\right)\le {R}_{\phi }\left(c, \varpi , \frac{{\mathit{\boldsymbol{\tau }}}}{£ }\right) = {R}_{\phi }\left(\xi c, \xi \varpi , \frac{{\mathit{\boldsymbol{\tau }}}}{£ }\right)
    \le {R}_{\phi }\left(c, \varpi , \frac{{\mathit{\boldsymbol{\tau }}}}{{£ }^{2}}\right)\le \cdots \le {R}_{\phi }\left(c, \varpi , \frac{{\mathit{\boldsymbol{\tau }}}}{{£ }^{n}}\right)\to 0\ \mathrm{a}\mathrm{s}\ n\to \infty ,

    by using \left(\mathrm{i}\mathrm{i}\mathrm{i}\right), \left(\mathrm{v}\mathrm{i}\mathrm{i}\mathrm{i}\right)\ \mathrm{a}\mathrm{n}\mathrm{d}\ \left(\mathrm{x}\mathrm{i}\mathrm{i}\right), \varpi = c.

    Definition 3.4. Let \left({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, {{ P}}_{\phi }, {Q}_{\phi }, {R}_{\phi }, *, ○\right) be a CNMLS. A map \xi :{\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\to {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} is CNL-contraction if there exists 0 < £ < 1 , such that

    \frac{1}{{{ P}}_{\phi }\left(\xi \varpi \ \ ,\ \ \xi \nu \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\right)}-1\le £ \left[\frac{1}{{{ P}}_{\phi }\left(\varpi \ \ ,\ \ \nu \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\right)}-1\right] (5)

    and

    {Q}_{\phi }\left(\xi \varpi , \xi \nu , {\mathit{\boldsymbol{\tau }}}\right)\le £ {Q}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right), {R}_{\phi }\left(\xi \varpi , \xi \nu , {\mathit{\boldsymbol{\tau }}}\right)\le £ {R}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right) (6)

    for all \varpi, \nu \in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\ \mathrm{a}\mathrm{n}\mathrm{d}\ {\mathit{\boldsymbol{\tau }}} > 0.

    Theorem 3.2. Let \left({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, {{ P}}_{\phi }, {Q}_{\phi }, {R}_{\phi }, *, ○\right) be a G-complete CNMLS with \phi :{\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\times {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\to \left[1, \infty \right) and suppose that

    \underset{{\mathit{\boldsymbol{\tau }}}\to \infty }{\mathrm{lim}}{{ P}}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right) = 1, \underset{{\mathit{\boldsymbol{\tau }}}\to \infty }{\mathrm{lim}}{Q}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right) = 0\ \mathrm{a}\mathrm{n}\mathrm{d}\ \underset{{\mathit{\boldsymbol{\tau }}}\to \infty }{\mathrm{lim}}{R}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right) = 0 (7)

    for all \varpi, \nu \in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} and {\mathit{\boldsymbol{\tau }}} > 0 . Let \xi :{\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\to {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} be a CN-contraction. Further, assume that for an arbitrary {\varpi }_{0}\in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, \ \mathrm{a}\mathrm{n}\mathrm{d}\ n, q\in \mathbb{N}, where {\varpi }_{n} = {\xi }^{n}{\varpi }_{0} = \xi {\varpi }_{n-1} also \underset{n\to \infty }{\mathrm{lim}}\phi \left({\varpi }_{n}, \nu \right) and \underset{n\to \infty }{\mathrm{lim}}\phi \left(\nu, {\varpi }_{n}\right) exists and finite. Then \xi has a unique FP.

    Proof. Suppose {\varpi }_{0} be an arbitrary point of {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} and define a sequence {\varpi }_{n} by {\varpi }_{n} = {\xi }^{n}{\varpi }_{0} = \xi {\varpi }_{n-1} , n\in \mathbb{N}. By utilizing \left(5\right) and \left(6\right) for all {\mathit{\boldsymbol{\tau }}} > 0, n > q, we get

    \frac{1}{{{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}-1 = \frac{1}{{{ P}}_{\phi }\left({\xi \varpi }_{n-1}\ \ ,\ \ {\varpi }_{n}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}-1
    \le £ \left[\frac{1}{{{ P}}_{\phi }\left({\varpi }_{n-1}\ \ ,\ \ {\varpi }_{n}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}-1\right] = \frac{£ }{{{ P}}_{\phi }\left({\varpi }_{n-1}\ \ ,\ \ {\varpi }_{n}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}-£
    \Rightarrow \frac{1}{{{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}\le \frac{£ }{{{ P}}_{\phi }\left({\varpi }_{n-1}\ \ ,\ \ {\varpi }_{n}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}+\left(1-£ \ \ \ \ \right)
    \le \frac{{£ }^{2}}{{{ P}}_{\phi }\left({\varpi }_{n-2}\ \ ,\ \ {\varpi }_{n-1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}+£ \left(1-£ \ \ \ \ \right)+\left(1-£ \ \ \ \ \right)

    Continuing in this way, we get

    \frac{1}{{{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}\le \frac{{£ }^{n}}{{{ P}}_{\phi }\left({\varpi }_{\ 0}\ \ ,\ \ {\varpi }_{\ 1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}+{£ }^{n-1}\left(1-£ \right)+{£ }^{n-2}\left(1-£ \right)+\cdots +£ \left(1-£ \right)+\left(1-£\right)
    \le \frac{{£ }^{n}}{{{ P}}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}+\left({£ }^{n-1}+{£ }^{n-2}+\cdots +1\right)\left(1-£ \ \ \ \ \right)\le \frac{{£ }^{n}}{{{ P}}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}+\left(1-{£ }^{n}\right)

    We obtain

    \frac{1}{\frac{{£ }^{n}}{{{ P}}_{\phi }\left({\varpi }_{\ 0}\ \ ,\ \ {\varpi }_{\ 1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}+\left(1-{£ }^{n}\ \ \ \ \right)}\le {{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right) (8)

    and

    \begin{array}{*{20}{c}} {{Q}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right) = {Q}_{\phi }\left(\xi {\varpi }_{n-1}\ \ ,\ \ {\varpi }_{n}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le £ {Q}_{\phi }\left({\varpi }_{n-1}\ \ ,\ \ {\varpi }_{n}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right) = {Q}_{\phi }\left(\xi {\varpi }_{n-2}\ \ ,\ \ {\varpi }_{n-1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right) }\\ {\le {£ }^{2}{Q}_{\phi }\left({\varpi }_{n-2}\ \ ,\ \ {\varpi }_{n-1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le \cdots \le {£ }^{n}{Q}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)} \end{array} (9)
    \begin{array}{*{20}{c}} { {R}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right) = {R}_{\phi }\left(\xi {\varpi }_{n-1}\ \ ,\ \ {\varpi }_{n}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le £ {R}_{\phi }\left({\varpi }_{n-1}\ \ ,\ \ {\varpi }_{n}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right) = {R}_{\phi }\left(\xi {\varpi }_{n-2}\ \ ,\ \ {\varpi }_{n-1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}\\ {\le {£ }^{2}{R}_{\phi }\left({\varpi }_{n-2}\ \ ,\ \ {\varpi }_{n-1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le \cdots \le {£ }^{n}{R}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)} \end{array} (10)

    for any q\in \mathbb{N}, \mathrm{u}\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}\left(\mathrm{v}\right), \left(\mathrm{x}\right)\ \mathrm{a}\mathrm{n}\mathrm{d}\ \left(\mathrm{x}\mathrm{v}\right) , we deduce

    {{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\ge {{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)*{{ P}}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    \ge {{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)*{{ P}}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    *{{ P}}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    \ge {{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)*{{ P}}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    *{{ P}}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    *{{ P}}_{\phi }\left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    \ge {{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)*{{ P}}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    *{{ P}}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    *{{ P}}_{\phi }\left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+4}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{4}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+4}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)*\ \ \cdots\ \ *
    {{ P}}_{\phi }\left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    *{{ P}}_{\phi }\left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)

    and

    {Q}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le {Q}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{Q}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    \le {Q}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{Q}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{Q}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    \le {Q}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{Q}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{Q}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{Q}_{\phi }\left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    \le {Q}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{Q}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{Q}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{Q}_{\phi }\left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+4}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{4}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+4}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○\ \ \cdots\ \ ○
    {Q}_{\phi }\left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{Q}_{\phi }\left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)\ \ ,\ \
    {R}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le {R}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{R}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    \le {R}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{R}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{R}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    \le {R}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{R}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{R}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{R}_{\phi }\left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    \le {R}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{R}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{R}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{R}_{\phi }\left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+4}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{4}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+4}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○\ \ \cdots\ \ ○
    {R}_{\phi }\left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{R}_{\phi }\left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    {{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)
    \ge \frac{1}{\frac{{£ }^{n}}{{{ P}}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)}+\left(1-{£ }^{n}\ \ \ \ \right)}
    *\frac{1}{\frac{{£ }^{n+1}}{{{ P}}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)}+\left(1-{£ }^{n+1}\ \ \ \ \right)}
    *\frac{1}{\frac{{£ }^{n+2}}{{{ P}}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)}+\left(1-{£ }^{n+2}\ \ \ \ \right)}*\ \ \cdots\ \ *
    \frac{1}{\frac{{£ }^{n+q-2}}{{{ P}}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \right)}\ \ \ \ +\left(1-{£ }^{n+q-2}\ \ \ \ \right)}
    *\frac{1}{\frac{{£ }^{n+q-1}}{{{ P}}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \right)}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \right)}\ \ \ \ +\left(1-{£ }^{n+q-1}\ \ \ \ \right)}

    and

    {Q}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)
    \le {£ }^{n}{Q}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{£ }^{n+1}{Q}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{£ }^{n+2}{Q}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○\ \ \cdots\ \ ○
    {£ }^{n+q-2}{Q}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{£ }^{n+q-1}{Q}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)\ \ ,\ \
    {R}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)
    \le {£ }^{n}{R}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{£ }^{n+1}{R}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{£ }^{n+2}{R}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○\ \ \cdots\ \ ○
    {£ }^{n+q-2}{R}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{£ }^{n+q-1}{R}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)

    Therefore,

    \underset{n\to \infty }{\mathrm{lim}}{{ P}}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+q}, {\mathit{\boldsymbol{\tau }}}\right) = 1*1*\cdots * = 1,
    \ \mathrm{a}\mathrm{n}\mathrm{d}\
    \underset{n\to \infty }{\mathrm{lim}}{Q}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+q}, {\mathit{\boldsymbol{\tau }}}\right) = 0○0○\cdots ○0 = 0,
    \underset{n\to \infty }{\mathrm{lim}}{R}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+q}, {\mathit{\boldsymbol{\tau }}}\right) = 0○0○\cdots ○0 = 0,

    i.e., \left\{{\varpi }_{n}\right\} is a GCS. Therefore, \left({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, {{ P}}_{\phi }, {Q}_{\phi }, {R}_{\phi }, *, ○\right) be a G-complete CNMS, there exists \varpi \in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}.

    Now, we show that \varpi is a FP of \xi , utilizing \left(\mathrm{v}\right), \left(\mathrm{x}\right)\ \mathrm{a}\mathrm{n}\mathrm{d}\ \left(\mathrm{x}\mathrm{v}\right), we get

    \frac{1}{{{ P}}_{\phi }\left({\xi \varpi }_{n}\ \ ,\ \ \xi \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\right)}-1\le £ \left[\frac{1}{{{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\right)}-1\right] = \frac{£ }{{{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\right)}-£
    \Rightarrow \frac{1}{\frac{£ }{{{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\right)}\ \ \ +\left(1-£ \right)}\le {{ P}}_{\phi }\left({\xi \varpi }_{n}\ \ ,\ \ \xi \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\right)

    Using above inequality, we obtain

    {{ P}}_{\phi }\left(\varpi \ \ ,\ \ \xi \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\ge {{ P}}_{\phi }\left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)}\ \ \ \ \right)*{{ P}}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)}\ \ \ \ \right)
    \ge {{ P}}_{\phi }\left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)}\ \ \ \ \right)*{{ P}}_{\phi }\left(\xi {\varpi }_{n}\ \ ,\ \ \xi \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)}\ \ \ \ \right)
    \ge {{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left(2\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)*\frac{1}{\frac{£ }{{{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)}\ \ \ \ \right)+\left(1-£ \ \ \ \ \right)}}\to 1*1 = 1

    \mathrm{a}\mathrm{s}\ n\to \infty , and

    {Q}_{\phi }\left(\varpi \ \ ,\ \ \xi \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le {{ P}}_{\phi }\left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{\tau }{2\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)}\ \ \ \ \right)○{Q}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)}\ \ \ \ \right)
    \le {Q}_{\phi }\left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)}\ \ \ \ \right)○{Q}_{\phi }\left({\xi \varpi }_{n}\ \ ,\ \ \xi \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)}\ \ \ \ \right)
    \le {Q}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)}\ \ \ \ \right)○£ {Q}_{\phi }\left({\varpi }_{n}\ \ ,\ \ \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)}\ \ \ \ \right)\to 0○0 = 0\ \mathrm{a}\mathrm{s}\ n\to \infty \ \ ,\ \
    {R}_{\phi }\left(\varpi \ \ ,\ \ \xi \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le {R}_{\phi }\left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)}\ \ \ \ \right)○{R}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)}\ \ \ \ \right)
    \le {R}_{\phi }\left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)}\ \ \ \ \right)○{R}_{\phi }\left({\xi \varpi }_{n}\ \ ,\ \ \xi \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)}\ \ \ \ \right)
    \le {R}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)}\ \ \ \ \right)○£ {R}_{\phi }\left({\varpi }_{n}\ \ ,\ \ \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)}\ \ \ \ \right)\to 0○0 = 0\ \mathrm{a}\mathrm{s}\ n\to \infty .

    Hence, \xi \varpi = \varpi, a FP.

    Uniqueness: Assume \xi c = c for some c\in \Xi , then

    \frac{1}{{{ P}}_{\phi }\left(\varpi \ \ ,\ \ c\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}-1 = \frac{1}{{{ P}}_{\phi }\left(\xi \varpi \ \ ,\ \ \xi c\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}-1
    \le £ \left[\frac{1}{{{ P}}_{\phi }\left(\varpi \ \ ,\ \ c\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}-1\right] < \frac{1}{{{ P}}_{\phi }\left(\varpi \ \ ,\ \ c\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}-1

    a contradiction, and

    {Q}_{\phi }\left(\varpi , c, {\mathit{\boldsymbol{\tau }}}\right) = {Q}_{\phi }\left(\xi \varpi , \xi c, {\mathit{\boldsymbol{\tau }}}\right)\le £ {Q}_{\phi }\left(\varpi , c, {\mathit{\boldsymbol{\tau }}}\right) < {Q}_{\phi }\left(\varpi , c, {\mathit{\boldsymbol{\tau }}}\right),
    {R}_{\phi }\left(\varpi , c, {\mathit{\boldsymbol{\tau }}}\right) = {R}_{\phi }\left(\xi \varpi , \xi c, {\mathit{\boldsymbol{\tau }}}\right)\le £ {R}_{\phi }\left(\varpi , c, {\mathit{\boldsymbol{\tau }}}\right) < {R}_{\phi }\left(\varpi , c, {\mathit{\boldsymbol{\tau }}}\right),

    are contradictions.

    Therefore, we must have {{ P}}_{\phi }\left(\varpi, c, {\mathit{\boldsymbol{\tau }}}\right) = 1, {Q}_{\phi }\left(\varpi, c, {\mathit{\boldsymbol{\tau }}}\right) = 0\ \mathrm{a}\mathrm{n}\mathrm{d}\ {R}_{\phi }\left(\varpi, c, {\mathit{\boldsymbol{\tau }}}\right) = 0 , that is \varpi = c.

    Example 3.3. Suppose {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} = \left[\mathrm{0, 1}\right] . Define 𝜙 by

    \phi \left(\varpi , \nu \right) = \left\{\begin{array}{c}\ \ \ 1\ \ \ \ \ {\rm{if}}\ \varpi = \nu , \\ \frac{1+\mathrm{max}\left\{\varpi , \nu \right\}}{\mathrm{min}\left\{\varpi , \nu \right\}}\ {\rm{if}}\ \varpi \ne \nu \ne 0.\end{array}\right.

    Also, define

    {{ P}}_{\phi }\left(\varpi \ \ ,\ \ \nu \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\right) = \frac{{\mathit{\boldsymbol{\tau }}}}{{\mathit{\boldsymbol{\tau }}}+\mathrm{max}\left\{\varpi \ \ ,\ \ \nu \right\}}
    {Q}_{\phi }\left(\varpi \ \ ,\ \ \nu \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\right) = \frac{\mathrm{max}\left\{\varpi \ \ ,\ \ \nu \right\}}{{\mathit{\boldsymbol{\tau }}}+\mathrm{max}\left\{\varpi \ \ ,\ \ \nu \right\}}\ \ ,\ \

    and

    {R}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right) = \frac{\mathrm{max}\left\{\varpi , \nu \right\}}{{\mathit{\boldsymbol{\tau }}}},

    with 𝛶*\varrho = 𝛶.\varrho \ \mathrm{a}\mathrm{n}\mathrm{d}\ 𝛶○\varrho = \mathrm{max}\left\{𝛶, \varrho \right\}. Then \left({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, {{ P}}_{\phi }, {Q}_{\phi }, {R}_{\phi }, *, ○\right) is a G-complete CNMLS. Observe that \underset{{\mathit{\boldsymbol{\tau }}}\to \infty }{\mathrm{lim}}{{ P}}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 1, \underset{{\mathit{\boldsymbol{\tau }}}\to \infty }{\mathrm{lim}}{Q}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 0\ \mathrm{a}\mathrm{n}\mathrm{d}\ \underset{{\mathit{\boldsymbol{\tau }}}\to \infty }{\mathrm{lim}}{R}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 0, satisfied. Define \xi :{\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\to {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} by

    \xi \left(\varpi \right) = \frac{\varpi }{9}

    Then,

    {{ P}}_{\phi }\left(\xi \varpi , \xi \nu , £ {\mathit{\boldsymbol{\tau }}}\right)\ge {{ P}}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right),
    {Q}_{\phi }\left(\xi \varpi , \xi \nu , £ {\mathit{\boldsymbol{\tau }}}\right)\le {Q}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right)\ \mathrm{a}\mathrm{n}\mathrm{d}\ {R}_{\phi }\left(\xi \varpi , \xi \nu , £ {\mathit{\boldsymbol{\tau }}}\right)\le {R}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right)

    are satisfied for £ \in \left[\frac{1}{2}, 1\right) , as we can see that Figure 1 shows that {{ P}}_{\phi }\left(\xi \varpi, \xi \nu, £ {\mathit{\boldsymbol{\tau }}}\right)\ge {{ P}}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right), Figure 2 shows that {Q}_{\phi }\left(\xi \varpi, \xi \nu, £ {\mathit{\boldsymbol{\tau }}}\right)\le {Q}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) and Figure 3 shows that {R}_{\phi }\left(\xi \varpi, \xi \nu, £ {\mathit{\boldsymbol{\tau }}}\right)\le {R}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right).

    Figure 1.  Shows the graphical behavior of {{ P}}_{\phi }\left(\xi \varpi, \xi \nu, £ {\mathit{\boldsymbol{\tau }}}\right)\ge {{ P}}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right), when {\mathit{\boldsymbol{\tau }}} = 10 and £ = 0.5.
    Figure 2.  Shows the graphical behavior of {Q}_{\phi }\left(\xi \varpi, \xi \nu, £ {\mathit{\boldsymbol{\tau }}}\right)\le {Q}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right), when {\mathit{\boldsymbol{\tau }}} = 10 and £ = 0.5.
    Figure 3.  Shows the graphical behavior of {R}_{\phi }\left(\xi \varpi, \xi \nu, £ {\mathit{\boldsymbol{\tau }}}\right)\le {R}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right), when {\mathit{\boldsymbol{\tau }}} = 10 and £ = 0.5.

    Also,

    \begin{array}{*{20}{c}} {\frac{1}{{{ P}}_{\phi }\left(\xi \varpi, \xi \nu, {\mathit{\boldsymbol{\tau }}}\right)}-1\le £ \left[\frac{1}{{{ P}}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right)}-1\right] \ {\rm{and}}}\\ {{Q}_{\phi }\left(\xi \varpi , \xi \nu , {\mathit{\boldsymbol{\tau }}}\right)\le £ {Q}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right), \ \mathrm{a}\mathrm{n}\mathrm{d}\ {R}_{\phi }\left(\xi \varpi , \xi \nu , {\mathit{\boldsymbol{\tau }}}\right)\le £ {R}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right),} \end{array}

    are satisfied for £ \in \left[\frac{1}{2}, 1\right), as we can see that Figure 4 shows that \frac{1}{{{ P}}_{\phi }\left(\xi \varpi, \xi \nu, {\mathit{\boldsymbol{\tau }}}\right)}-1\le £ \left[\frac{1}{{{ P}}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right)}-1\right], Figure 5 shows that {Q}_{\phi }\left(\xi \varpi, \xi \nu, {\mathit{\boldsymbol{\tau }}}\right)\le £ {Q}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) and Figure 6 shows that {R}_{\phi }\left(\xi \varpi, \xi \nu, {\mathit{\boldsymbol{\tau }}}\right)\le £ {R}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right).

    Figure 4.  Shows the graphical behavior of \frac{1}{{{ P}}_{\phi }\left(\xi \varpi, \xi \nu, {\mathit{\boldsymbol{\tau }}}\right)}-1\le £ \left[\frac{1}{{{ P}}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right)}-1\right], when {\mathit{\boldsymbol{\tau }}} = 10 and £ = 0.5.
    Figure 5.  Shows the graphical behavior of {Q}_{\phi }\left(\xi \varpi, \xi \nu, {\mathit{\boldsymbol{\tau }}}\right)\le £ {Q}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right), when {\mathit{\boldsymbol{\tau }}} = 10 and £ = 0.5.
    Figure 6.  Shows the graphical behavior of {R}_{\phi }\left(\xi \varpi, \xi \nu, {\mathit{\boldsymbol{\tau }}}\right)\le £ {R}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right), when {\mathit{\boldsymbol{\tau }}} = 10 and £ = 0.5.

    We can easily see that \underset{n\to \infty }{\mathrm{lim}}\phi \left({\varpi }_{n}, \nu \right) and \underset{n\to \infty }{\mathrm{lim}}\phi \left(\nu, {\varpi }_{n}\right) exists and finite. Observe that all circumstances of Theorems 3.1 and 3.2 are fulfilled, and 0 is a unique FP of \xi as we can see in the Figure 7.

    Figure 7.  Shows that the fixed point of is 0 and is unique.

    Suppose \Xi = C(\left[{\rm{c}}, а\right], \mathbb{ }\mathbb{ }\mathbb{ }\mathbb{ }\mathbb{R}) be the set of real valued continuous functions defined on [\mathbb{{\rm{c}}}, \mathbb{ }\mathbb{а}] .

    Suppose the integral equation:

    \varpi \left(\tau \right) = \Lambda \left(\tau \right)+\delta {\int }_{{\rm{c}}}^{а}Л\left(\tau , \upsilon \right)\varpi \left(\tau \right)d\upsilon \ {\rm{for}} \ \tau , \upsilon \in \left[{\rm{c}}, а\right] (11)

    where \delta > 0, \Lambda \left(\upsilon \right) is a function of \upsilon :\upsilon \in \left[{\rm{c}}, а\right] and Л:C\left(\left[{\rm{c}}, а\right]\times \mathbb{ }\mathbb{ }\mathbb{ }\mathbb{ }\mathbb{ }\mathbb{ }\mathbb{R}\right)\to {\mathbb{R}}^{+}. Define P\ \mathrm{a}\mathrm{n}\mathrm{d}\ Q by

    P\left(\varpi \left(\tau \right), \nu \left(\tau \right), ȓ\right) = \underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{ȓ}{ȓ+{\left|\varpi \left(\tau \right)-\nu \left(\tau \right)\right|}^{2}} \ {\rm{for}} \ {\rm{all}} \ \varpi , \nu \in \mathfrak{C} \ {\rm{and}} \ \mathfrak{ȓ} > 0,
    Q\left(\varpi \left(\tau \right), \nu \left(\tau \right), ȓ\right) = 1-\underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{ȓ}{ȓ+{\left|\varpi \left(\tau \right)-\nu \left(\tau \right)\right|}^{2}}\ {\rm{for}}\ {\rm{all}} \ \varpi , \nu \in \mathfrak{C} \ {\rm{and}} \ \mathfrak{ȓ} > 0,

    and

    R\left(\varpi \left(\tau \right), \nu \left(\tau \right), ȓ\right) = \underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{{\left|\varpi \left(\tau \right)-\nu \left(\tau \right)\right|}^{2}}{ȓ} \ {\rm{for}} \ {\rm{all}} \ \varpi , \nu \in \mathfrak{C} \ {\rm{and}}\ \mathfrak{ȓ} > 0 ,

    with continuous t-norm and continuous t-conorm define by ȇ*ā = ȇ.ā\ \mathrm{a}\mathrm{n}\mathrm{d}\ ȇ○ā = \mathrm{max}\left\{ȇ, ā\right\}. Define \xi, \mathfrak{Г}:\mathfrak{C}\times \mathfrak{C}\to \left[1, \infty \right) as

    \xi \left(\varpi , \nu \right) = \left\{\begin{array}{c}\ \ \ 1\ \ \ \ \ \ {\rm{if}}\ \varpi = \nu \\ \frac{1+\mathrm{max}\left\{\varpi , \nu \right\}}{\mathrm{min}\left\{\varpi , \nu \right\}}\ {\rm{if}}\ \varpi \ne \nu \ne 0\end{array};\right.

    Then ({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, \mathit{\boldsymbol{P}}, \mathit{\boldsymbol{Q}}, \mathit{\boldsymbol{R}}, {*}, ○) be a complete controlled neutrosophic metric-like space.

    Suppose that

    \left|\mathrm{Л}\left(\tau, \upsilon \right)\varpi \left(\tau \right)-\mathrm{Л}\left(\tau, \upsilon \right)\nu \left(\tau \right)\right|\le \left|\varpi \left(\tau \right)-\nu \left(\tau \right)\right| for \varpi, \nu \in \mathfrak{C} , \theta \in (0, \ 1) and \forall \tau, \upsilon \in [\mathrm{{\rm{c}}}, \ \mathrm{а}] . Also, let {\mathrm{Л}\left(\tau, \upsilon \right)\left(\delta {\int }_{\mathrm{{\rm{c}}}}^{\mathrm{а}}d\upsilon \right)}^{2}\le \theta < 1. Then integral Eq (11) has a unique solution.

    Proof. Define \xi :\mathfrak{C}\to \mathfrak{C} by

    \xi \varpi \left(\tau \right) = \Lambda \left(\tau \right)+\delta {\int }_{{\rm{c}}}^{а}Л\left(\tau , \upsilon \right){\rm{c}}\left(\tau \right)d\upsilon \ {\rm{for}}\ {\rm{all}} \ \tau , \upsilon \in \left[{\rm{c}}, а\right]

    Now for all \varpi, \nu \in \mathfrak{C} , we deduce

    P\left(\xi \varpi \left(\tau \right), \xi \nu \left(\tau \right), \theta ȓ\right) = \underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{\theta ȓ}{\theta ȓ+{\left|\xi \varpi \left(\tau \right)-\xi \nu \left(\tau \right)\right|}^{2}}
    = \underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{\theta ȓ}{\theta ȓ+{\left|\Lambda \left(\tau \right)+\delta {\int }_{{\rm{c}}}^{а}Л\left(\tau , \upsilon \right){\rm{c}}\left(\tau \right)d\upsilon -\Lambda \left(\tau \right)-\delta {\int }_{{\rm{c}}}^{а}Л\left(\tau , \upsilon \right){\rm{c}}\left(\tau \right)d\upsilon \right|}^{2}}\\ = \underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{\theta ȓ}{\theta ȓ+{\left|\delta {\int }_{{\rm{c}}}^{а}Л\left(\tau , \upsilon \right){\rm{c}}\left(\tau \right)d\upsilon -\delta {\int }_{{\rm{c}}}^{а}Л\left(\tau , \upsilon \right){\rm{c}}\left(\tau \right)d\upsilon \right|}^{2}}\\ = \underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{\theta ȓ}{\theta ȓ+{\left|Л\left(\tau , \upsilon \right)\varpi \left(\tau \right)-Л\left(\tau , \upsilon \right)\nu \left(\tau \right)\right|}^{2}{\left(\delta {\int }_{{\rm{c}}}^{а}d\upsilon \right)}^{2}}\\ \ge \underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{ȓ}{ȓ+{\left|\varpi \left(\tau \right)-\nu \left(\tau \right)\right|}^{2}}\\ \ge P\left(\varpi \left(\tau \right), \nu \left(\tau \right), ȓ\right),
    Q\left(\xi \varpi \left(\tau \right), \xi \nu \left(\tau \right), \theta ȓ\right) = 1-\underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{\theta ȓ}{\theta ȓ+{\left|\xi \varpi \left(\tau \right)-\xi \nu \left(\tau \right)\right|}^{2}}
    = 1-\underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{\theta ȓ}{\theta ȓ+{\left|\Lambda \left(\tau \right)+\delta {\int }_{{\rm{c}}}^{а}Л\left(\tau , \upsilon \right){\rm{c}}\left(\tau \right)d\upsilon -\Lambda \left(\tau \right)-\delta {\int }_{{\rm{c}}}^{а}Л\left(\tau , \upsilon \right){\rm{c}}\left(\tau \right)d\upsilon \right|}^{2}} \\ = 1-\underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{\theta ȓ}{\theta ȓ+{\left|\delta {\int }_{{\rm{c}}}^{а}Л\left(\tau , \upsilon \right){\rm{c}}\left(\tau \right)d\upsilon -\delta {\int }_{{\rm{c}}}^{а}Л\left(\tau , \upsilon \right){\rm{c}}\left(\tau \right)d\upsilon \right|}^{2}}\\ = 1-\underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{\theta ȓ}{\theta ȓ+{\left|Л\left(\tau , \upsilon \right)\varpi \left(\tau \right)-Л\left(\tau , \upsilon \right)\nu \left(\tau \right)\right|}^{2}{\left(\delta {\int }_{{\rm{c}}}^{а}d\upsilon \right)}^{2}}\\ \le 1-\underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{ȓ}{ȓ+{\left|\varpi \left(\tau \right)-\nu \left(\tau \right)\right|}^{2}}\\ \le Q\left(\varpi \left(\tau \right), \nu \left(\tau \right), ȓ\right),

    and

    R\left(\xi \varpi \left(\tau \right), \xi \nu \left(\tau \right), \theta ȓ\right) = \underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{{\left|\xi \varpi \left(\tau \right)-\xi \nu \left(\tau \right)\right|}^{2}}{\theta ȓ}
    = \underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{{\left|\Lambda \left(\tau \right)+\delta {\int }_{{\rm{c}}}^{а}Л\left(\tau , \upsilon \right){\rm{c}}\left(\tau \right)d\upsilon -\Lambda \left(\tau \right)-\delta {\int }_{{\rm{c}}}^{а}Л\left(\tau , \upsilon \right){\rm{c}}\left(\tau \right)d\upsilon \right|}^{2}}{\theta ȓ} \\ = \underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{{\left|\delta {\int }_{{\rm{c}}}^{а}Л\left(\tau , \upsilon \right){\rm{c}}\left(\tau \right)d\upsilon -\delta {\int }_{{\rm{c}}}^{а}Л\left(\tau , \upsilon \right){\rm{c}}\left(\tau \right)d\upsilon \right|}^{2}}{\theta ȓ} \\ = \underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{{\left|Л\left(\tau , \upsilon \right)\varpi \left(\tau \right)-Л\left(\tau , \upsilon \right)\nu \left(\tau \right)\right|}^{2}{\left(\delta {\int }_{{\rm{c}}}^{а}d\upsilon \right)}^{2}}{\theta ȓ}\\ \le \underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{{\left|\varpi \left(\tau \right)-\nu \left(\tau \right)\right|}^{2}}{ȓ}\\ \le R\left(\varpi \left(\tau \right), \nu \left(\tau \right), ȓ\right).

    As a result, all of the conditions of Theorem 3.1 are satisfied and operator \xi has a unique fixed point. This indicates that an integral Eq (11) has a unique solution.

    In this manuscript, we introduced the notion of controlled neutrosophic metric-like spaces as a generalization of a neutrosophic metric space and established some new type of fixed point theorems for contraction mappings in this new setting. Moreover, we provided the non-trivial examples with graphical analysis to demonstrate the viability of the proposed methods. Also, our structure is more general than the controlled fuzzy metric space and fuzzy metric like space and neutrosophic metric space. Also, our results and notions expand and generalize a number of previously published results.

    The authors declare no conflict of interest.



    [1] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [2] D. Dey, M. Saha, An extension of banach fixed point theorem in fuzzy metric space, Bol. Soc. Paran. Mat., 32 (2014), 299–304. https://doi.org/10.5269/bspm.v32i1.17260 doi: 10.5269/bspm.v32i1.17260
    [3] S. Nadaban, Fuzzy b-metric spaces, Int. J. Comput. Commun. Control, 11 (2016), 273–281. https://doi.org/10.15837/ijccc.2016.2.2443 doi: 10.15837/ijccc.2016.2.2443
    [4] B. Schweizer, A. Sklar, Statistical metric spaces, Pacific. J. Math., 10 (1960), 314–334. https://doi.org/10.2140/PJM.1960.10.313 doi: 10.2140/PJM.1960.10.313
    [5] V. Gregory, A. Sapena, On fixed point theorems in fuzzy metric spaces, Fuzzy Set. Syst., 125 (2002), 245–253. https://doi.org/10.1016/S0165-0114(00)00088-9 doi: 10.1016/S0165-0114(00)00088-9
    [6] I. Kramosil, J. Michlek, Fuzzy metric and statistical metric spaces, Kybernetika, 11 (1975), 336–344.
    [7] A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Set. Syst., 64 (1994), 395–399. https://doi.org/10.1016/0165-0114(94)90162-7 doi: 10.1016/0165-0114(94)90162-7
    [8] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Set. Syst., 27 (1988), 385–389. https://doi.org/10.1016/0165-0114(88)90064-4 doi: 10.1016/0165-0114(88)90064-4
    [9] F. Mehmood, R. Ali, C. Ionescu, T. Kamran, Extended fuzzy b-metric spaces, J. Math. Anal., 8 (2017), 124–131.
    [10] A. Harandi, Metric-like paces, partial metric spaces and fixed point, Fixed Point Theory Appl., 2012 (2012), 204. https://doi.org/10.1186/1687-1812-2012-204 doi: 10.1186/1687-1812-2012-204
    [11] N. Mlaiki, H. Aydi, N. Souayah, T. Abdeljawad, Controlled metric type spaces and the related contraction principle, Mathematics, 6 (2018), 194. http://dx.doi.org/10.3390/math6100194 doi: 10.3390/math6100194
    [12] N. Mlaiki, N. Souayah, T. Abdeljawad, H. Aydi, A new extension to the controlled metric type spaces endowed with a graph, Adv. Differ. Equ-Ny., 2021 (2021). https://doi.org/10.1186/s13662-021-03252-9 doi: 10.1186/s13662-021-03252-9
    [13] M. S. Sezen, Controlled fuzzy metric spaces and some related fixed point results, Numer. Meth. Part. D. E., 37 (2021), 583–593. https://doi.org/10.1002/num.22541 doi: 10.1002/num.22541
    [14] S. Shukla, M. Abbas, Fixed point results in fuzzy metric-like spaces, Iran. J. Fuzzy Syst., 11 (2014), 81–92. https://doi.org/10.22111/IJFS.2014.1724 doi: 10.22111/IJFS.2014.1724
    [15] K. Javed, F. Uddin, H. Aydi, M. Arshad, U. Ishtiaq, H. Alsamir, On Fuzzy b-Metric-Like Spaces, J. Funct. Spaces., 2021 (2021), 6615976. https://doi.org/10.1155/2021/6615976 doi: 10.1155/2021/6615976
    [16] J. H. Park, Intuitionistic fuzzy metric spaces, Chaos Soliton. Fract., 22 (2004), 1039–1046. https://doi.org/10.1016/j.chaos.2004.02.051 doi: 10.1016/j.chaos.2004.02.051
    [17] F. Smarandache, Neutrosophy: Neutrosophic probability, set and logic, Rehoboth: American Research Press, 1998. https://doi.org/10.5281/ZENODO.57726
    [18] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
    [19] M. Şahin, O. Ecemiş, V. Uluçay, A. Kargın, Some new generalized aggregation operators based on centroid single valued triangular neutrosophic numbers and their applications in multi-attribute decision making, Asian J. Math. Comput. Res., 16 (2017), 63–84.
    [20] M. Şahin, A. Kargın, A. Dayan, A. Kılıç, Neutrosophic triplet m-metric space, In: Quadruple neutrosophic theory and applications, 2020,213–223.
    [21] M. Şahin, A. Kargın, Neutrosophic triplet metric topology, Neutrosophic Sets. Sy., 27 (2019), 154–162. https://doi.org/10.5281/zenodo.3275557 doi: 10.5281/zenodo.3275557
    [22] A. Rezaei, F. Smarandache, The neutrosophic triplet of BI-algebras, Neutrosophic Sets. Sy., 33 (2020), 313–321. https://doi.org/10.5281/zenodo.3808944 doi: 10.5281/zenodo.3808944
    [23] C. Aslan, A. Kargın, M. Şahin, Neutrosophic modeling of talcott parsons's action and decision-making applications for it, Symmetry, 12 (2020), 1166. https://doi.org/1166.10.3390/SYM12071166
    [24] A. Kargın, A. Dayan, M. Şahin, Generalized hamming similarity measure based on neutrosophic quadruple numbers and its applications to law sciences, Neutrosophic Sets. Sy., 40 (2021), 45–67. https://doi.org/10.5281/zenodo.4549328 doi: 10.5281/zenodo.4549328
    [25] S. Şahin, A. Kargın, M. Yücel, Hausdorff measures on generalized set valued neutrosophic quadruple numbers and decision making applications for adequacy of online education, Neutrosophic Sets. Sy., 40 (2021), 86–116. https://doi.org/10.5281/zenodo.4549332 doi: 10.5281/zenodo.4549332
    [26] M. Şahin, A. Kargın, M. S. Uz, Neutrosophic triplet partial bipolar metric spaces, Neutrosophic Sets. Sy., 33 (2020), 297–312. https://doi.org/10.5281/zenodo.3808896 doi: 10.5281/zenodo.3808896
    [27] W. F. Al-Omeri, S. Jafari, F. Smarandache, (ϕ, ψ)-Weak contractions in neutrosophic cone metric spaces via fixed point theorems, Math. Probl. Eng., 2020 (2020), 9216805. https://doi.org/10.1155/2020/9216805 doi: 10.1155/2020/9216805
    [28] M. Şahin, A. Kargın, Neutrosophic triplet normed space, Open Phys., 15 (2017), 697–704. https://doi.org/10.1515/phys-2017-0082 doi: 10.1515/phys-2017-0082
    [29] M. Kirişci, N. Simsek, Neutrosophic metric spaces, Math. Sci., 14 (2020), 241–248. https://doi.org/10.1007/s40096-020-00335-8 doi: 10.1007/s40096-020-00335-8
    [30] M. Şahin, A. Kargın, Neutrosophic triplet v-generalized metric space, Axioms, 7 (2018), 67. https://doi.org/10.3390/axioms7030067 doi: 10.3390/axioms7030067
    [31] M. Şahin, A. Kargın, M. S. Uz, A. Kılıç, Neutrosophic triplet bipolar metric space, In: Quadruple neutrosophic theory and applications, 2020,150–164.
    [32] N. Simsek, M. Kirişci, Fixed point theorems in neutrosophic metric spaces, Sigma J. Eng. Nat. Sci., 10 (2019), 221–230. https://doi.org/10.1007/s40096-020-00335-8 doi: 10.1007/s40096-020-00335-8
    [33] M. Şahin, A. Kargın, Neutrosophic triplet b–metric space, In: Neutrosophic triplet structures, 2019, 79–90.
    [34] S. Sowndrarajan, M. Jeyarama, F. Smarandache, Fixed point results for contraction theorems in neutrosophic metric spaces, Neutrosophic Sets. Sy., 36 (2020), 308–318. https://doi.org/10.5281/zenodo.4065458 doi: 10.5281/zenodo.4065458
    [35] N. Saleem, S. Furqan, F. Jarad, On extended-rectangular and controlled rectangular fuzzy metric-like spaces with application, J. Funct. Space., 2022 (2022), 5614158. https://doi.org/10.1155/2022/5614158 doi: 10.1155/2022/5614158
    [36] N. Saleem, K. Javed, F. Uddin, U. Ishtiaq, K. Ahmed, T. Abdeljawad, et al., Unique solution of integral equations via intuitionistic extended fuzzy b-metric-like spaces, Comp. Model. Eng. Sci., 2022. https://doi.org/10.32604/cmes.2022.021031 doi: 10.32604/cmes.2022.021031
    [37] N. Saleem, U. Ishtiaq, L. Guran, M. F. Bota, On graphical fuzzy metric spaces with application to fractional differential equations, Fractal. Fract, 6 (2022), 238. https://doi.org/10.3390/fractalfract6050238 doi: 10.3390/fractalfract6050238
    [38] M. M. A. Khater, Diverse solitary and jacobian solutions in a continually laminated fluid with respect to shear flows through the ostrovsky equation, Mod. Phys. Lett. B., 35 (2021), 2150220. https://doi.org/10.1142/S0217984921502201 doi: 10.1142/S0217984921502201
    [39] M. M. A. Khater, Numerical simulations of zakharov's (ZK) non-dimensional equation arising in langmuir and ion-acoustic waves, Mod. Phys. Lett. B., 35 (2021), 2150480. https://doi.org/10.1142/S0217984921504807 doi: 10.1142/S0217984921504807
  • This article has been cited by:

    1. Tayyab Kamran, Umar Ishtiaq, Khaleel Ahmad, Ghulam Murtaza, Ioannis Argyros, Certain Fixed Point Results via Contraction Mappings in Neutrosophic Semi-Metric Spaces, 2024, 11, 2409-5761, 30, 10.15377/2409-5761.2024.11.3
    2. Khaleel Ahmad, Ghulam Murtaza, Salha Alshaikey, Umar Ishtiaq, Ioannis K. Argyros, Common Fixed Point Results on a Double-Controlled Metric Space for Generalized Rational-Type Contractions with Application, 2023, 12, 2075-1680, 941, 10.3390/axioms12100941
    3. Nawab Hussain, Nawal Alharbi, Ghada Basendwah, Fixed-Point Results with Applications in Generalized Neutrosophic Rectangular b-Metric Spaces, 2024, 13, 2075-1680, 818, 10.3390/axioms13120818
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2027) PDF downloads(101) Cited by(3)

Figures and Tables

Figures(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog