Research article

Approximate analytical solution of time-fractional vibration equation via reliable numerical algorithm

  • With effective techniques like the homotopy perturbation approach and the Adomian decomposition method via the Yang transform, the time-fractional vibration equation's solution is found for large membranes. In Caputo's sense, the fractional derivative is taken. Numerical experiments with various initial conditions are carried out through a few test examples. The findings are described using various wave velocity values. The outcomes demonstrate the competence and reliability of this analytical framework. Figures are used to discuss the solution of the fractional vibration equation using the suggested strategies for different orders of memory-dependent derivative. The suggested approaches reduce computation size and time even when the accurate solution of a nonlinear differential equation is unknown. It is helpful for both small and large parameters. The results show that the suggested techniques are trustworthy, accurate, appealing and effective strategies.

    Citation: M. Mossa Al-Sawalha, Azzh Saad Alshehry, Kamsing Nonlaopon, Rasool Shah, Osama Y. Ababneh. Approximate analytical solution of time-fractional vibration equation via reliable numerical algorithm[J]. AIMS Mathematics, 2022, 7(11): 19739-19757. doi: 10.3934/math.20221082

    Related Papers:

    [1] Wael W. Mohammed, Kalpasree Sharma, Partha Jyoti Hazarika, G. G. Hamedani, Mohamed S. Eliwa, Mahmoud El-Morshedy . Zero-inflated discrete Lindley distribution: Statistical and reliability properties, estimation techniques, and goodness-of-fit analysis. AIMS Mathematics, 2025, 10(5): 11382-11410. doi: 10.3934/math.2025518
    [2] Alanazi Talal Abdulrahman, Khudhayr A. Rashedi, Tariq S. Alshammari, Eslam Hussam, Amirah Saeed Alharthi, Ramlah H Albayyat . A new extension of the Rayleigh distribution: Methodology, classical, and Bayes estimation, with application to industrial data. AIMS Mathematics, 2025, 10(2): 3710-3733. doi: 10.3934/math.2025172
    [3] Khaled M. Alqahtani, Mahmoud El-Morshedy, Hend S. Shahen, Mohamed S. Eliwa . A discrete extension of the Burr-Hatke distribution: Generalized hypergeometric functions, different inference techniques, simulation ranking with modeling and analysis of sustainable count data. AIMS Mathematics, 2024, 9(4): 9394-9418. doi: 10.3934/math.2024458
    [4] Ehab M. Almetwally, Ahlam H. Tolba, Dina A. Ramadan . Bayesian and non-Bayesian estimations for a flexible reduced logarithmic-inverse Lomax distribution under progressive hybrid type-Ⅰ censored data with a head and neck cancer application. AIMS Mathematics, 2025, 10(4): 9171-9201. doi: 10.3934/math.2025422
    [5] Mohamed S. Eliwa, Essam A. Ahmed . Reliability analysis of constant partially accelerated life tests under progressive first failure type-II censored data from Lomax model: EM and MCMC algorithms. AIMS Mathematics, 2023, 8(1): 29-60. doi: 10.3934/math.2023002
    [6] Mohamed S. Algolam, Mohamed S. Eliwa, Mohamed El-Dawoody, Mahmoud El-Morshedy . A discrete extension of the Xgamma random variable: mathematical framework, estimation methods, simulation ranking, and applications to radiation biology and industrial engineering data. AIMS Mathematics, 2025, 10(3): 6069-6101. doi: 10.3934/math.2025277
    [7] Juxia Xiao, Ping Yu, Zhongzhan Zhang . Weighted composite asymmetric Huber estimation for partial functional linear models. AIMS Mathematics, 2022, 7(5): 7657-7684. doi: 10.3934/math.2022430
    [8] Mohamed Ahmed Mosilhy . Discrete Erlang-2 distribution and its application to leukemia and COVID-19. AIMS Mathematics, 2023, 8(5): 10266-10282. doi: 10.3934/math.2023520
    [9] Nora Nader, Dina A. Ramadan, Hanan Haj Ahmad, M. A. El-Damcese, B. S. El-Desouky . Optimizing analgesic pain relief time analysis through Bayesian and non-Bayesian approaches to new right truncated Fréchet-inverted Weibull distribution. AIMS Mathematics, 2023, 8(12): 31217-31245. doi: 10.3934/math.20231598
    [10] Mustafa M. Hasaballah, Yusra A. Tashkandy, Oluwafemi Samson Balogun, M. E. Bakr . Reliability analysis for two populations Nadarajah-Haghighi distribution under Joint progressive type-II censoring. AIMS Mathematics, 2024, 9(4): 10333-10352. doi: 10.3934/math.2024505
  • With effective techniques like the homotopy perturbation approach and the Adomian decomposition method via the Yang transform, the time-fractional vibration equation's solution is found for large membranes. In Caputo's sense, the fractional derivative is taken. Numerical experiments with various initial conditions are carried out through a few test examples. The findings are described using various wave velocity values. The outcomes demonstrate the competence and reliability of this analytical framework. Figures are used to discuss the solution of the fractional vibration equation using the suggested strategies for different orders of memory-dependent derivative. The suggested approaches reduce computation size and time even when the accurate solution of a nonlinear differential equation is unknown. It is helpful for both small and large parameters. The results show that the suggested techniques are trustworthy, accurate, appealing and effective strategies.



    The count data sets emerge in various fields like the yearly number of destructive earthquakes, number of patients of a specific disease in a hospital ward, failure of machines, number of patients due to coronavirus, number of monthly traffic accidents, hourly bacterial growth, and so on. Various discrete probability models have been utilized to model these kinds of data sets. Poisson and negative binomial distributions are frequently for modeling count observations. On the other hand, in the advanced scientific eon, the data generated from different fields is getting complex day by day, however, existing discrete models do not provide an efficient fit.

    Discretization of continuous distribution can be applied by using different approaches (survival discretization-mixed-Poisson-infinite series). The most widely used technique is the survival discretization approach by [1]. One of the important virtues of this methodology is that the generated discrete model retains the same functional form of the survival function as that of its continuous counterpart. Due to this feature, many survival characteristics of the distribution remain unchanged. The discretization approach to any continuous model depends on the domain of the random variable X. In literature, several discrete distributions are introduced and studied based on the discretization survival function. See for example, discrete Rayleigh [2], discrete a mixture of gamma and exponential [3], discrete Burr and Pareto [4], discrete Rayleigh generator [5], discrete Lindley [6], discrete Burr-XII [7], discrete Burr III [8], two-parameter discrete Lindley [9], discrete log-logistic [10], discrete Gompertz [11], discrete alpha power inverse Lomax [12], discrete Poisson and Ailamujia [13], discrete Half-Logistic [14], discrete Marshall-Olkin Weibull [15], discrete Gompertz-G family [16], discrete Burr-Hatke [17], three-parameter discrete Lindley [18], new discrete Lindley [19], exponentiated discrete Lindley [20], discrete generalized Lindley [21], discrete Gumble [22], discrete inverted Topp-Leone [23], and references cited therein.

    Although various distributions are available in literate to analyze count observations, there is still a need to introduce a more flexible and suitable distribution under different conditions. The fundamental purpose of this paper is to propose discrete Ramos-Louzada distribution, which is a one-parameter lifetime distribution introduced by [24]. The proposed one-parameter distribution herein has distinctive properties which makes it among the best choice for modeling over-dispersed and positively skewed data with leptokurtic-shaped. A continuous random variable X is said to have Ramos-Louzada distribution if its probability density function (pdf) can be written as

    g(x;λ)=1λ2(λ1)(λ22λ+x)exλ;x0,λ2, (1)

    where λ is the shape parameter. The corresponding survival function (sf) to Eq (1) can be formulated as

    G(x;λ)=λ2λ+xλ(λ1)exλ;x0,λ2. (2)

    In this article, the discrete version of Ramos and Louzada distribution is proposed and studied in detail. The following are some interesting features of the proposed distribution: Its statistical and reliability characteristics can be expressed as closed forms. Its failure rate is showing an increasing pattern. The suggested distribution evaluated time and count data sets more effectively than competing distributions. As a result, we feel that the proposed model is the greatest option for attracting a wider range of applications and industries.

    The rest of the study is organized as follows: In Section 2, we introduce a new distribution using survival discretization methodology. Different mathematical properties are derived in Section 3. Parameter estimation and simulation study are presented in Section 4. Four data sets are utilized to show the flexibility of the proposed model in Section 5. Finally, Section 6 provides some conclusions.

    Let Y be a continuous random variable with sf G(y;η), then the pmf of the discrete random variable X=Y can be expressed as

    Pr(X=x;η)=G(x;η)G(x+1;η);xZ+,

    where denotes the floor function, which returns the highest integer value smaller or equal than its argument, and η is a parameter vector 1×k. If the random variable Y have Ramos-Louzada (RL) distribution, then the pmf of discrete RL (DRL) distribution can be written as

    Pr(X=x;λ)=p(x;λ)=exλλ(λ1)[(λ2λ+x)(1e1λ)e1λ];x=0,1,2,, (3)

    where λ2 is the shape parameter. The pmf p(x+1;λ) can be expressed as a weight from the pmf p(x;λ) as follows

    p(x+1;λ)=e1λ[(λ2λ+x+1)(1e1λ)e1λ][(λ2λ+x)(1e1λ)e1λ]p(x;λ).

    Figure 1 illustrates some pmf plots of the DRL models based on different values of the model parameter λ. It is found that the pmf can be used a positively skewed data with a uni-modal shape.

    Figure 1.  The pmf plots of the DRL distribution.

    Based on F(x;λ)=Pr(Xx;λ)=1G(x;λ)+Pr(X=x;λ), the cumulative distribution function (cdf) of the DRL distribution can be formulated as

    F(x;λ)=1λ2λ+x+1λ(λ1)ex+1λ;x=0,1,2,. (4)

    The corresponding sf to Eq (4) can be expressed as

    S(x;λ)=λ2λ+xλ(λ1)exλ;x=0,1,2,. (5)

    The hazard rate function (hrf) of the DRL model is given by

    h(x;λ)=(λ2λ+x)(1e1λ)e1λ(λ2λ+x);x=0,1,2,, (6)

    where h(x;λ)=Pr(X=x;λ)1F(x1;λ). Mathematically, the shape of the hrf of the DRL model is always increasing, which makes it an effective statistical tool for modeling data, especially in the engineering and medical fields. Figure 2 shows the hrf plots of the new discrete model based on various values of the model parameter.

    Figure 2.  The hrf plots of the DRL distribution.

    The reversed hazard rate function (rhrf) and the second rate of failure are given as

    ˘r=exλ[(λ2λ+x)(1e1λ)e1λ]λ(λ1)(λ2λ+x+1)ex+1λ;x=0,1,2, (7)

    and

    r(x)=log[(λ2λ+x)e1λλ2λ+x+1];x=0,1,2,, (8)

    where ˘r=Pr(X=x;λ)F(x;λ) and r(x)=log[S(x;λ)S(x+1;λ)]. Mathematically, and after simple algebra steps, it is found that the shape of the rhrf of the DRL model is decreasing only. Figure 3 shows some rhrf plots of the proposed model based on specific parameter values.

    Figure 3.  The rhrf plots of the DRL distribution.

    In this Section, the probability generating function (pgf) as well as its rth moment are investigated. Assume the random variable X have a DRL model, then the pgf can be expressed as

    WX(z)=x=0zxPr(X=x;λ)=1+(z1)x=1zx1S(x;λ)=1+e1λ(z1)[1(1ze1λ)+1λ(λ1)(1ze1λ)2]. (9)

    On replacing z by ez in Eq (9), the moment generating function (mgf) can be written as

    MX(z)=1+e1λ(ez1)[1(1eze1λ)+1λ(λ1)(1eze1λ)2]. (10)

    The first four moments around the origin (μ'1,μ'2,μ'3,μ'4) can be written as

    μ'1=λλ2+(λ2λ+1)e1λλ(λ1)(e1λ1)2,
    μ'2=(λ(λ1)+1)e2λ+3e1λλ(λ1)λ(λ1)(e1λ1)3,
    μ'3=[λ(λ1)+1]e3λ+[3λ(λ1)+10]e2λ[3λ(λ1)7]e1λλ(λ1)λ(λ1)(e1λ1)4

    and

    μ'4=[λ(λ1)+1]e4λ+[10λ(λ1)+25]e3λ+67e2λ+[10λ(λ1)3]e1λλ(λ1)λ(λ1)(e1λ1)5.

    Based on the rth moments, the variance can be expressed as

    σ2=[λ42λ3+2λ2λ]e3λ[2λ44λ3+2λ21]e2λ+[λ42λ3+λ]e1λλ2(λ1)2(e1λ1)4. (11)

    The dispersion index (di) is defined by variance to mean ratio. The di indicates that the reported model is suitable for under-, equi- or over-dispersed data sets. Using the derived moments, the coefficients skewness and kurtosis can be listed in closed forms. Some numerical computations for mean, variance, di, skewness, and kurtosis based on DRL parameters are listed in Table 1.

    Table 1.  Mean, variance, di, skewness, and kurtosis of the DRL distribution.
    λ
    Measure 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 8.0
    Mean 3.500 3.678 4.014 4.414 4.847 5.299 5.762 6.234 8.652
    Variance 8.079 11.80 15.71 20.03 24.82 30.10 35.87 42.13 80.90
    di 2.308 3.207 3.913 4.538 5.121 5.680 6.224 6.757 9.351
    Skewness 1.395 1.519 1.629 1.708 1.764 1.806 1.837 1.862 1.928
    Kurtosis 5.940 6.353 6.821 7.199 7.495 7.727 7.910 8.057 8.484

     | Show Table
    DownLoad: CSV

    According to Table 1, it is noted that the DRL model can be used effectively to model overdispersion data as di is greater than one, which makes it a proper probability tool to discuss actuarial data. Moreover, the new discrete probabilistic model can be utilized to analyze positively skewed data with leptokurtic-shaped.

    In this section, six estimation methods are used to estimate the unknown parameter of DRL distribution. The considered estimation methods are maximum likelihood estimation (mle), method of moments (mom), least-squares estimation (lse), Anderson-Darling estimation (ade), Cramer von-Misses estimation (cvme), and maximum product of spacing estimator (mpse).

    Assume a random sample x1,x2,,xn from the DRL model, then the log-likelihood function can be expressed as

    L(λ|x)=1λni=1xi+ni=1ln[(λ2λ+xi)(1e1λ)e1λ]nlnλnln(λ1). (12)

    Differentiating the Eq (12) with respect to the parameter λ, we get the non-linear equation as follows

    L(λ|x)λ=1λ2ni=1xi+ni=1[(2λ1)(1e1λ)(11λ+1λ2+xiλ2)e1λ][(λ2λ+xi)(1e1λ)e1λ]nλnλ1, (13)

    the exact solution of Eq (13) is not easy, so we will maximize it by using optimization approaches, for example, the Newton-Raphson approach using R software.

    Based on the mom definition, we must equate the sample mean to the corresponding population mean, and then solve the non-linear equation for the parameter

    λλ2+(λ2λ+1)e1λλ(λ1)(e1λ1)2=1nni=1xi. (14)

    To solve Eq (14), the uniroot function should be utilized.

    To estimate the parameter minimizing the sum of squares of residuals, a standard approach like the lse should be used. For the estimation of the parameter of DRL distribution, the lse can be obtained by minimizing

    lse(λ)=ni=1[1(λ2λ+xi:n)λ(λ1)exi:n+1λin+2]2, (15)

    with respect to the parameter λ.

    The ade of the parameter can be derived by minimizing the following equation

    ade(λ)=n1nni=1(2i1)[log(1(λ2λ+xi:n)λ(λ1)exi:n+1λ)+log((λ2λ+xi:n)λ(λ1)exi:n+1λ)]2, (16)

    with respect to the parameter λ.

    The cvme is an estimation method. This method is derived as the difference between the empirical cdf and fitted cdf where

    cvme(λ)=112n+ni=1[1(λ2λ+xi:n)λ(λ1)exi:n+1λ2i12n]2. (17)

    For u=1,2,3,,h+1, assume Du(λ)=F(x(u)|λ)F(x(u1)|λ), be the uniform spacings of a random sample from the DRL model, where F(x(0)|λ)=0, F(x(h+1)|λ)=1 and h+1r=1Du(λ)=1. The mpse of the parameter λ, say ˆλ, can be estimated by maximizing the geometric mean of the spacings

    mpse(λ)=[h+1u=1Du(λ)]1h+1, (18)

    with respect to the parameter λ.

    In this section, we discussed the results of the simulation study to compare the estimation performance of the proposed estimators based on the DRL model. The performance of considered estimators is evaluated via absolute biases and mean square errors. We simulate 10,000 random samples from the DRL distribution using the following sample sizes n=10,20,50,100,200, and 500. The results calculated for parameter values λ=(2.0,2.5,3.0,4.0,5.0,6.0,8.0,10.0) using R Software. The absolute bias and mse for the parameter λ are presented in Tables 2 and 3.

    Table 2.  Simulation results of the DRL distribution for different parameter values.
    Para. n Bias mse
    λ mle mom ade cvme lse mpse mle mom ade cvme lse mpse
    2.0 10 0.099 0.072 0.878 0.606 0.956 0.801 0.762 1.496 2.897 2.059 3.034 1.797
    20 0.034 0.035 0.486 0.259 0.444 0.435 0.307 1.103 1.408 0.749 1.212 0.626
    50 0.017 0.160 0.122 0.037 0.065 0.172 0.055 0.811 0.304 0.086 0.148 0.111
    100 0.013 0.226 0.015 0.003 0.005 0.086 0.017 0.697 0.033 0.006 0.009 0.026
    200 0.009 0.277 0.000 0.000 0.000 0.050 0.007 0.620 0.000 0.000 0.000 0.008
    500 0.002 0.338 0.000 0.000 0.000 0.028 0.003 0.569 0.000 0.000 0.000 0.002
    2.5 10 0.081 0.131 1.109 1.140 1.397 0.958 1.105 2.032 3.694 3.919 4.392 2.609
    20 0.065 0.239 0.837 0.869 1.060 0.622 0.485 1.487 2.368 2.560 2.765 1.173
    50 0.058 0.293 0.595 0.695 0.798 0.320 0.186 1.063 1.436 1.723 1.785 0.391
    100 0.027 0.298 0.475 0.602 0.672 0.195 0.091 0.816 1.082 1.373 1.428 0.165
    200 0.013 0.255 0.374 0.525 0.589 0.098 0.045 0.602 0.864 1.139 1.185 0.065
    500 0.007 0.146 0.273 0.484 0.532 0.047 0.018 0.316 0.674 0.979 1.014 0.022
    3.0 10 0.019 0.224 1.085 1.103 1.304 0.996 1.574 2.613 3.976 4.160 4.504 3.186
    20 0.005 0.268 0.877 0.924 1.044 0.639 0.751 1.793 2.525 2.701 2.865 1.512
    50 0.003 0.193 0.738 0.844 0.893 0.357 0.313 1.003 1.540 1.728 1.760 0.537
    100 0.004 0.130 0.754 0.868 0.872 0.222 0.163 0.567 1.160 1.352 1.341 0.242
    200 0.001 0.053 0.775 0.887 0.896 0.141 0.084 0.238 0.920 1.112 1.106 0.113
    500 0.001 0.006 0.811 0.929 0.940 0.070 0.035 0.066 0.769 0.965 0.980 0.042
    4.0 10 0.049 0.209 1.105 1.023 1.181 1.100 2.450 3.694 5.254 5.458 5.552 4.850
    20 0.043 0.169 0.896 0.891 0.985 0.748 1.339 2.065 3.000 3.234 3.315 2.269
    50 0.031 0.049 0.835 0.847 0.899 0.400 0.585 0.763 1.608 1.739 1.789 0.815
    100 0.008 0.014 0.849 0.878 0.891 0.255 0.291 0.328 1.161 1.240 1.285 0.377
    200 0.007 0.016 0.838 0.877 0.882 0.156 0.147 0.159 0.911 1.005 1.010 0.174
    500 0.004 0.002 0.831 0.877 0.878 0.066 0.058 0.064 0.773 0.861 0.862 0.062

     | Show Table
    DownLoad: CSV
    Table 3.  Simulation results of the DRL distribution for different parameter values.
    Para. n Bias mse
    λ mle mom ade cvme lse mpse mle mom ade cvme lse mpse
    5.0 10 0.106 0.077 1.058 1.013 1.242 1.164 3.881 4.545 6.333 6.748 7.579 6.421
    20 0.061 0.036 0.955 0.915 1.007 0.824 2.026 2.335 3.527 3.991 4.014 3.056
    50 0.046 0.015 0.864 0.869 0.904 0.447 0.821 0.839 1.793 1.906 1.970 1.070
    100 0.013 0.002 0.857 0.866 0.857 0.270 0.399 0.411 1.244 1.325 1.303 0.513
    200 0.013 0.006 0.833 0.843 0.849 0.161 0.198 0.214 0.946 1.006 1.009 0.238
    500 0.001 0.003 0.832 0.846 0.843 0.082 0.079 0.078 0.792 0.829 0.822 0.086
    6.0 10 0.167 0.115 1.192 1.073 1.169 1.260 5.339 5.663 8.785 8.977 9.398 8.321
    20 0.049 0.027 0.946 0.952 0.975 0.890 2.794 2.926 4.236 4.861 4.686 3.860
    50 0.008 0.019 0.873 0.889 0.881 0.499 1.081 1.079 2.081 2.225 2.292 1.417
    100 0.007 0.016 0.859 0.843 0.870 0.294 0.523 0.517 1.392 1.421 1.522 0.631
    200 0.007 0.006 0.845 0.839 0.846 0.181 0.261 0.269 1.030 1.061 1.065 0.308
    500 0.001 0.001 0.832 0.832 0.835 0.085 0.107 0.108 0.823 0.841 0.847 0.112
    8.0 10 0.141 0.089 1.294 1.077 1.320 1.622 8.569 8.656 12.77 12.61 13.63 13.41
    20 0.074 0.009 1.050 0.991 1.111 1.110 4.265 4.178 6.399 6.736 7.355 6.250
    50 0.029 0.003 0.883 0.860 0.918 0.577 1.685 1.630 2.726 3.019 3.118 2.151
    100 0.015 0.014 0.867 0.861 0.859 0.372 0.834 0.814 1.787 1.862 1.859 1.029
    200 0.008 0.019 0.837 0.808 0.842 0.219 0.416 0.422 1.202 1.204 1.285 0.493
    500 0.006 0.001 0.826 0.814 0.820 0.097 0.169 0.175 0.877 0.879 0.902 0.176
    10.0 10 0.106 0.086 1.365 1.333 1.446 1.868 12.89 12.67 17.66 19.87 19.51 20.26
    20 0.001 0.063 1.143 1.079 1.067 1.308 6.232 6.279 8.767 9.553 9.777 9.056
    50 0.025 0.036 0.899 0.892 0.933 0.686 2.483 2.373 3.774 4.076 4.248 3.246
    100 0.018 0.016 0.868 0.886 0.872 0.457 1.247 1.246 2.255 2.421 2.464 1.489
    200 0.001 0.009 0.852 0.827 0.829 0.267 0.636 0.599 1.467 1.501 1.501 0.712
    500 0.002 0.007 0.823 0.801 0.818 0.119 0.246 0.240 0.967 0.971 1.005 0.255

     | Show Table
    DownLoad: CSV

    Based on the simulation criteria, it is observed that all estimation approaches work quite well in estimating the parameter λ of the DRL distribution.

    In this section, the importance of the proposed distribution is discussed by using data sets from different areas. We shall compare the fits of the DRL distribution with different competitive distributions such as Poisson (Poi), discrete Pareto (DPr), discrete Rayleigh (DR), discrete inverse Rayleigh (DIR), discrete Burr-Hatke (DBH), discrete Bilal (DBi), discrete Lindley (DL), new discrete Lindley (NDL), and discrete Burr-XII (DBXII) distributions. The fitted probability distributions are compared using some criteria, namely, the negative log-likelihood (L), Akaike information criterion (aic), and Kolmogorov-Smirnov (ks) test with its p-value.

    The first data set represents the number of deaths due to coronavirus in Pakistan during the period March 18, 2020, to April 30, 2020, which were obtained from the public reports of the National Institute of Health (NIH), Islamabad, Pakistan (https://covid.gov.pk/stats/pakistan). The mean, variance, and di of data set I are 9.4773,102.39, and 10.804, respectively. The mle(s) along with standard error(s) "se(s)" and goodness-of-fit measures for this data are presented in Table 4.

    Table 4.  The mle(s), se(s), and goodness-of-fit measures for data set I.
    Model λ δ Goodness-of-fit measures
    mle se mle se L aic ks p-value
    DRL 8.8686 1.5033 - - 145.22 292.43 0.156 0.2300
    Poi 9.4773 0.4641 - - 283.94 569.89 0.391 < 0.0001
    DPr 0.5021 0.0757 - - 162.19 326.38 0.401 < 0.0001
    DR 9.9883 0.7535 - - 168.85 339.70 0.339 < 0.0001
    DIR 7.4291 1.2625 - - 166.31 334.61 0.382 < 0.0001
    DBH 0.9950 0.0115 - - 175.37 352.74 0.647 < 0.0001
    DBi 11.838 1.2932 - - 151.29 304.59 0.213 0.0370
    DL 0.8313 0.0165 - - 149.17 300.33 0.184 0.1000
    NDL 0.1640 0.0161 - - 148.44 298.89 0.237 0.0140
    DBXII 0.9536 0.0434 11.907 11.305 150.70 305.40 0.302 0.0007

     | Show Table
    DownLoad: CSV

    The results in Table 4 show that the DRL distribution provides a better fit over other competing discrete models since it has the minimum aic, and ks values with the highest p-value. Figure 4 shows the probability-probability (pp) plots for all tested models which prove the empirical results listed in Table 4.

    Figure 4.  The pp plots for all fitted distributions for data set I.

    The second data set was reported in [25], which represents the exceedance of flood peaks in m3/s of the Wheaton River near Carcross in Yukon Territory, Canada based on the discretization concept. The mean, variance, and di of this data are 11.806,152.38, and 12.908, respectively. The mle(s), se(s), and goodness-of-fit measures for data set II are reported in Table 5.

    Table 5.  The mle(s), se(s), and goodness-of-fit measures for data set II.
    Model λ δ Goodness-of-fit measures
    mle se mle se L aic ks p-value
    DRL 11.214 1.4497 - - 252.71 507.43 0.133 0.1600
    Poi 11.805 0.4049 - - 564.38 1130.8 0.408 < 0.0001
    DPr 0.4770 0.0563 - - 276.82 555.64 0.311 < 0.0001
    DR 12.280 0.7239 - - 300.65 603.29 0.323 < 0.0001
    DIR 4.7947 0.6303 - - 331.46 664.92 0.497 < 0.0001
    DBH 0.9966 0.0072 - - 302.29 606.57 0.572 < 0.0001
    DBi 14.621 1.2479 - - 272.50 546.99 0.257 0.0002
    DL 0.8592 0.0109 - - 264.30 530.59 0.232 0.0009
    NDL 0.1373 0.0107 - - 262.09 526.17 0.271 < 0.0001
    DBXII 0.8205 0.0591 2.6112 0.9287 270.50 544.99 0.228 0.0011

     | Show Table
    DownLoad: CSV

    It is observed that the DRL model is the best among all competitive distributions. Figure 5 illustrates the pp plots for all tested distributions which prove the empirical results reported in Table 5.

    Figure 5.  The pp plots for all fitted distributions for data set II.

    The third data set was listed in [26] and represents the number of fires in Greece forest districts for the period from 1st July 1998 to 31 August 1998. The mean, variance, and di measures are 5.2, 32.382, and 6.2272, respectively. The mle(s), se(s), and goodness-of-fit measures for data set II are listed in Table 6.

    Table 6.  The mle(s), se(s), and goodness-of-fit measures for data set III.
    Model λ δ Goodness-of-fit measures
    mle se mle se L aic ks p-value
    DRL 4.3673 0.5510 - - 301.11 604.21 0.1510 0.0140
    Poi 5.2000 0.2174 - - 434.16 870.32 0.282 < 0.0001
    DPr 0.6250 0.0597 - - 339.05 680.10 0.352 < 0.0001
    DR 5.6788 0.2714 - - 352.72 707.45 0.261 < 0.0001
    DIR 3.5198 0.3748 - - 360.90 723.80 0.413 < 0.0001
    DBH 0.9833 0.0136 - - 352.42 706.85 0.532 < 0.0001
    DBi 6.7993 0.4693 - - 310.75 623.49 0.107 < 0.0001
    DL 0.7337 0.0156 - - 303.88 609.75 0.193 0.0100
    NDL 0.2567 0.0152 - - 302.73 607.47 0.169 0.0037
    DBXII 0.7486 0.0459 2.4582 0.4938 325.00 654.01 0.287 < 0.0001

     | Show Table
    DownLoad: CSV

    It is found that the new discrete model is the best among all tested distributions. Figure 6 shows the pp plots for all competitive distributions which prove the empirical results listed in Table 6.

    Figure 6.  The pp plots for all fitted distributions for data set III.

    The fourth data set represents the time to death (in weeks) of AG-positive leukemia patients [27]. The mean, variance, and di values are 62.471, 2954.3, and 47.29, respectively. The estimates and goodness-of-fit measures for all competitive distributions are listed in Table 7.

    Table 7.  The mle(s), se(s), and goodness-of-fit measures for data set IV.
    Model λ δ Goodness-of-fit measures
    mle se mle se L aic ks p-value
    DRL 61.943 15.273 - - 87.425 176.85 0.152 0.8300
    Poi 62.470 1.9169 - - 475.26 952.52 0.470 0.0011
    DPr 0.2838 0.0688 - - 98.335 198.67 0.324 0.0560
    DR 58.076 7.0429 - - 96.794 195.59 0.309 0.0770
    DIR 25.310 6.543 - - 128.59 259.18 0.681 < 0.0001
    DBH 0.9999 0.0029 - - 119.81 241.62 0.716 < 0.0001
    DBi 75.109 13.164 - - 92.886 187.77 0.219 0.3900
    DL 0.9692 0.0052 - - 91.858 185.72 0.215 0.4100
    NDL 0.0306 0.0052 - - 91.458 184.92 0.218 0.3900
    DBXII 0.9975 0.0008 117.30 45.982 96.151 196.30 0.327 0.0530

     | Show Table
    DownLoad: CSV

    It is noted that the DRL is the best for this data. Figure 7 shows the pp plots for all tested distributions which prove the empirical results mentioned in Table 7.

    Figure 7.  The pp plots for all fitted distributions for data set IV.

    In this article, a new one-parameter discrete model has been proposed entitled a discrete Ramos-Louzada (DRL) distribution. The new model can be used effectively in modeling asymmetric data with overdispersion phenomena. Some of its statistical properties have been derived. It was found that all its properties can be expressed in closed forms, which makes the new model can be utilized in different analysis, especially, in time series and regression. Various estimation techniques including maximum likelihood, moments, least squares, Anderson's-Darling, Cramer von-Mises, and maximum product of spacing estimator, have been investigated to get the best estimator for the real data. The estimation performance of these estimation techniques has been assessed via a comprehensive simulation study. The flexibility of the proposed discrete model has been tested utilizing four distinctive real data sets in various fields. Finally, we hope that the DRL distribution attracts wider sets of applications in different fields.

    The authors declare that they have no conflict of interest to report regarding the present study.



    [1] S. Mohyud-Din, A. Yildirim, An algorithm for solving the fractional vibration equation, Comput. Math. Model., 23 (2012), 228–237. https://doi.org/10.1007/s10598-012-9133-2 doi: 10.1007/s10598-012-9133-2
    [2] N. Shah, E. El-Zahar, A. Akgül, A. Khan, J. Kafle, Analysis of fractional-order regularized long-wave models via a novel transform, J. Funct. Space., 2022 (2022), 2754507. https://doi.org/10.1155/2022/2754507 doi: 10.1155/2022/2754507
    [3] A. Alderremy, S. Aly, R. Fayyaz, A. Khan, R. Shah, N. Wyal, The analysis of fractional-order nonlinear systems of third order KdV and Burgers equations via a novel transform, Complexity, 2022 (2022), 4935809. https://doi.org/10.1155/2022/4935809 doi: 10.1155/2022/4935809
    [4] K. Nonlaopon, A. Alsharif, A. Zidan, A. Khan, Y. Hamed, R. Shah, Numerical investigation of fractional-order Swift Hohenberg equations via a novel transform, Symmetry, 13 (2021), 1263. https://doi.org/10.3390/sym13071263 doi: 10.3390/sym13071263
    [5] M. Alaoui, R. Fayyaz, A. Khan, R. Shah, M. Abdo, Analytical investigation of Noyes field model for time-fractional Belousov Zhabotinsky reaction, Complexity, 2021 (2021), 3248376. https://doi.org/10.1155/2021/3248376 doi: 10.1155/2021/3248376
    [6] D. Robinson, The use of control systems analysis in the neurophysiology of eye movements, Annu. Rev. Neurosci., 4 (1981), 463–503. https://doi.org/10.1146/annurev.ne.04.030181.002335 doi: 10.1146/annurev.ne.04.030181.002335
    [7] R. Bagley, P. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheol., 27 (1983), 201–210. https://doi.org/10.1122/1.549724 doi: 10.1122/1.549724
    [8] J. Chen, F. Liu, V. Anh, Analytical solution for the time-fractional telegraph equation by the method of separating variables, J. Math. Anal. Appl., 338 (2008), 1364–1377. https://10.1016/j.jmaa.2007.06.023 doi: 10.1016/j.jmaa.2007.06.023
    [9] A. Prakash, M. Goyal, S. Gupta, q-homotopy analysis method for fractional Bloch model arising in nuclear magnetic resonance via the Laplace transform, Indian J. Phys., 94 (2020), 507–520. https://doi.org/10.1007/s12648-019-01487-7 doi: 10.1007/s12648-019-01487-7
    [10] M. Goyal, V. Bhardwaj, A. Prakash, Investigating new positive, bounded and convergent numerical solution for the nonlinear time-dependent breast cancer dynamic competition model, Math. Meth. Appl. Sci., 44 (2021), 4636–4653. https://doi.org/10.1002/mma.7057 doi: 10.1002/mma.7057
    [11] A. Prakash, M. Goyal, S. Gupta, Numerical simulation of space-fractional Helmholtz equation arising in seismic wave propagation, imaging and inversion, Pramana, 93 (2019), 28. https://doi.org/10.1007/s12043-019-1773-8 doi: 10.1007/s12043-019-1773-8
    [12] D. M. Chen, N. Wang, Z. Y. Chen, Y. Yu, Parametrically excited vibrations in a nonlinear damped triple-well oscillator with resonant frequency, J. Vib. Eng. Technol., 10 (2022), 781–788. https://doi.org/10.1007/s42417-021-00408-5 doi: 10.1007/s42417-021-00408-5
    [13] Y. Yu, C. Zhang, Z. Y. Chen, C. W. Lim, Relaxation and mixed mode oscillations in a shape memory alloy oscillator driven by parametric and external excitations, Chaos Solitons Fractals, 140 (2020), 110145. https://doi.org/10.1016/j.chaos.2020.110145 doi: 10.1016/j.chaos.2020.110145
    [14] Y. Yu, Z. D. Zhang, Q. S. Bi, Multistability and fast-slow analysis for van der Pol Duffing oscillator with varying exponential delay feedback factor, Appl. Math. Model., 57 (2018), 448–458. https://doi.org/10.1016/j.apm.2018.01.010 doi: 10.1016/j.apm.2018.01.010
    [15] N. Dinh, S. Lee, J. Kim, K. Choi, Study on seismic performance of a mold transformer through shaking table tests, Appl. Sci., 10 (2020), 361. https://doi.org/10.3390/app10010361 doi: 10.3390/app10010361
    [16] J. Singh, D. Kumar, D. Baleanu, On the analysis of fractional diabetes model with exponential law, Adv. Differ. Equ., 2018 (2018), 231. https://doi.org/10.1186/s13662-018-1680-1 doi: 10.1186/s13662-018-1680-1
    [17] P. Zhou, W. Zhu, Function projective synchronization for fractional-order chaotic systems, Nonlinear Anal.: Real World Appl., 12 (2011), 811–816. https://doi.org/10.1016/j.nonrwa.2010.08.008 doi: 10.1016/j.nonrwa.2010.08.008
    [18] F. Guo, H. Peng, B. J. Zou, R. C. Zhao, X. Y. Liu, Localisation and segmentation of optic disc with the fractional-order Darwinian particle swarm optimisation algorithm, IET Image Process., 12 (2018), 1303–1312. https://doi.org/10.1049/iet-ipr.2017.1149 doi: 10.1049/iet-ipr.2017.1149
    [19] M. Higazy, Novel fractional order SIDARTHE mathematical model of COVID-19 pandemic, Chaos Solitons Fractals, 138 (2020), 110007. https://doi.org/10.1016/j.chaos.2020.110007 doi: 10.1016/j.chaos.2020.110007
    [20] A. Saadatmandi, M. Dehghan, A new operational matrix for solving fractional-order differential equations, Comput. Math. Appl., 59 (2010), 1326–1336. https://doi.org/10.1016/j.camwa.2009.07.006 doi: 10.1016/j.camwa.2009.07.006
    [21] P. Veeresha, D. Prakasha, H. Baskonus, New numerical surfaces to the mathematical model of cancer chemotherapy effect in Caputo fractional derivatives, Chaos, 29 (2019), 013119. https://doi.org/10.1063/1.5074099 doi: 10.1063/1.5074099
    [22] T. Stefanski, J. Gulgowski, Electromagnetic-based derivation of fractional-order circuit theory, Commun. Nonlinear Sci., 79 (2019), 104897. https://doi.org/10.1016/j.cnsns.2019.104897 doi: 10.1016/j.cnsns.2019.104897
    [23] Y. Ferdi, Some applications of fractional order calculus to design digital filters for biomedical signal processing, J. Mech. Med. Biol., 12 (2012), 1240008. https://doi.org/10.1142/s0219519412400088 doi: 10.1142/s0219519412400088
    [24] M. Altaf Khan, S. Ullah, M. Farooq, A new fractional model for tuberculosis with relapse via Atangana-Baleanu derivative, Chaos Solitons Fractals, 116 (2018), 227–238. https://doi.org/10.1016/j.chaos.2018.09.039 doi: 10.1016/j.chaos.2018.09.039
    [25] D. Prakasha, P. Veeresha, H. Baskonus, Analysis of the dynamics of hepatitis E virus using the Atangana-Baleanu fractional derivative, Eur. Phys. J. Plus, 134 (2019), 241. https://doi.org/10.1140/epjp/i2019-12590-5 doi: 10.1140/epjp/i2019-12590-5
    [26] M. Khan, S. Ullah, K. Okosun, K. Shah, A fractional order pine wilt disease model with Caputo Fabrizio derivative, Adv. Differ. Equ., 2018 (2018), 410. https://doi.org/10.1186/s13662-018-1868-4 doi: 10.1186/s13662-018-1868-4
    [27] Hajira, H. Khan, A. Khan, P. Kumam, D. Baleanu, M. Arif, An approximate analytical solution of the Navier-Stokes equations within Caputo operator and Elzaki transform decomposition method, Adv. Differ. Equ., 2020 (2020), 622. https://doi.org/10.1186/s13662-020-03058-1 doi: 10.1186/s13662-020-03058-1
    [28] Y. Qin, A. Khan, I. Ali, M. Al Qurashi, H. Khan, R. Shah, et al., An efficient analytical approach for the solution of certain fractional-order dynamical systems, Energies, 13 (2020), 2725. https://doi.org/10.3390/en13112725 doi: 10.3390/en13112725
    [29] M. Areshi, A. Khan, R. Shah, K. Nonlaopon, Analytical investigation of fractional-order Newell-Whitehead-Segel equations via a novel transform, AIMS Mathematics, 7 (2022), 6936-6958. https://doi.org/10.3934/math.2022385 doi: 10.3934/math.2022385
    [30] H. Khan, A. Khan, M. Al-Qurashi, R. Shah, D. Baleanu, Modified modelling for heat like equations within Caputo operator, Energies, 13 (2020), 2002. https://doi.org/10.3390/en13082002 doi: 10.3390/en13082002
    [31] E. Hernandez-Balaguera, Coulostatics in bioelectrochemistry: A physical interpretation of the electrode-tissue processes from the theory of fractional calculus, Chaos Solitons Fractals, 145 (2021), 110787. https://doi.org/10.1016/j.chaos.2021.110787 doi: 10.1016/j.chaos.2021.110787
    [32] S. Das, A numerical solution of the vibration equation using modified decomposition method, J. Sound Vib., 320 (2009), 576–583. https://doi.org/10.1016/j.jsv.2008.08.029 doi: 10.1016/j.jsv.2008.08.029
    [33] S. Mohyud-Din, A. Yildirim, An algorithm for solving the fractional vibration equation, Comput. Math. Model., 23 (2012), 228–237. https://doi.org/10.1007/s10598-012-9133-2 doi: 10.1007/s10598-012-9133-2
    [34] S. Das, Solution of fractional vibration equation by the variational iteration method and modified decomposition method, Int. J. Nonlinear Sci. Numer. Simul., 9 (2008), 361–366. https://doi.org/10.1515/ijnsns.2008.9.4.361 doi: 10.1515/ijnsns.2008.9.4.361
    [35] S. Das, P. Gupta, Application of homotopy perturbation method and homotopy analysis method to fractional vibration equation, Int. J. Comput. Math., 88 (2010), 430–441. https://doi.org/10.1080/00207160903474214 doi: 10.1080/00207160903474214
    [36] H. Srivastava, D. Kumar, J. Singh, An efficient analytical technique for fractional model of vibration equation, Appl. Math. Model., 45 (2017), 192–204. https://doi.org/10.1016/j.apm.2016.12.008 doi: 10.1016/j.apm.2016.12.008
  • This article has been cited by:

    1. Muhammad Ahsan-ul-Haq, On Poisson Moment Exponential Distribution with Applications, 2022, 2198-5804, 10.1007/s40745-022-00400-0
    2. Mohamed S. Eliwa, Muhammad Ahsan-ul-Haq, Amani Almohaimeed, Afrah Al-Bossly, Mahmoud El-Morshedy, Barbara Martinucci, Discrete Extension of Poisson Distribution for Overdispersed Count Data: Theory and Applications, 2023, 2023, 2314-4785, 1, 10.1155/2023/2779120
    3. Muhammad Ahsan-ul-Haq, Afrah Al-Bossly, Mahmoud El-Morshedy, Mohamed S. Eliwa, Maciej Lawrynczuk, Poisson XLindley Distribution for Count Data: Statistical and Reliability Properties with Estimation Techniques and Inference, 2022, 2022, 1687-5273, 1, 10.1155/2022/6503670
    4. Abdulaziz S. Alghamdi, Muhammad Ahsan-ul-Haq, Ayesha Babar, Hassan M. Aljohani, Ahmed Z. Afify, The discrete power-Ailamujia distribution: properties, inference, and applications, 2022, 7, 2473-6988, 8344, 10.3934/math.2022465
    5. Elebe Emmanuel Nwezza, Uchenna Ugwunnaya Uwadi, Christian Osagie, Modeling the number of component failures: A Poison-geometric distribution, 2022, 16, 24682276, e01206, 10.1016/j.sciaf.2022.e01206
    6. Muhammed Irshad, Christophe Chesneau, Veena D’cruz, Radhakumari Maya, Discrete Pseudo Lindley Distribution: Properties, Estimation and Application on INAR(1) Process, 2021, 26, 2297-8747, 76, 10.3390/mca26040076
    7. Muhammad Ahsan-ul-Haq, Javeria Zafar, A new one-parameter discrete probability distribution with its neutrosophic extension: mathematical properties and applications, 2023, 2364-415X, 10.1007/s41060-023-00382-z
    8. Ahmed Sedky Eldeeb, Muhammad Ahsan-ul-Haq, Ayesha Babar, A new discrete XLindley distribution: theory, actuarial measures, inference, and applications, 2024, 17, 2364-415X, 323, 10.1007/s41060-023-00395-8
    9. Osama Abdulaziz Alamri, Classical and Bayesian estimation of discrete poisson Agu-Eghwerido distribution with applications, 2024, 109, 11100168, 768, 10.1016/j.aej.2024.09.063
    10. Hassan M. Aljohani, Muhammad Ahsan-ul-Haq, Javeria Zafar, Ehab M. Almetwally, Abdulaziz S. Alghamdi, Eslam Hussam, Abdisalam Hassan Muse, Analysis of Covid-19 data using discrete Marshall–Olkinin Length Biased Exponential: Bayesian and frequentist approach, 2023, 13, 2045-2322, 10.1038/s41598-023-39183-6
    11. Safar M. Alghamdi, Muhammad Ahsan-ul-Haq, Olayan Albalawi, Majdah Mohammed Badr, Eslam Hussam, H.E. Semary, M.A. Abdelkawy, Binomial Poisson Ailamujia model with statistical properties and application, 2024, 17, 16878507, 101096, 10.1016/j.jrras.2024.101096
    12. Amani Alrumayh, Hazar A. Khogeer, A New Two-Parameter Discrete Distribution for Overdispersed and Asymmetric Data: Its Properties, Estimation, Regression Model, and Applications, 2023, 15, 2073-8994, 1289, 10.3390/sym15061289
    13. John Kwadey Okutu, Nana K. Frempong, Simon K. Appiah, Atinuke O. Adebanji, Pritpal Singh, A New Generated Family of Distributions: Statistical Properties and Applications with Real-Life Data, 2023, 2023, 2577-7408, 1, 10.1155/2023/9325679
    14. M. R. Irshad, Muhammed Ahammed, R. Maya, Christophe Chesneau, INAR(1) process with Poisson-transmuted record type exponential innovations, 2024, 19, 15741699, 145, 10.3233/MAS-231458
    15. Khaled M. Alqahtani, Mahmoud El-Morshedy, Hend S. Shahen, Mohamed S. Eliwa, A discrete extension of the Burr-Hatke distribution: Generalized hypergeometric functions, different inference techniques, simulation ranking with modeling and analysis of sustainable count data, 2024, 9, 2473-6988, 9394, 10.3934/math.2024458
    16. Mohamed Eliwa, Mahmoud El-Morshedy, Hend Shahen, Modelling dispersed count data under various shapes of failure rates: A discrete probability analogue of odd Lomax generator, 2023, 37, 0354-5180, 6177, 10.2298/FIL2318177E
    17. M. Ahsan-ul-Haq, M. R. Irshad, E. S. Muhammed Ahammed, R. Maya, New Discrete Bilal Distribution and Associated INAR(1) Process, 2023, 44, 1995-0802, 3647, 10.1134/S1995080223090020
    18. Yingying Qi, Dan Ding, Yusra A. Tashkandy, M.E. Bakr, M.M. Abd El-Raouf, Anoop Kumar, A novel probabilistic model with properties: Its implementation to the vocal music and reliability products, 2024, 107, 11100168, 254, 10.1016/j.aej.2024.07.035
    19. Khlood Al-Harbi, Aisha Fayomi, Hanan Baaqeel, Amany Alsuraihi, A Novel Discrete Linear-Exponential Distribution for Modeling Physical and Medical Data, 2024, 16, 2073-8994, 1123, 10.3390/sym16091123
    20. Thanasate Akkanphudit, The Discrete Gompertz–Weibull–Fréchet Distribution: Properties and Applications, 2023, 44, 1995-0802, 3663, 10.1134/S1995080223090032
    21. Mohamed S. Algolam, Mohamed S. Eliwa, Mohamed El-Dawoody, Mahmoud El-Morshedy, A discrete extension of the Xgamma random variable: mathematical framework, estimation methods, simulation ranking, and applications to radiation biology and industrial engineering data, 2025, 10, 2473-6988, 6069, 10.3934/math.2025277
    22. Howaida Elsayed, Mohamed Hussein, A New Discrete Analogue of the Continuous Muth Distribution for Over-Dispersed Data: Properties, Estimation Techniques, and Application, 2025, 27, 1099-4300, 409, 10.3390/e27040409
    23. Amir Mushtaq, Mohamed Kayid, Ghadah Alomani, A new discrete generalized class of distribution with application to radiation and COVID-19 data, 2025, 18, 16878507, 101485, 10.1016/j.jrras.2025.101485
    24. Ali M. Mahnashi, Abdullah A. Zaagan, Poisson copoun distribution: An alternative discrete model for count data analysis, 2025, 128, 11100168, 571, 10.1016/j.aej.2025.05.085
    25. Ayse Alici, Elif Seren Tanriverdi, Gulgun Yenisehirli, Baris Otlu, Investigation of Clonal Relationship Between Candida Parapsilosis and Candida Glabrata Strains Isolated from Blood Culture by Pulse Field Gel Electrophoresis, 2025, 63, 13020072, 62, 10.4274/haseki.galenos.2025.36844
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2175) PDF downloads(104) Cited by(10)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog