
With effective techniques like the homotopy perturbation approach and the Adomian decomposition method via the Yang transform, the time-fractional vibration equation's solution is found for large membranes. In Caputo's sense, the fractional derivative is taken. Numerical experiments with various initial conditions are carried out through a few test examples. The findings are described using various wave velocity values. The outcomes demonstrate the competence and reliability of this analytical framework. Figures are used to discuss the solution of the fractional vibration equation using the suggested strategies for different orders of memory-dependent derivative. The suggested approaches reduce computation size and time even when the accurate solution of a nonlinear differential equation is unknown. It is helpful for both small and large parameters. The results show that the suggested techniques are trustworthy, accurate, appealing and effective strategies.
Citation: M. Mossa Al-Sawalha, Azzh Saad Alshehry, Kamsing Nonlaopon, Rasool Shah, Osama Y. Ababneh. Approximate analytical solution of time-fractional vibration equation via reliable numerical algorithm[J]. AIMS Mathematics, 2022, 7(11): 19739-19757. doi: 10.3934/math.20221082
[1] | Wael W. Mohammed, Kalpasree Sharma, Partha Jyoti Hazarika, G. G. Hamedani, Mohamed S. Eliwa, Mahmoud El-Morshedy . Zero-inflated discrete Lindley distribution: Statistical and reliability properties, estimation techniques, and goodness-of-fit analysis. AIMS Mathematics, 2025, 10(5): 11382-11410. doi: 10.3934/math.2025518 |
[2] | Alanazi Talal Abdulrahman, Khudhayr A. Rashedi, Tariq S. Alshammari, Eslam Hussam, Amirah Saeed Alharthi, Ramlah H Albayyat . A new extension of the Rayleigh distribution: Methodology, classical, and Bayes estimation, with application to industrial data. AIMS Mathematics, 2025, 10(2): 3710-3733. doi: 10.3934/math.2025172 |
[3] | Khaled M. Alqahtani, Mahmoud El-Morshedy, Hend S. Shahen, Mohamed S. Eliwa . A discrete extension of the Burr-Hatke distribution: Generalized hypergeometric functions, different inference techniques, simulation ranking with modeling and analysis of sustainable count data. AIMS Mathematics, 2024, 9(4): 9394-9418. doi: 10.3934/math.2024458 |
[4] | Ehab M. Almetwally, Ahlam H. Tolba, Dina A. Ramadan . Bayesian and non-Bayesian estimations for a flexible reduced logarithmic-inverse Lomax distribution under progressive hybrid type-Ⅰ censored data with a head and neck cancer application. AIMS Mathematics, 2025, 10(4): 9171-9201. doi: 10.3934/math.2025422 |
[5] | Mohamed S. Eliwa, Essam A. Ahmed . Reliability analysis of constant partially accelerated life tests under progressive first failure type-II censored data from Lomax model: EM and MCMC algorithms. AIMS Mathematics, 2023, 8(1): 29-60. doi: 10.3934/math.2023002 |
[6] | Mohamed S. Algolam, Mohamed S. Eliwa, Mohamed El-Dawoody, Mahmoud El-Morshedy . A discrete extension of the Xgamma random variable: mathematical framework, estimation methods, simulation ranking, and applications to radiation biology and industrial engineering data. AIMS Mathematics, 2025, 10(3): 6069-6101. doi: 10.3934/math.2025277 |
[7] | Juxia Xiao, Ping Yu, Zhongzhan Zhang . Weighted composite asymmetric Huber estimation for partial functional linear models. AIMS Mathematics, 2022, 7(5): 7657-7684. doi: 10.3934/math.2022430 |
[8] | Mohamed Ahmed Mosilhy . Discrete Erlang-2 distribution and its application to leukemia and COVID-19. AIMS Mathematics, 2023, 8(5): 10266-10282. doi: 10.3934/math.2023520 |
[9] | Nora Nader, Dina A. Ramadan, Hanan Haj Ahmad, M. A. El-Damcese, B. S. El-Desouky . Optimizing analgesic pain relief time analysis through Bayesian and non-Bayesian approaches to new right truncated Fréchet-inverted Weibull distribution. AIMS Mathematics, 2023, 8(12): 31217-31245. doi: 10.3934/math.20231598 |
[10] | Mustafa M. Hasaballah, Yusra A. Tashkandy, Oluwafemi Samson Balogun, M. E. Bakr . Reliability analysis for two populations Nadarajah-Haghighi distribution under Joint progressive type-II censoring. AIMS Mathematics, 2024, 9(4): 10333-10352. doi: 10.3934/math.2024505 |
With effective techniques like the homotopy perturbation approach and the Adomian decomposition method via the Yang transform, the time-fractional vibration equation's solution is found for large membranes. In Caputo's sense, the fractional derivative is taken. Numerical experiments with various initial conditions are carried out through a few test examples. The findings are described using various wave velocity values. The outcomes demonstrate the competence and reliability of this analytical framework. Figures are used to discuss the solution of the fractional vibration equation using the suggested strategies for different orders of memory-dependent derivative. The suggested approaches reduce computation size and time even when the accurate solution of a nonlinear differential equation is unknown. It is helpful for both small and large parameters. The results show that the suggested techniques are trustworthy, accurate, appealing and effective strategies.
The count data sets emerge in various fields like the yearly number of destructive earthquakes, number of patients of a specific disease in a hospital ward, failure of machines, number of patients due to coronavirus, number of monthly traffic accidents, hourly bacterial growth, and so on. Various discrete probability models have been utilized to model these kinds of data sets. Poisson and negative binomial distributions are frequently for modeling count observations. On the other hand, in the advanced scientific eon, the data generated from different fields is getting complex day by day, however, existing discrete models do not provide an efficient fit.
Discretization of continuous distribution can be applied by using different approaches (survival discretization-mixed-Poisson-infinite series). The most widely used technique is the survival discretization approach by [1]. One of the important virtues of this methodology is that the generated discrete model retains the same functional form of the survival function as that of its continuous counterpart. Due to this feature, many survival characteristics of the distribution remain unchanged. The discretization approach to any continuous model depends on the domain of the random variable
Although various distributions are available in literate to analyze count observations, there is still a need to introduce a more flexible and suitable distribution under different conditions. The fundamental purpose of this paper is to propose discrete Ramos-Louzada distribution, which is a one-parameter lifetime distribution introduced by [24]. The proposed one-parameter distribution herein has distinctive properties which makes it among the best choice for modeling over-dispersed and positively skewed data with leptokurtic-shaped. A continuous random variable
g(x;λ)=1λ2(λ−1)(λ2−2λ+x)e−xλ;x≥0,λ≥2, | (1) |
where λ is the shape parameter. The corresponding survival function (sf) to Eq (1) can be formulated as
G(x;λ)=λ2−λ+xλ(λ−1)e−xλ;x≥0,λ≥2. | (2) |
In this article, the discrete version of Ramos and Louzada distribution is proposed and studied in detail. The following are some interesting features of the proposed distribution: Its statistical and reliability characteristics can be expressed as closed forms. Its failure rate is showing an increasing pattern. The suggested distribution evaluated time and count data sets more effectively than competing distributions. As a result, we feel that the proposed model is the greatest option for attracting a wider range of applications and industries.
The rest of the study is organized as follows: In Section 2, we introduce a new distribution using survival discretization methodology. Different mathematical properties are derived in Section 3. Parameter estimation and simulation study are presented in Section 4. Four data sets are utilized to show the flexibility of the proposed model in Section 5. Finally, Section 6 provides some conclusions.
Let
Pr(X=x;η)=G(x;η)−G(x+1;η);x∈Z+, |
where
Pr(X=x;λ)=p(x;λ)=e−xλλ(λ−1)[(λ2−λ+x)(1−e−1λ)−e−1λ];x=0,1,2,…, | (3) |
where
p(x+1;λ)=e−1λ[(λ2−λ+x+1)(1−e−1λ)−e−1λ][(λ2−λ+x)(1−e−1λ)−e−1λ]p(x;λ). |
Figure 1 illustrates some pmf plots of the DRL models based on different values of the model parameter
Based on
F(x;λ)=1−λ2−λ+x+1λ(λ−1)e−x+1λ;x=0,1,2,…. | (4) |
The corresponding sf to Eq (4) can be expressed as
S(x;λ)=λ2−λ+xλ(λ−1)e−xλ;x=0,1,2,…. | (5) |
The hazard rate function (hrf) of the DRL model is given by
h(x;λ)=(λ2−λ+x)(1−e−1λ)−e−1λ(λ2−λ+x);x=0,1,2,…, | (6) |
where
The reversed hazard rate function (rhrf) and the second rate of failure are given as
˘r=e−xλ[(λ2−λ+x)(1−e−1λ)−e−1λ]λ(λ−1)−(λ2−λ+x+1)e−x+1λ;x=0,1,2,… | (7) |
and
r∗(x)=log[(λ2−λ+x)e1λλ2−λ+x+1];x=0,1,2,…, | (8) |
where
In this Section, the probability generating function (pgf) as well as its rth moment are investigated. Assume the random variable
WX(z)=∞∑x=0zxPr(X=x;λ)=1+(z−1)∞∑x=1zx−1S(x;λ)=1+e−1λ(z−1)[1(1−ze−1λ)+1λ(λ−1)(1−ze−1λ)2]. | (9) |
On replacing z by
MX(z)=1+e−1λ(ez−1)[1(1−eze−1λ)+1λ(λ−1)(1−eze−1λ)2]. | (10) |
The first four moments around the origin
μ'1=λ−λ2+(λ2−λ+1)e1λλ(λ−1)(e1λ−1)2, |
μ'2=(λ(λ−1)+1)e2λ+3e1λ−λ(λ−1)λ(λ−1)(e1λ−1)3, |
μ'3=[λ(λ−1)+1]e3λ+[3λ(λ−1)+10]e2λ−[3λ(λ−1)−7]e1λ−λ(λ−1)λ(λ−1)(e1λ−1)4 |
and
μ'4=[λ(λ−1)+1]e4λ+[10λ(λ−1)+25]e3λ+67e2λ+[10λ(λ−1)−3]e1λ−λ(λ−1)λ(λ−1)(e1λ−1)5. |
Based on the rth moments, the variance can be expressed as
σ2=[λ4−2λ3+2λ2−λ]e3λ−[2λ4−4λ3+2λ2−1]e2λ+[λ4−2λ3+λ]e1λλ2(λ−1)2(e1λ−1)4. | (11) |
The dispersion index (di) is defined by variance to mean ratio. The di indicates that the reported model is suitable for under-, equi- or over-dispersed data sets. Using the derived moments, the coefficients skewness and kurtosis can be listed in closed forms. Some numerical computations for mean, variance, di, skewness, and kurtosis based on DRL parameters are listed in Table 1.
|
|||||||||
Measure | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 | 4.5 | 5.0 | 5.5 | 8.0 |
Mean | 3.500 | 3.678 | 4.014 | 4.414 | 4.847 | 5.299 | 5.762 | 6.234 | 8.652 |
Variance | 8.079 | 11.80 | 15.71 | 20.03 | 24.82 | 30.10 | 35.87 | 42.13 | 80.90 |
di | 2.308 | 3.207 | 3.913 | 4.538 | 5.121 | 5.680 | 6.224 | 6.757 | 9.351 |
Skewness | 1.395 | 1.519 | 1.629 | 1.708 | 1.764 | 1.806 | 1.837 | 1.862 | 1.928 |
Kurtosis | 5.940 | 6.353 | 6.821 | 7.199 | 7.495 | 7.727 | 7.910 | 8.057 | 8.484 |
According to Table 1, it is noted that the DRL model can be used effectively to model overdispersion data as di is greater than one, which makes it a proper probability tool to discuss actuarial data. Moreover, the new discrete probabilistic model can be utilized to analyze positively skewed data with leptokurtic-shaped.
In this section, six estimation methods are used to estimate the unknown parameter of DRL distribution. The considered estimation methods are maximum likelihood estimation (mle), method of moments (mom), least-squares estimation (lse), Anderson-Darling estimation (ade), Cramer von-Misses estimation (cvme), and maximum product of spacing estimator (mpse).
Assume a random sample
L(λ|x)=−1λ∑ni=1xi+∑ni=1ln[(λ2−λ+xi)(1−e−1λ)−e−1λ]−nlnλ−nln(λ−1). | (12) |
Differentiating the Eq (12) with respect to the parameter
∂L(λ|x)∂λ=1λ2∑ni=1xi+∑ni=1[(2λ−1)(1−e−1λ)−(1−1λ+1λ2+xiλ2)e−1λ][(λ2−λ+xi)(1−e−1λ)−e−1λ]−nλ−nλ−1, | (13) |
the exact solution of Eq (13) is not easy, so we will maximize it by using optimization approaches, for example, the Newton-Raphson approach using R software.
Based on the mom definition, we must equate the sample mean to the corresponding population mean, and then solve the non-linear equation for the parameter
λ−λ2+(λ2−λ+1)e1λλ(λ−1)(e1λ−1)2=1n∑ni=1xi. | (14) |
To solve Eq (14), the uniroot function should be utilized.
To estimate the parameter minimizing the sum of squares of residuals, a standard approach like the lse should be used. For the estimation of the parameter of DRL distribution, the lse can be obtained by minimizing
lse(λ)=∑ni=1[1−(λ2−λ+xi:n)λ(λ−1)e−xi:n+1λ−in+2]2, | (15) |
with respect to the parameter
The ade of the parameter can be derived by minimizing the following equation
ade(λ)=−n−1n∑ni=1(2i−1)[log(1−(λ2−λ+xi:n)λ(λ−1)e−xi:n+1λ)+log((λ2−λ+xi:n)λ(λ−1)e−xi:n+1λ)]2, | (16) |
with respect to the parameter
The cvme is an estimation method. This method is derived as the difference between the empirical cdf and fitted cdf where
cvme(λ)=112n+∑ni=1[1−(λ2−λ+xi:n)λ(λ−1)e−xi:n+1λ−2i−12n]2. | (17) |
For
mpse(λ)=[∏h+1u=1Du(λ)]1h+1, | (18) |
with respect to the parameter
In this section, we discussed the results of the simulation study to compare the estimation performance of the proposed estimators based on the DRL model. The performance of considered estimators is evaluated via absolute biases and mean square errors. We simulate
Para. | n | Bias | mse | ||||||||||
|
mle | mom | ade | cvme | lse | mpse | mle | mom | ade | cvme | lse | mpse | |
2.0 | 10 | 0.099 | 0.072 | 0.878 | 0.606 | 0.956 | 0.801 | 0.762 | 1.496 | 2.897 | 2.059 | 3.034 | 1.797 |
20 | 0.034 | 0.035 | 0.486 | 0.259 | 0.444 | 0.435 | 0.307 | 1.103 | 1.408 | 0.749 | 1.212 | 0.626 | |
50 | 0.017 | 0.160 | 0.122 | 0.037 | 0.065 | 0.172 | 0.055 | 0.811 | 0.304 | 0.086 | 0.148 | 0.111 | |
100 | 0.013 | 0.226 | 0.015 | 0.003 | 0.005 | 0.086 | 0.017 | 0.697 | 0.033 | 0.006 | 0.009 | 0.026 | |
200 | 0.009 | 0.277 | 0.000 | 0.000 | 0.000 | 0.050 | 0.007 | 0.620 | 0.000 | 0.000 | 0.000 | 0.008 | |
500 | 0.002 | 0.338 | 0.000 | 0.000 | 0.000 | 0.028 | 0.003 | 0.569 | 0.000 | 0.000 | 0.000 | 0.002 | |
2.5 | 10 | 0.081 | 0.131 | 1.109 | 1.140 | 1.397 | 0.958 | 1.105 | 2.032 | 3.694 | 3.919 | 4.392 | 2.609 |
20 | 0.065 | 0.239 | 0.837 | 0.869 | 1.060 | 0.622 | 0.485 | 1.487 | 2.368 | 2.560 | 2.765 | 1.173 | |
50 | 0.058 | 0.293 | 0.595 | 0.695 | 0.798 | 0.320 | 0.186 | 1.063 | 1.436 | 1.723 | 1.785 | 0.391 | |
100 | 0.027 | 0.298 | 0.475 | 0.602 | 0.672 | 0.195 | 0.091 | 0.816 | 1.082 | 1.373 | 1.428 | 0.165 | |
200 | 0.013 | 0.255 | 0.374 | 0.525 | 0.589 | 0.098 | 0.045 | 0.602 | 0.864 | 1.139 | 1.185 | 0.065 | |
500 | 0.007 | 0.146 | 0.273 | 0.484 | 0.532 | 0.047 | 0.018 | 0.316 | 0.674 | 0.979 | 1.014 | 0.022 | |
3.0 | 10 | 0.019 | 0.224 | 1.085 | 1.103 | 1.304 | 0.996 | 1.574 | 2.613 | 3.976 | 4.160 | 4.504 | 3.186 |
20 | 0.005 | 0.268 | 0.877 | 0.924 | 1.044 | 0.639 | 0.751 | 1.793 | 2.525 | 2.701 | 2.865 | 1.512 | |
50 | 0.003 | 0.193 | 0.738 | 0.844 | 0.893 | 0.357 | 0.313 | 1.003 | 1.540 | 1.728 | 1.760 | 0.537 | |
100 | 0.004 | 0.130 | 0.754 | 0.868 | 0.872 | 0.222 | 0.163 | 0.567 | 1.160 | 1.352 | 1.341 | 0.242 | |
200 | 0.001 | 0.053 | 0.775 | 0.887 | 0.896 | 0.141 | 0.084 | 0.238 | 0.920 | 1.112 | 1.106 | 0.113 | |
500 | 0.001 | 0.006 | 0.811 | 0.929 | 0.940 | 0.070 | 0.035 | 0.066 | 0.769 | 0.965 | 0.980 | 0.042 | |
4.0 | 10 | 0.049 | 0.209 | 1.105 | 1.023 | 1.181 | 1.100 | 2.450 | 3.694 | 5.254 | 5.458 | 5.552 | 4.850 |
20 | 0.043 | 0.169 | 0.896 | 0.891 | 0.985 | 0.748 | 1.339 | 2.065 | 3.000 | 3.234 | 3.315 | 2.269 | |
50 | 0.031 | 0.049 | 0.835 | 0.847 | 0.899 | 0.400 | 0.585 | 0.763 | 1.608 | 1.739 | 1.789 | 0.815 | |
100 | 0.008 | 0.014 | 0.849 | 0.878 | 0.891 | 0.255 | 0.291 | 0.328 | 1.161 | 1.240 | 1.285 | 0.377 | |
200 | 0.007 | 0.016 | 0.838 | 0.877 | 0.882 | 0.156 | 0.147 | 0.159 | 0.911 | 1.005 | 1.010 | 0.174 | |
500 | 0.004 | 0.002 | 0.831 | 0.877 | 0.878 | 0.066 | 0.058 | 0.064 | 0.773 | 0.861 | 0.862 | 0.062 |
Para. | n | Bias | mse | ||||||||||
|
mle | mom | ade | cvme | lse | mpse | mle | mom | ade | cvme | lse | mpse | |
5.0 | 10 | 0.106 | 0.077 | 1.058 | 1.013 | 1.242 | 1.164 | 3.881 | 4.545 | 6.333 | 6.748 | 7.579 | 6.421 |
20 | 0.061 | 0.036 | 0.955 | 0.915 | 1.007 | 0.824 | 2.026 | 2.335 | 3.527 | 3.991 | 4.014 | 3.056 | |
50 | 0.046 | 0.015 | 0.864 | 0.869 | 0.904 | 0.447 | 0.821 | 0.839 | 1.793 | 1.906 | 1.970 | 1.070 | |
100 | 0.013 | 0.002 | 0.857 | 0.866 | 0.857 | 0.270 | 0.399 | 0.411 | 1.244 | 1.325 | 1.303 | 0.513 | |
200 | 0.013 | 0.006 | 0.833 | 0.843 | 0.849 | 0.161 | 0.198 | 0.214 | 0.946 | 1.006 | 1.009 | 0.238 | |
500 | 0.001 | 0.003 | 0.832 | 0.846 | 0.843 | 0.082 | 0.079 | 0.078 | 0.792 | 0.829 | 0.822 | 0.086 | |
6.0 | 10 | 0.167 | 0.115 | 1.192 | 1.073 | 1.169 | 1.260 | 5.339 | 5.663 | 8.785 | 8.977 | 9.398 | 8.321 |
20 | 0.049 | 0.027 | 0.946 | 0.952 | 0.975 | 0.890 | 2.794 | 2.926 | 4.236 | 4.861 | 4.686 | 3.860 | |
50 | 0.008 | 0.019 | 0.873 | 0.889 | 0.881 | 0.499 | 1.081 | 1.079 | 2.081 | 2.225 | 2.292 | 1.417 | |
100 | 0.007 | 0.016 | 0.859 | 0.843 | 0.870 | 0.294 | 0.523 | 0.517 | 1.392 | 1.421 | 1.522 | 0.631 | |
200 | 0.007 | 0.006 | 0.845 | 0.839 | 0.846 | 0.181 | 0.261 | 0.269 | 1.030 | 1.061 | 1.065 | 0.308 | |
500 | 0.001 | 0.001 | 0.832 | 0.832 | 0.835 | 0.085 | 0.107 | 0.108 | 0.823 | 0.841 | 0.847 | 0.112 | |
8.0 | 10 | 0.141 | 0.089 | 1.294 | 1.077 | 1.320 | 1.622 | 8.569 | 8.656 | 12.77 | 12.61 | 13.63 | 13.41 |
20 | 0.074 | 0.009 | 1.050 | 0.991 | 1.111 | 1.110 | 4.265 | 4.178 | 6.399 | 6.736 | 7.355 | 6.250 | |
50 | 0.029 | 0.003 | 0.883 | 0.860 | 0.918 | 0.577 | 1.685 | 1.630 | 2.726 | 3.019 | 3.118 | 2.151 | |
100 | 0.015 | 0.014 | 0.867 | 0.861 | 0.859 | 0.372 | 0.834 | 0.814 | 1.787 | 1.862 | 1.859 | 1.029 | |
200 | 0.008 | 0.019 | 0.837 | 0.808 | 0.842 | 0.219 | 0.416 | 0.422 | 1.202 | 1.204 | 1.285 | 0.493 | |
500 | 0.006 | 0.001 | 0.826 | 0.814 | 0.820 | 0.097 | 0.169 | 0.175 | 0.877 | 0.879 | 0.902 | 0.176 | |
10.0 | 10 | 0.106 | 0.086 | 1.365 | 1.333 | 1.446 | 1.868 | 12.89 | 12.67 | 17.66 | 19.87 | 19.51 | 20.26 |
20 | 0.001 | 0.063 | 1.143 | 1.079 | 1.067 | 1.308 | 6.232 | 6.279 | 8.767 | 9.553 | 9.777 | 9.056 | |
50 | 0.025 | 0.036 | 0.899 | 0.892 | 0.933 | 0.686 | 2.483 | 2.373 | 3.774 | 4.076 | 4.248 | 3.246 | |
100 | 0.018 | 0.016 | 0.868 | 0.886 | 0.872 | 0.457 | 1.247 | 1.246 | 2.255 | 2.421 | 2.464 | 1.489 | |
200 | 0.001 | 0.009 | 0.852 | 0.827 | 0.829 | 0.267 | 0.636 | 0.599 | 1.467 | 1.501 | 1.501 | 0.712 | |
500 | 0.002 | 0.007 | 0.823 | 0.801 | 0.818 | 0.119 | 0.246 | 0.240 | 0.967 | 0.971 | 1.005 | 0.255 |
Based on the simulation criteria, it is observed that all estimation approaches work quite well in estimating the parameter λ of the DRL distribution.
In this section, the importance of the proposed distribution is discussed by using data sets from different areas. We shall compare the fits of the DRL distribution with different competitive distributions such as Poisson (Poi), discrete Pareto (DPr), discrete Rayleigh (DR), discrete inverse Rayleigh (DIR), discrete Burr-Hatke (DBH), discrete Bilal (DBi), discrete Lindley (DL), new discrete Lindley (NDL), and discrete Burr-XII (DBXII) distributions. The fitted probability distributions are compared using some criteria, namely, the negative log-likelihood (
The first data set represents the number of deaths due to coronavirus in Pakistan during the period March 18, 2020, to April 30, 2020, which were obtained from the public reports of the National Institute of Health (NIH), Islamabad, Pakistan (https://covid.gov.pk/stats/pakistan). The mean, variance, and di of data set I are 9.4773,102.39, and 10.804, respectively. The mle(s) along with standard error(s) "se(s)" and goodness-of-fit measures for this data are presented in Table 4.
Model | |
|
Goodness-of-fit measures | |||||
mle | se | mle | se | |
aic | ks | p-value | |
DRL | 8.8686 | 1.5033 | - | - | 145.22 | 292.43 | 0.156 | 0.2300 |
Poi | 9.4773 | 0.4641 | - | - | 283.94 | 569.89 | 0.391 | < 0.0001 |
DPr | 0.5021 | 0.0757 | - | - | 162.19 | 326.38 | 0.401 | < 0.0001 |
DR | 9.9883 | 0.7535 | - | - | 168.85 | 339.70 | 0.339 | < 0.0001 |
DIR | 7.4291 | 1.2625 | - | - | 166.31 | 334.61 | 0.382 | < 0.0001 |
DBH | 0.9950 | 0.0115 | - | - | 175.37 | 352.74 | 0.647 | < 0.0001 |
DBi | 11.838 | 1.2932 | - | - | 151.29 | 304.59 | 0.213 | 0.0370 |
DL | 0.8313 | 0.0165 | - | - | 149.17 | 300.33 | 0.184 | 0.1000 |
NDL | 0.1640 | 0.0161 | - | - | 148.44 | 298.89 | 0.237 | 0.0140 |
DBXII | 0.9536 | 0.0434 | 11.907 | 11.305 | 150.70 | 305.40 | 0.302 | 0.0007 |
The results in Table 4 show that the DRL distribution provides a better fit over other competing discrete models since it has the minimum aic, and ks values with the highest p-value. Figure 4 shows the probability-probability (pp) plots for all tested models which prove the empirical results listed in Table 4.
The second data set was reported in [25], which represents the exceedance of flood peaks in m3/s of the Wheaton River near Carcross in Yukon Territory, Canada based on the discretization concept. The mean, variance, and di of this data are 11.806,152.38, and 12.908, respectively. The mle(s), se(s), and goodness-of-fit measures for data set II are reported in Table 5.
Model | |
|
Goodness-of-fit measures | |||||
mle | se | mle | se | |
aic | ks | p-value | |
DRL | 11.214 | 1.4497 | - | - | 252.71 | 507.43 | 0.133 | 0.1600 |
Poi | 11.805 | 0.4049 | - | - | 564.38 | 1130.8 | 0.408 | < 0.0001 |
DPr | 0.4770 | 0.0563 | - | - | 276.82 | 555.64 | 0.311 | < 0.0001 |
DR | 12.280 | 0.7239 | - | - | 300.65 | 603.29 | 0.323 | < 0.0001 |
DIR | 4.7947 | 0.6303 | - | - | 331.46 | 664.92 | 0.497 | < 0.0001 |
DBH | 0.9966 | 0.0072 | - | - | 302.29 | 606.57 | 0.572 | < 0.0001 |
DBi | 14.621 | 1.2479 | - | - | 272.50 | 546.99 | 0.257 | 0.0002 |
DL | 0.8592 | 0.0109 | - | - | 264.30 | 530.59 | 0.232 | 0.0009 |
NDL | 0.1373 | 0.0107 | - | - | 262.09 | 526.17 | 0.271 | < 0.0001 |
DBXII | 0.8205 | 0.0591 | 2.6112 | 0.9287 | 270.50 | 544.99 | 0.228 | 0.0011 |
It is observed that the DRL model is the best among all competitive distributions. Figure 5 illustrates the pp plots for all tested distributions which prove the empirical results reported in Table 5.
The third data set was listed in [26] and represents the number of fires in Greece forest districts for the period from 1st July 1998 to 31 August 1998. The mean, variance, and di measures are 5.2, 32.382, and 6.2272, respectively. The mle(s), se(s), and goodness-of-fit measures for data set II are listed in Table 6.
Model | |
|
Goodness-of-fit measures | |||||
mle | se | mle | se | |
aic | ks | p-value | |
DRL | 4.3673 | 0.5510 | - | - | 301.11 | 604.21 | 0.1510 | 0.0140 |
Poi | 5.2000 | 0.2174 | - | - | 434.16 | 870.32 | 0.282 | < 0.0001 |
DPr | 0.6250 | 0.0597 | - | - | 339.05 | 680.10 | 0.352 | < 0.0001 |
DR | 5.6788 | 0.2714 | - | - | 352.72 | 707.45 | 0.261 | < 0.0001 |
DIR | 3.5198 | 0.3748 | - | - | 360.90 | 723.80 | 0.413 | < 0.0001 |
DBH | 0.9833 | 0.0136 | - | - | 352.42 | 706.85 | 0.532 | < 0.0001 |
DBi | 6.7993 | 0.4693 | - | - | 310.75 | 623.49 | 0.107 | < 0.0001 |
DL | 0.7337 | 0.0156 | - | - | 303.88 | 609.75 | 0.193 | 0.0100 |
NDL | 0.2567 | 0.0152 | - | - | 302.73 | 607.47 | 0.169 | 0.0037 |
DBXII | 0.7486 | 0.0459 | 2.4582 | 0.4938 | 325.00 | 654.01 | 0.287 | < 0.0001 |
It is found that the new discrete model is the best among all tested distributions. Figure 6 shows the pp plots for all competitive distributions which prove the empirical results listed in Table 6.
The fourth data set represents the time to death (in weeks) of AG-positive leukemia patients [27]. The mean, variance, and di values are 62.471, 2954.3, and 47.29, respectively. The estimates and goodness-of-fit measures for all competitive distributions are listed in Table 7.
Model | |
|
Goodness-of-fit measures | |||||
mle | se | mle | se | |
aic | ks | p-value | |
DRL | 61.943 | 15.273 | - | - | 87.425 | 176.85 | 0.152 | 0.8300 |
Poi | 62.470 | 1.9169 | - | - | 475.26 | 952.52 | 0.470 | 0.0011 |
DPr | 0.2838 | 0.0688 | - | - | 98.335 | 198.67 | 0.324 | 0.0560 |
DR | 58.076 | 7.0429 | - | - | 96.794 | 195.59 | 0.309 | 0.0770 |
DIR | 25.310 | 6.543 | - | - | 128.59 | 259.18 | 0.681 | < 0.0001 |
DBH | 0.9999 | 0.0029 | - | - | 119.81 | 241.62 | 0.716 | < 0.0001 |
DBi | 75.109 | 13.164 | - | - | 92.886 | 187.77 | 0.219 | 0.3900 |
DL | 0.9692 | 0.0052 | - | - | 91.858 | 185.72 | 0.215 | 0.4100 |
NDL | 0.0306 | 0.0052 | - | - | 91.458 | 184.92 | 0.218 | 0.3900 |
DBXII | 0.9975 | 0.0008 | 117.30 | 45.982 | 96.151 | 196.30 | 0.327 | 0.0530 |
It is noted that the DRL is the best for this data. Figure 7 shows the pp plots for all tested distributions which prove the empirical results mentioned in Table 7.
In this article, a new one-parameter discrete model has been proposed entitled a discrete Ramos-Louzada (DRL) distribution. The new model can be used effectively in modeling asymmetric data with overdispersion phenomena. Some of its statistical properties have been derived. It was found that all its properties can be expressed in closed forms, which makes the new model can be utilized in different analysis, especially, in time series and regression. Various estimation techniques including maximum likelihood, moments, least squares, Anderson's-Darling, Cramer von-Mises, and maximum product of spacing estimator, have been investigated to get the best estimator for the real data. The estimation performance of these estimation techniques has been assessed via a comprehensive simulation study. The flexibility of the proposed discrete model has been tested utilizing four distinctive real data sets in various fields. Finally, we hope that the DRL distribution attracts wider sets of applications in different fields.
The authors declare that they have no conflict of interest to report regarding the present study.
[1] |
S. Mohyud-Din, A. Yildirim, An algorithm for solving the fractional vibration equation, Comput. Math. Model., 23 (2012), 228–237. https://doi.org/10.1007/s10598-012-9133-2 doi: 10.1007/s10598-012-9133-2
![]() |
[2] |
N. Shah, E. El-Zahar, A. Akgül, A. Khan, J. Kafle, Analysis of fractional-order regularized long-wave models via a novel transform, J. Funct. Space., 2022 (2022), 2754507. https://doi.org/10.1155/2022/2754507 doi: 10.1155/2022/2754507
![]() |
[3] |
A. Alderremy, S. Aly, R. Fayyaz, A. Khan, R. Shah, N. Wyal, The analysis of fractional-order nonlinear systems of third order KdV and Burgers equations via a novel transform, Complexity, 2022 (2022), 4935809. https://doi.org/10.1155/2022/4935809 doi: 10.1155/2022/4935809
![]() |
[4] |
K. Nonlaopon, A. Alsharif, A. Zidan, A. Khan, Y. Hamed, R. Shah, Numerical investigation of fractional-order Swift Hohenberg equations via a novel transform, Symmetry, 13 (2021), 1263. https://doi.org/10.3390/sym13071263 doi: 10.3390/sym13071263
![]() |
[5] |
M. Alaoui, R. Fayyaz, A. Khan, R. Shah, M. Abdo, Analytical investigation of Noyes field model for time-fractional Belousov Zhabotinsky reaction, Complexity, 2021 (2021), 3248376. https://doi.org/10.1155/2021/3248376 doi: 10.1155/2021/3248376
![]() |
[6] |
D. Robinson, The use of control systems analysis in the neurophysiology of eye movements, Annu. Rev. Neurosci., 4 (1981), 463–503. https://doi.org/10.1146/annurev.ne.04.030181.002335 doi: 10.1146/annurev.ne.04.030181.002335
![]() |
[7] |
R. Bagley, P. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheol., 27 (1983), 201–210. https://doi.org/10.1122/1.549724 doi: 10.1122/1.549724
![]() |
[8] |
J. Chen, F. Liu, V. Anh, Analytical solution for the time-fractional telegraph equation by the method of separating variables, J. Math. Anal. Appl., 338 (2008), 1364–1377. https://10.1016/j.jmaa.2007.06.023 doi: 10.1016/j.jmaa.2007.06.023
![]() |
[9] |
A. Prakash, M. Goyal, S. Gupta, q-homotopy analysis method for fractional Bloch model arising in nuclear magnetic resonance via the Laplace transform, Indian J. Phys., 94 (2020), 507–520. https://doi.org/10.1007/s12648-019-01487-7 doi: 10.1007/s12648-019-01487-7
![]() |
[10] |
M. Goyal, V. Bhardwaj, A. Prakash, Investigating new positive, bounded and convergent numerical solution for the nonlinear time-dependent breast cancer dynamic competition model, Math. Meth. Appl. Sci., 44 (2021), 4636–4653. https://doi.org/10.1002/mma.7057 doi: 10.1002/mma.7057
![]() |
[11] |
A. Prakash, M. Goyal, S. Gupta, Numerical simulation of space-fractional Helmholtz equation arising in seismic wave propagation, imaging and inversion, Pramana, 93 (2019), 28. https://doi.org/10.1007/s12043-019-1773-8 doi: 10.1007/s12043-019-1773-8
![]() |
[12] |
D. M. Chen, N. Wang, Z. Y. Chen, Y. Yu, Parametrically excited vibrations in a nonlinear damped triple-well oscillator with resonant frequency, J. Vib. Eng. Technol., 10 (2022), 781–788. https://doi.org/10.1007/s42417-021-00408-5 doi: 10.1007/s42417-021-00408-5
![]() |
[13] |
Y. Yu, C. Zhang, Z. Y. Chen, C. W. Lim, Relaxation and mixed mode oscillations in a shape memory alloy oscillator driven by parametric and external excitations, Chaos Solitons Fractals, 140 (2020), 110145. https://doi.org/10.1016/j.chaos.2020.110145 doi: 10.1016/j.chaos.2020.110145
![]() |
[14] |
Y. Yu, Z. D. Zhang, Q. S. Bi, Multistability and fast-slow analysis for van der Pol Duffing oscillator with varying exponential delay feedback factor, Appl. Math. Model., 57 (2018), 448–458. https://doi.org/10.1016/j.apm.2018.01.010 doi: 10.1016/j.apm.2018.01.010
![]() |
[15] |
N. Dinh, S. Lee, J. Kim, K. Choi, Study on seismic performance of a mold transformer through shaking table tests, Appl. Sci., 10 (2020), 361. https://doi.org/10.3390/app10010361 doi: 10.3390/app10010361
![]() |
[16] |
J. Singh, D. Kumar, D. Baleanu, On the analysis of fractional diabetes model with exponential law, Adv. Differ. Equ., 2018 (2018), 231. https://doi.org/10.1186/s13662-018-1680-1 doi: 10.1186/s13662-018-1680-1
![]() |
[17] |
P. Zhou, W. Zhu, Function projective synchronization for fractional-order chaotic systems, Nonlinear Anal.: Real World Appl., 12 (2011), 811–816. https://doi.org/10.1016/j.nonrwa.2010.08.008 doi: 10.1016/j.nonrwa.2010.08.008
![]() |
[18] |
F. Guo, H. Peng, B. J. Zou, R. C. Zhao, X. Y. Liu, Localisation and segmentation of optic disc with the fractional-order Darwinian particle swarm optimisation algorithm, IET Image Process., 12 (2018), 1303–1312. https://doi.org/10.1049/iet-ipr.2017.1149 doi: 10.1049/iet-ipr.2017.1149
![]() |
[19] |
M. Higazy, Novel fractional order SIDARTHE mathematical model of COVID-19 pandemic, Chaos Solitons Fractals, 138 (2020), 110007. https://doi.org/10.1016/j.chaos.2020.110007 doi: 10.1016/j.chaos.2020.110007
![]() |
[20] |
A. Saadatmandi, M. Dehghan, A new operational matrix for solving fractional-order differential equations, Comput. Math. Appl., 59 (2010), 1326–1336. https://doi.org/10.1016/j.camwa.2009.07.006 doi: 10.1016/j.camwa.2009.07.006
![]() |
[21] |
P. Veeresha, D. Prakasha, H. Baskonus, New numerical surfaces to the mathematical model of cancer chemotherapy effect in Caputo fractional derivatives, Chaos, 29 (2019), 013119. https://doi.org/10.1063/1.5074099 doi: 10.1063/1.5074099
![]() |
[22] |
T. Stefanski, J. Gulgowski, Electromagnetic-based derivation of fractional-order circuit theory, Commun. Nonlinear Sci., 79 (2019), 104897. https://doi.org/10.1016/j.cnsns.2019.104897 doi: 10.1016/j.cnsns.2019.104897
![]() |
[23] |
Y. Ferdi, Some applications of fractional order calculus to design digital filters for biomedical signal processing, J. Mech. Med. Biol., 12 (2012), 1240008. https://doi.org/10.1142/s0219519412400088 doi: 10.1142/s0219519412400088
![]() |
[24] |
M. Altaf Khan, S. Ullah, M. Farooq, A new fractional model for tuberculosis with relapse via Atangana-Baleanu derivative, Chaos Solitons Fractals, 116 (2018), 227–238. https://doi.org/10.1016/j.chaos.2018.09.039 doi: 10.1016/j.chaos.2018.09.039
![]() |
[25] |
D. Prakasha, P. Veeresha, H. Baskonus, Analysis of the dynamics of hepatitis E virus using the Atangana-Baleanu fractional derivative, Eur. Phys. J. Plus, 134 (2019), 241. https://doi.org/10.1140/epjp/i2019-12590-5 doi: 10.1140/epjp/i2019-12590-5
![]() |
[26] |
M. Khan, S. Ullah, K. Okosun, K. Shah, A fractional order pine wilt disease model with Caputo Fabrizio derivative, Adv. Differ. Equ., 2018 (2018), 410. https://doi.org/10.1186/s13662-018-1868-4 doi: 10.1186/s13662-018-1868-4
![]() |
[27] |
Hajira, H. Khan, A. Khan, P. Kumam, D. Baleanu, M. Arif, An approximate analytical solution of the Navier-Stokes equations within Caputo operator and Elzaki transform decomposition method, Adv. Differ. Equ., 2020 (2020), 622. https://doi.org/10.1186/s13662-020-03058-1 doi: 10.1186/s13662-020-03058-1
![]() |
[28] |
Y. Qin, A. Khan, I. Ali, M. Al Qurashi, H. Khan, R. Shah, et al., An efficient analytical approach for the solution of certain fractional-order dynamical systems, Energies, 13 (2020), 2725. https://doi.org/10.3390/en13112725 doi: 10.3390/en13112725
![]() |
[29] |
M. Areshi, A. Khan, R. Shah, K. Nonlaopon, Analytical investigation of fractional-order Newell-Whitehead-Segel equations via a novel transform, AIMS Mathematics, 7 (2022), 6936-6958. https://doi.org/10.3934/math.2022385 doi: 10.3934/math.2022385
![]() |
[30] |
H. Khan, A. Khan, M. Al-Qurashi, R. Shah, D. Baleanu, Modified modelling for heat like equations within Caputo operator, Energies, 13 (2020), 2002. https://doi.org/10.3390/en13082002 doi: 10.3390/en13082002
![]() |
[31] |
E. Hernandez-Balaguera, Coulostatics in bioelectrochemistry: A physical interpretation of the electrode-tissue processes from the theory of fractional calculus, Chaos Solitons Fractals, 145 (2021), 110787. https://doi.org/10.1016/j.chaos.2021.110787 doi: 10.1016/j.chaos.2021.110787
![]() |
[32] |
S. Das, A numerical solution of the vibration equation using modified decomposition method, J. Sound Vib., 320 (2009), 576–583. https://doi.org/10.1016/j.jsv.2008.08.029 doi: 10.1016/j.jsv.2008.08.029
![]() |
[33] |
S. Mohyud-Din, A. Yildirim, An algorithm for solving the fractional vibration equation, Comput. Math. Model., 23 (2012), 228–237. https://doi.org/10.1007/s10598-012-9133-2 doi: 10.1007/s10598-012-9133-2
![]() |
[34] |
S. Das, Solution of fractional vibration equation by the variational iteration method and modified decomposition method, Int. J. Nonlinear Sci. Numer. Simul., 9 (2008), 361–366. https://doi.org/10.1515/ijnsns.2008.9.4.361 doi: 10.1515/ijnsns.2008.9.4.361
![]() |
[35] |
S. Das, P. Gupta, Application of homotopy perturbation method and homotopy analysis method to fractional vibration equation, Int. J. Comput. Math., 88 (2010), 430–441. https://doi.org/10.1080/00207160903474214 doi: 10.1080/00207160903474214
![]() |
[36] |
H. Srivastava, D. Kumar, J. Singh, An efficient analytical technique for fractional model of vibration equation, Appl. Math. Model., 45 (2017), 192–204. https://doi.org/10.1016/j.apm.2016.12.008 doi: 10.1016/j.apm.2016.12.008
![]() |
1. | Muhammad Ahsan-ul-Haq, On Poisson Moment Exponential Distribution with Applications, 2022, 2198-5804, 10.1007/s40745-022-00400-0 | |
2. | Mohamed S. Eliwa, Muhammad Ahsan-ul-Haq, Amani Almohaimeed, Afrah Al-Bossly, Mahmoud El-Morshedy, Barbara Martinucci, Discrete Extension of Poisson Distribution for Overdispersed Count Data: Theory and Applications, 2023, 2023, 2314-4785, 1, 10.1155/2023/2779120 | |
3. | Muhammad Ahsan-ul-Haq, Afrah Al-Bossly, Mahmoud El-Morshedy, Mohamed S. Eliwa, Maciej Lawrynczuk, Poisson XLindley Distribution for Count Data: Statistical and Reliability Properties with Estimation Techniques and Inference, 2022, 2022, 1687-5273, 1, 10.1155/2022/6503670 | |
4. | Abdulaziz S. Alghamdi, Muhammad Ahsan-ul-Haq, Ayesha Babar, Hassan M. Aljohani, Ahmed Z. Afify, The discrete power-Ailamujia distribution: properties, inference, and applications, 2022, 7, 2473-6988, 8344, 10.3934/math.2022465 | |
5. | Elebe Emmanuel Nwezza, Uchenna Ugwunnaya Uwadi, Christian Osagie, Modeling the number of component failures: A Poison-geometric distribution, 2022, 16, 24682276, e01206, 10.1016/j.sciaf.2022.e01206 | |
6. | Muhammed Irshad, Christophe Chesneau, Veena D’cruz, Radhakumari Maya, Discrete Pseudo Lindley Distribution: Properties, Estimation and Application on INAR(1) Process, 2021, 26, 2297-8747, 76, 10.3390/mca26040076 | |
7. | Muhammad Ahsan-ul-Haq, Javeria Zafar, A new one-parameter discrete probability distribution with its neutrosophic extension: mathematical properties and applications, 2023, 2364-415X, 10.1007/s41060-023-00382-z | |
8. | Ahmed Sedky Eldeeb, Muhammad Ahsan-ul-Haq, Ayesha Babar, A new discrete XLindley distribution: theory, actuarial measures, inference, and applications, 2024, 17, 2364-415X, 323, 10.1007/s41060-023-00395-8 | |
9. | Osama Abdulaziz Alamri, Classical and Bayesian estimation of discrete poisson Agu-Eghwerido distribution with applications, 2024, 109, 11100168, 768, 10.1016/j.aej.2024.09.063 | |
10. | Hassan M. Aljohani, Muhammad Ahsan-ul-Haq, Javeria Zafar, Ehab M. Almetwally, Abdulaziz S. Alghamdi, Eslam Hussam, Abdisalam Hassan Muse, Analysis of Covid-19 data using discrete Marshall–Olkinin Length Biased Exponential: Bayesian and frequentist approach, 2023, 13, 2045-2322, 10.1038/s41598-023-39183-6 | |
11. | Safar M. Alghamdi, Muhammad Ahsan-ul-Haq, Olayan Albalawi, Majdah Mohammed Badr, Eslam Hussam, H.E. Semary, M.A. Abdelkawy, Binomial Poisson Ailamujia model with statistical properties and application, 2024, 17, 16878507, 101096, 10.1016/j.jrras.2024.101096 | |
12. | Amani Alrumayh, Hazar A. Khogeer, A New Two-Parameter Discrete Distribution for Overdispersed and Asymmetric Data: Its Properties, Estimation, Regression Model, and Applications, 2023, 15, 2073-8994, 1289, 10.3390/sym15061289 | |
13. | John Kwadey Okutu, Nana K. Frempong, Simon K. Appiah, Atinuke O. Adebanji, Pritpal Singh, A New Generated Family of Distributions: Statistical Properties and Applications with Real-Life Data, 2023, 2023, 2577-7408, 1, 10.1155/2023/9325679 | |
14. | M. R. Irshad, Muhammed Ahammed, R. Maya, Christophe Chesneau, INAR(1) process with Poisson-transmuted record type exponential innovations, 2024, 19, 15741699, 145, 10.3233/MAS-231458 | |
15. | Khaled M. Alqahtani, Mahmoud El-Morshedy, Hend S. Shahen, Mohamed S. Eliwa, A discrete extension of the Burr-Hatke distribution: Generalized hypergeometric functions, different inference techniques, simulation ranking with modeling and analysis of sustainable count data, 2024, 9, 2473-6988, 9394, 10.3934/math.2024458 | |
16. | Mohamed Eliwa, Mahmoud El-Morshedy, Hend Shahen, Modelling dispersed count data under various shapes of failure rates: A discrete probability analogue of odd Lomax generator, 2023, 37, 0354-5180, 6177, 10.2298/FIL2318177E | |
17. | M. Ahsan-ul-Haq, M. R. Irshad, E. S. Muhammed Ahammed, R. Maya, New Discrete Bilal Distribution and Associated INAR(1) Process, 2023, 44, 1995-0802, 3647, 10.1134/S1995080223090020 | |
18. | Yingying Qi, Dan Ding, Yusra A. Tashkandy, M.E. Bakr, M.M. Abd El-Raouf, Anoop Kumar, A novel probabilistic model with properties: Its implementation to the vocal music and reliability products, 2024, 107, 11100168, 254, 10.1016/j.aej.2024.07.035 | |
19. | Khlood Al-Harbi, Aisha Fayomi, Hanan Baaqeel, Amany Alsuraihi, A Novel Discrete Linear-Exponential Distribution for Modeling Physical and Medical Data, 2024, 16, 2073-8994, 1123, 10.3390/sym16091123 | |
20. | Thanasate Akkanphudit, The Discrete Gompertz–Weibull–Fréchet Distribution: Properties and Applications, 2023, 44, 1995-0802, 3663, 10.1134/S1995080223090032 | |
21. | Mohamed S. Algolam, Mohamed S. Eliwa, Mohamed El-Dawoody, Mahmoud El-Morshedy, A discrete extension of the Xgamma random variable: mathematical framework, estimation methods, simulation ranking, and applications to radiation biology and industrial engineering data, 2025, 10, 2473-6988, 6069, 10.3934/math.2025277 | |
22. | Howaida Elsayed, Mohamed Hussein, A New Discrete Analogue of the Continuous Muth Distribution for Over-Dispersed Data: Properties, Estimation Techniques, and Application, 2025, 27, 1099-4300, 409, 10.3390/e27040409 | |
23. | Amir Mushtaq, Mohamed Kayid, Ghadah Alomani, A new discrete generalized class of distribution with application to radiation and COVID-19 data, 2025, 18, 16878507, 101485, 10.1016/j.jrras.2025.101485 | |
24. | Ali M. Mahnashi, Abdullah A. Zaagan, Poisson copoun distribution: An alternative discrete model for count data analysis, 2025, 128, 11100168, 571, 10.1016/j.aej.2025.05.085 | |
25. | Ayse Alici, Elif Seren Tanriverdi, Gulgun Yenisehirli, Baris Otlu, Investigation of Clonal Relationship Between Candida Parapsilosis and Candida Glabrata Strains Isolated from Blood Culture by Pulse Field Gel Electrophoresis, 2025, 63, 13020072, 62, 10.4274/haseki.galenos.2025.36844 |
|
|||||||||
Measure | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 | 4.5 | 5.0 | 5.5 | 8.0 |
Mean | 3.500 | 3.678 | 4.014 | 4.414 | 4.847 | 5.299 | 5.762 | 6.234 | 8.652 |
Variance | 8.079 | 11.80 | 15.71 | 20.03 | 24.82 | 30.10 | 35.87 | 42.13 | 80.90 |
di | 2.308 | 3.207 | 3.913 | 4.538 | 5.121 | 5.680 | 6.224 | 6.757 | 9.351 |
Skewness | 1.395 | 1.519 | 1.629 | 1.708 | 1.764 | 1.806 | 1.837 | 1.862 | 1.928 |
Kurtosis | 5.940 | 6.353 | 6.821 | 7.199 | 7.495 | 7.727 | 7.910 | 8.057 | 8.484 |
Para. | n | Bias | mse | ||||||||||
|
mle | mom | ade | cvme | lse | mpse | mle | mom | ade | cvme | lse | mpse | |
2.0 | 10 | 0.099 | 0.072 | 0.878 | 0.606 | 0.956 | 0.801 | 0.762 | 1.496 | 2.897 | 2.059 | 3.034 | 1.797 |
20 | 0.034 | 0.035 | 0.486 | 0.259 | 0.444 | 0.435 | 0.307 | 1.103 | 1.408 | 0.749 | 1.212 | 0.626 | |
50 | 0.017 | 0.160 | 0.122 | 0.037 | 0.065 | 0.172 | 0.055 | 0.811 | 0.304 | 0.086 | 0.148 | 0.111 | |
100 | 0.013 | 0.226 | 0.015 | 0.003 | 0.005 | 0.086 | 0.017 | 0.697 | 0.033 | 0.006 | 0.009 | 0.026 | |
200 | 0.009 | 0.277 | 0.000 | 0.000 | 0.000 | 0.050 | 0.007 | 0.620 | 0.000 | 0.000 | 0.000 | 0.008 | |
500 | 0.002 | 0.338 | 0.000 | 0.000 | 0.000 | 0.028 | 0.003 | 0.569 | 0.000 | 0.000 | 0.000 | 0.002 | |
2.5 | 10 | 0.081 | 0.131 | 1.109 | 1.140 | 1.397 | 0.958 | 1.105 | 2.032 | 3.694 | 3.919 | 4.392 | 2.609 |
20 | 0.065 | 0.239 | 0.837 | 0.869 | 1.060 | 0.622 | 0.485 | 1.487 | 2.368 | 2.560 | 2.765 | 1.173 | |
50 | 0.058 | 0.293 | 0.595 | 0.695 | 0.798 | 0.320 | 0.186 | 1.063 | 1.436 | 1.723 | 1.785 | 0.391 | |
100 | 0.027 | 0.298 | 0.475 | 0.602 | 0.672 | 0.195 | 0.091 | 0.816 | 1.082 | 1.373 | 1.428 | 0.165 | |
200 | 0.013 | 0.255 | 0.374 | 0.525 | 0.589 | 0.098 | 0.045 | 0.602 | 0.864 | 1.139 | 1.185 | 0.065 | |
500 | 0.007 | 0.146 | 0.273 | 0.484 | 0.532 | 0.047 | 0.018 | 0.316 | 0.674 | 0.979 | 1.014 | 0.022 | |
3.0 | 10 | 0.019 | 0.224 | 1.085 | 1.103 | 1.304 | 0.996 | 1.574 | 2.613 | 3.976 | 4.160 | 4.504 | 3.186 |
20 | 0.005 | 0.268 | 0.877 | 0.924 | 1.044 | 0.639 | 0.751 | 1.793 | 2.525 | 2.701 | 2.865 | 1.512 | |
50 | 0.003 | 0.193 | 0.738 | 0.844 | 0.893 | 0.357 | 0.313 | 1.003 | 1.540 | 1.728 | 1.760 | 0.537 | |
100 | 0.004 | 0.130 | 0.754 | 0.868 | 0.872 | 0.222 | 0.163 | 0.567 | 1.160 | 1.352 | 1.341 | 0.242 | |
200 | 0.001 | 0.053 | 0.775 | 0.887 | 0.896 | 0.141 | 0.084 | 0.238 | 0.920 | 1.112 | 1.106 | 0.113 | |
500 | 0.001 | 0.006 | 0.811 | 0.929 | 0.940 | 0.070 | 0.035 | 0.066 | 0.769 | 0.965 | 0.980 | 0.042 | |
4.0 | 10 | 0.049 | 0.209 | 1.105 | 1.023 | 1.181 | 1.100 | 2.450 | 3.694 | 5.254 | 5.458 | 5.552 | 4.850 |
20 | 0.043 | 0.169 | 0.896 | 0.891 | 0.985 | 0.748 | 1.339 | 2.065 | 3.000 | 3.234 | 3.315 | 2.269 | |
50 | 0.031 | 0.049 | 0.835 | 0.847 | 0.899 | 0.400 | 0.585 | 0.763 | 1.608 | 1.739 | 1.789 | 0.815 | |
100 | 0.008 | 0.014 | 0.849 | 0.878 | 0.891 | 0.255 | 0.291 | 0.328 | 1.161 | 1.240 | 1.285 | 0.377 | |
200 | 0.007 | 0.016 | 0.838 | 0.877 | 0.882 | 0.156 | 0.147 | 0.159 | 0.911 | 1.005 | 1.010 | 0.174 | |
500 | 0.004 | 0.002 | 0.831 | 0.877 | 0.878 | 0.066 | 0.058 | 0.064 | 0.773 | 0.861 | 0.862 | 0.062 |
Para. | n | Bias | mse | ||||||||||
|
mle | mom | ade | cvme | lse | mpse | mle | mom | ade | cvme | lse | mpse | |
5.0 | 10 | 0.106 | 0.077 | 1.058 | 1.013 | 1.242 | 1.164 | 3.881 | 4.545 | 6.333 | 6.748 | 7.579 | 6.421 |
20 | 0.061 | 0.036 | 0.955 | 0.915 | 1.007 | 0.824 | 2.026 | 2.335 | 3.527 | 3.991 | 4.014 | 3.056 | |
50 | 0.046 | 0.015 | 0.864 | 0.869 | 0.904 | 0.447 | 0.821 | 0.839 | 1.793 | 1.906 | 1.970 | 1.070 | |
100 | 0.013 | 0.002 | 0.857 | 0.866 | 0.857 | 0.270 | 0.399 | 0.411 | 1.244 | 1.325 | 1.303 | 0.513 | |
200 | 0.013 | 0.006 | 0.833 | 0.843 | 0.849 | 0.161 | 0.198 | 0.214 | 0.946 | 1.006 | 1.009 | 0.238 | |
500 | 0.001 | 0.003 | 0.832 | 0.846 | 0.843 | 0.082 | 0.079 | 0.078 | 0.792 | 0.829 | 0.822 | 0.086 | |
6.0 | 10 | 0.167 | 0.115 | 1.192 | 1.073 | 1.169 | 1.260 | 5.339 | 5.663 | 8.785 | 8.977 | 9.398 | 8.321 |
20 | 0.049 | 0.027 | 0.946 | 0.952 | 0.975 | 0.890 | 2.794 | 2.926 | 4.236 | 4.861 | 4.686 | 3.860 | |
50 | 0.008 | 0.019 | 0.873 | 0.889 | 0.881 | 0.499 | 1.081 | 1.079 | 2.081 | 2.225 | 2.292 | 1.417 | |
100 | 0.007 | 0.016 | 0.859 | 0.843 | 0.870 | 0.294 | 0.523 | 0.517 | 1.392 | 1.421 | 1.522 | 0.631 | |
200 | 0.007 | 0.006 | 0.845 | 0.839 | 0.846 | 0.181 | 0.261 | 0.269 | 1.030 | 1.061 | 1.065 | 0.308 | |
500 | 0.001 | 0.001 | 0.832 | 0.832 | 0.835 | 0.085 | 0.107 | 0.108 | 0.823 | 0.841 | 0.847 | 0.112 | |
8.0 | 10 | 0.141 | 0.089 | 1.294 | 1.077 | 1.320 | 1.622 | 8.569 | 8.656 | 12.77 | 12.61 | 13.63 | 13.41 |
20 | 0.074 | 0.009 | 1.050 | 0.991 | 1.111 | 1.110 | 4.265 | 4.178 | 6.399 | 6.736 | 7.355 | 6.250 | |
50 | 0.029 | 0.003 | 0.883 | 0.860 | 0.918 | 0.577 | 1.685 | 1.630 | 2.726 | 3.019 | 3.118 | 2.151 | |
100 | 0.015 | 0.014 | 0.867 | 0.861 | 0.859 | 0.372 | 0.834 | 0.814 | 1.787 | 1.862 | 1.859 | 1.029 | |
200 | 0.008 | 0.019 | 0.837 | 0.808 | 0.842 | 0.219 | 0.416 | 0.422 | 1.202 | 1.204 | 1.285 | 0.493 | |
500 | 0.006 | 0.001 | 0.826 | 0.814 | 0.820 | 0.097 | 0.169 | 0.175 | 0.877 | 0.879 | 0.902 | 0.176 | |
10.0 | 10 | 0.106 | 0.086 | 1.365 | 1.333 | 1.446 | 1.868 | 12.89 | 12.67 | 17.66 | 19.87 | 19.51 | 20.26 |
20 | 0.001 | 0.063 | 1.143 | 1.079 | 1.067 | 1.308 | 6.232 | 6.279 | 8.767 | 9.553 | 9.777 | 9.056 | |
50 | 0.025 | 0.036 | 0.899 | 0.892 | 0.933 | 0.686 | 2.483 | 2.373 | 3.774 | 4.076 | 4.248 | 3.246 | |
100 | 0.018 | 0.016 | 0.868 | 0.886 | 0.872 | 0.457 | 1.247 | 1.246 | 2.255 | 2.421 | 2.464 | 1.489 | |
200 | 0.001 | 0.009 | 0.852 | 0.827 | 0.829 | 0.267 | 0.636 | 0.599 | 1.467 | 1.501 | 1.501 | 0.712 | |
500 | 0.002 | 0.007 | 0.823 | 0.801 | 0.818 | 0.119 | 0.246 | 0.240 | 0.967 | 0.971 | 1.005 | 0.255 |
Model | |
|
Goodness-of-fit measures | |||||
mle | se | mle | se | |
aic | ks | p-value | |
DRL | 8.8686 | 1.5033 | - | - | 145.22 | 292.43 | 0.156 | 0.2300 |
Poi | 9.4773 | 0.4641 | - | - | 283.94 | 569.89 | 0.391 | < 0.0001 |
DPr | 0.5021 | 0.0757 | - | - | 162.19 | 326.38 | 0.401 | < 0.0001 |
DR | 9.9883 | 0.7535 | - | - | 168.85 | 339.70 | 0.339 | < 0.0001 |
DIR | 7.4291 | 1.2625 | - | - | 166.31 | 334.61 | 0.382 | < 0.0001 |
DBH | 0.9950 | 0.0115 | - | - | 175.37 | 352.74 | 0.647 | < 0.0001 |
DBi | 11.838 | 1.2932 | - | - | 151.29 | 304.59 | 0.213 | 0.0370 |
DL | 0.8313 | 0.0165 | - | - | 149.17 | 300.33 | 0.184 | 0.1000 |
NDL | 0.1640 | 0.0161 | - | - | 148.44 | 298.89 | 0.237 | 0.0140 |
DBXII | 0.9536 | 0.0434 | 11.907 | 11.305 | 150.70 | 305.40 | 0.302 | 0.0007 |
Model | |
|
Goodness-of-fit measures | |||||
mle | se | mle | se | |
aic | ks | p-value | |
DRL | 11.214 | 1.4497 | - | - | 252.71 | 507.43 | 0.133 | 0.1600 |
Poi | 11.805 | 0.4049 | - | - | 564.38 | 1130.8 | 0.408 | < 0.0001 |
DPr | 0.4770 | 0.0563 | - | - | 276.82 | 555.64 | 0.311 | < 0.0001 |
DR | 12.280 | 0.7239 | - | - | 300.65 | 603.29 | 0.323 | < 0.0001 |
DIR | 4.7947 | 0.6303 | - | - | 331.46 | 664.92 | 0.497 | < 0.0001 |
DBH | 0.9966 | 0.0072 | - | - | 302.29 | 606.57 | 0.572 | < 0.0001 |
DBi | 14.621 | 1.2479 | - | - | 272.50 | 546.99 | 0.257 | 0.0002 |
DL | 0.8592 | 0.0109 | - | - | 264.30 | 530.59 | 0.232 | 0.0009 |
NDL | 0.1373 | 0.0107 | - | - | 262.09 | 526.17 | 0.271 | < 0.0001 |
DBXII | 0.8205 | 0.0591 | 2.6112 | 0.9287 | 270.50 | 544.99 | 0.228 | 0.0011 |
Model | |
|
Goodness-of-fit measures | |||||
mle | se | mle | se | |
aic | ks | p-value | |
DRL | 4.3673 | 0.5510 | - | - | 301.11 | 604.21 | 0.1510 | 0.0140 |
Poi | 5.2000 | 0.2174 | - | - | 434.16 | 870.32 | 0.282 | < 0.0001 |
DPr | 0.6250 | 0.0597 | - | - | 339.05 | 680.10 | 0.352 | < 0.0001 |
DR | 5.6788 | 0.2714 | - | - | 352.72 | 707.45 | 0.261 | < 0.0001 |
DIR | 3.5198 | 0.3748 | - | - | 360.90 | 723.80 | 0.413 | < 0.0001 |
DBH | 0.9833 | 0.0136 | - | - | 352.42 | 706.85 | 0.532 | < 0.0001 |
DBi | 6.7993 | 0.4693 | - | - | 310.75 | 623.49 | 0.107 | < 0.0001 |
DL | 0.7337 | 0.0156 | - | - | 303.88 | 609.75 | 0.193 | 0.0100 |
NDL | 0.2567 | 0.0152 | - | - | 302.73 | 607.47 | 0.169 | 0.0037 |
DBXII | 0.7486 | 0.0459 | 2.4582 | 0.4938 | 325.00 | 654.01 | 0.287 | < 0.0001 |
Model | |
|
Goodness-of-fit measures | |||||
mle | se | mle | se | |
aic | ks | p-value | |
DRL | 61.943 | 15.273 | - | - | 87.425 | 176.85 | 0.152 | 0.8300 |
Poi | 62.470 | 1.9169 | - | - | 475.26 | 952.52 | 0.470 | 0.0011 |
DPr | 0.2838 | 0.0688 | - | - | 98.335 | 198.67 | 0.324 | 0.0560 |
DR | 58.076 | 7.0429 | - | - | 96.794 | 195.59 | 0.309 | 0.0770 |
DIR | 25.310 | 6.543 | - | - | 128.59 | 259.18 | 0.681 | < 0.0001 |
DBH | 0.9999 | 0.0029 | - | - | 119.81 | 241.62 | 0.716 | < 0.0001 |
DBi | 75.109 | 13.164 | - | - | 92.886 | 187.77 | 0.219 | 0.3900 |
DL | 0.9692 | 0.0052 | - | - | 91.858 | 185.72 | 0.215 | 0.4100 |
NDL | 0.0306 | 0.0052 | - | - | 91.458 | 184.92 | 0.218 | 0.3900 |
DBXII | 0.9975 | 0.0008 | 117.30 | 45.982 | 96.151 | 196.30 | 0.327 | 0.0530 |
|
|||||||||
Measure | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 | 4.5 | 5.0 | 5.5 | 8.0 |
Mean | 3.500 | 3.678 | 4.014 | 4.414 | 4.847 | 5.299 | 5.762 | 6.234 | 8.652 |
Variance | 8.079 | 11.80 | 15.71 | 20.03 | 24.82 | 30.10 | 35.87 | 42.13 | 80.90 |
di | 2.308 | 3.207 | 3.913 | 4.538 | 5.121 | 5.680 | 6.224 | 6.757 | 9.351 |
Skewness | 1.395 | 1.519 | 1.629 | 1.708 | 1.764 | 1.806 | 1.837 | 1.862 | 1.928 |
Kurtosis | 5.940 | 6.353 | 6.821 | 7.199 | 7.495 | 7.727 | 7.910 | 8.057 | 8.484 |
Para. | n | Bias | mse | ||||||||||
|
mle | mom | ade | cvme | lse | mpse | mle | mom | ade | cvme | lse | mpse | |
2.0 | 10 | 0.099 | 0.072 | 0.878 | 0.606 | 0.956 | 0.801 | 0.762 | 1.496 | 2.897 | 2.059 | 3.034 | 1.797 |
20 | 0.034 | 0.035 | 0.486 | 0.259 | 0.444 | 0.435 | 0.307 | 1.103 | 1.408 | 0.749 | 1.212 | 0.626 | |
50 | 0.017 | 0.160 | 0.122 | 0.037 | 0.065 | 0.172 | 0.055 | 0.811 | 0.304 | 0.086 | 0.148 | 0.111 | |
100 | 0.013 | 0.226 | 0.015 | 0.003 | 0.005 | 0.086 | 0.017 | 0.697 | 0.033 | 0.006 | 0.009 | 0.026 | |
200 | 0.009 | 0.277 | 0.000 | 0.000 | 0.000 | 0.050 | 0.007 | 0.620 | 0.000 | 0.000 | 0.000 | 0.008 | |
500 | 0.002 | 0.338 | 0.000 | 0.000 | 0.000 | 0.028 | 0.003 | 0.569 | 0.000 | 0.000 | 0.000 | 0.002 | |
2.5 | 10 | 0.081 | 0.131 | 1.109 | 1.140 | 1.397 | 0.958 | 1.105 | 2.032 | 3.694 | 3.919 | 4.392 | 2.609 |
20 | 0.065 | 0.239 | 0.837 | 0.869 | 1.060 | 0.622 | 0.485 | 1.487 | 2.368 | 2.560 | 2.765 | 1.173 | |
50 | 0.058 | 0.293 | 0.595 | 0.695 | 0.798 | 0.320 | 0.186 | 1.063 | 1.436 | 1.723 | 1.785 | 0.391 | |
100 | 0.027 | 0.298 | 0.475 | 0.602 | 0.672 | 0.195 | 0.091 | 0.816 | 1.082 | 1.373 | 1.428 | 0.165 | |
200 | 0.013 | 0.255 | 0.374 | 0.525 | 0.589 | 0.098 | 0.045 | 0.602 | 0.864 | 1.139 | 1.185 | 0.065 | |
500 | 0.007 | 0.146 | 0.273 | 0.484 | 0.532 | 0.047 | 0.018 | 0.316 | 0.674 | 0.979 | 1.014 | 0.022 | |
3.0 | 10 | 0.019 | 0.224 | 1.085 | 1.103 | 1.304 | 0.996 | 1.574 | 2.613 | 3.976 | 4.160 | 4.504 | 3.186 |
20 | 0.005 | 0.268 | 0.877 | 0.924 | 1.044 | 0.639 | 0.751 | 1.793 | 2.525 | 2.701 | 2.865 | 1.512 | |
50 | 0.003 | 0.193 | 0.738 | 0.844 | 0.893 | 0.357 | 0.313 | 1.003 | 1.540 | 1.728 | 1.760 | 0.537 | |
100 | 0.004 | 0.130 | 0.754 | 0.868 | 0.872 | 0.222 | 0.163 | 0.567 | 1.160 | 1.352 | 1.341 | 0.242 | |
200 | 0.001 | 0.053 | 0.775 | 0.887 | 0.896 | 0.141 | 0.084 | 0.238 | 0.920 | 1.112 | 1.106 | 0.113 | |
500 | 0.001 | 0.006 | 0.811 | 0.929 | 0.940 | 0.070 | 0.035 | 0.066 | 0.769 | 0.965 | 0.980 | 0.042 | |
4.0 | 10 | 0.049 | 0.209 | 1.105 | 1.023 | 1.181 | 1.100 | 2.450 | 3.694 | 5.254 | 5.458 | 5.552 | 4.850 |
20 | 0.043 | 0.169 | 0.896 | 0.891 | 0.985 | 0.748 | 1.339 | 2.065 | 3.000 | 3.234 | 3.315 | 2.269 | |
50 | 0.031 | 0.049 | 0.835 | 0.847 | 0.899 | 0.400 | 0.585 | 0.763 | 1.608 | 1.739 | 1.789 | 0.815 | |
100 | 0.008 | 0.014 | 0.849 | 0.878 | 0.891 | 0.255 | 0.291 | 0.328 | 1.161 | 1.240 | 1.285 | 0.377 | |
200 | 0.007 | 0.016 | 0.838 | 0.877 | 0.882 | 0.156 | 0.147 | 0.159 | 0.911 | 1.005 | 1.010 | 0.174 | |
500 | 0.004 | 0.002 | 0.831 | 0.877 | 0.878 | 0.066 | 0.058 | 0.064 | 0.773 | 0.861 | 0.862 | 0.062 |
Para. | n | Bias | mse | ||||||||||
|
mle | mom | ade | cvme | lse | mpse | mle | mom | ade | cvme | lse | mpse | |
5.0 | 10 | 0.106 | 0.077 | 1.058 | 1.013 | 1.242 | 1.164 | 3.881 | 4.545 | 6.333 | 6.748 | 7.579 | 6.421 |
20 | 0.061 | 0.036 | 0.955 | 0.915 | 1.007 | 0.824 | 2.026 | 2.335 | 3.527 | 3.991 | 4.014 | 3.056 | |
50 | 0.046 | 0.015 | 0.864 | 0.869 | 0.904 | 0.447 | 0.821 | 0.839 | 1.793 | 1.906 | 1.970 | 1.070 | |
100 | 0.013 | 0.002 | 0.857 | 0.866 | 0.857 | 0.270 | 0.399 | 0.411 | 1.244 | 1.325 | 1.303 | 0.513 | |
200 | 0.013 | 0.006 | 0.833 | 0.843 | 0.849 | 0.161 | 0.198 | 0.214 | 0.946 | 1.006 | 1.009 | 0.238 | |
500 | 0.001 | 0.003 | 0.832 | 0.846 | 0.843 | 0.082 | 0.079 | 0.078 | 0.792 | 0.829 | 0.822 | 0.086 | |
6.0 | 10 | 0.167 | 0.115 | 1.192 | 1.073 | 1.169 | 1.260 | 5.339 | 5.663 | 8.785 | 8.977 | 9.398 | 8.321 |
20 | 0.049 | 0.027 | 0.946 | 0.952 | 0.975 | 0.890 | 2.794 | 2.926 | 4.236 | 4.861 | 4.686 | 3.860 | |
50 | 0.008 | 0.019 | 0.873 | 0.889 | 0.881 | 0.499 | 1.081 | 1.079 | 2.081 | 2.225 | 2.292 | 1.417 | |
100 | 0.007 | 0.016 | 0.859 | 0.843 | 0.870 | 0.294 | 0.523 | 0.517 | 1.392 | 1.421 | 1.522 | 0.631 | |
200 | 0.007 | 0.006 | 0.845 | 0.839 | 0.846 | 0.181 | 0.261 | 0.269 | 1.030 | 1.061 | 1.065 | 0.308 | |
500 | 0.001 | 0.001 | 0.832 | 0.832 | 0.835 | 0.085 | 0.107 | 0.108 | 0.823 | 0.841 | 0.847 | 0.112 | |
8.0 | 10 | 0.141 | 0.089 | 1.294 | 1.077 | 1.320 | 1.622 | 8.569 | 8.656 | 12.77 | 12.61 | 13.63 | 13.41 |
20 | 0.074 | 0.009 | 1.050 | 0.991 | 1.111 | 1.110 | 4.265 | 4.178 | 6.399 | 6.736 | 7.355 | 6.250 | |
50 | 0.029 | 0.003 | 0.883 | 0.860 | 0.918 | 0.577 | 1.685 | 1.630 | 2.726 | 3.019 | 3.118 | 2.151 | |
100 | 0.015 | 0.014 | 0.867 | 0.861 | 0.859 | 0.372 | 0.834 | 0.814 | 1.787 | 1.862 | 1.859 | 1.029 | |
200 | 0.008 | 0.019 | 0.837 | 0.808 | 0.842 | 0.219 | 0.416 | 0.422 | 1.202 | 1.204 | 1.285 | 0.493 | |
500 | 0.006 | 0.001 | 0.826 | 0.814 | 0.820 | 0.097 | 0.169 | 0.175 | 0.877 | 0.879 | 0.902 | 0.176 | |
10.0 | 10 | 0.106 | 0.086 | 1.365 | 1.333 | 1.446 | 1.868 | 12.89 | 12.67 | 17.66 | 19.87 | 19.51 | 20.26 |
20 | 0.001 | 0.063 | 1.143 | 1.079 | 1.067 | 1.308 | 6.232 | 6.279 | 8.767 | 9.553 | 9.777 | 9.056 | |
50 | 0.025 | 0.036 | 0.899 | 0.892 | 0.933 | 0.686 | 2.483 | 2.373 | 3.774 | 4.076 | 4.248 | 3.246 | |
100 | 0.018 | 0.016 | 0.868 | 0.886 | 0.872 | 0.457 | 1.247 | 1.246 | 2.255 | 2.421 | 2.464 | 1.489 | |
200 | 0.001 | 0.009 | 0.852 | 0.827 | 0.829 | 0.267 | 0.636 | 0.599 | 1.467 | 1.501 | 1.501 | 0.712 | |
500 | 0.002 | 0.007 | 0.823 | 0.801 | 0.818 | 0.119 | 0.246 | 0.240 | 0.967 | 0.971 | 1.005 | 0.255 |
Model | |
|
Goodness-of-fit measures | |||||
mle | se | mle | se | |
aic | ks | p-value | |
DRL | 8.8686 | 1.5033 | - | - | 145.22 | 292.43 | 0.156 | 0.2300 |
Poi | 9.4773 | 0.4641 | - | - | 283.94 | 569.89 | 0.391 | < 0.0001 |
DPr | 0.5021 | 0.0757 | - | - | 162.19 | 326.38 | 0.401 | < 0.0001 |
DR | 9.9883 | 0.7535 | - | - | 168.85 | 339.70 | 0.339 | < 0.0001 |
DIR | 7.4291 | 1.2625 | - | - | 166.31 | 334.61 | 0.382 | < 0.0001 |
DBH | 0.9950 | 0.0115 | - | - | 175.37 | 352.74 | 0.647 | < 0.0001 |
DBi | 11.838 | 1.2932 | - | - | 151.29 | 304.59 | 0.213 | 0.0370 |
DL | 0.8313 | 0.0165 | - | - | 149.17 | 300.33 | 0.184 | 0.1000 |
NDL | 0.1640 | 0.0161 | - | - | 148.44 | 298.89 | 0.237 | 0.0140 |
DBXII | 0.9536 | 0.0434 | 11.907 | 11.305 | 150.70 | 305.40 | 0.302 | 0.0007 |
Model | |
|
Goodness-of-fit measures | |||||
mle | se | mle | se | |
aic | ks | p-value | |
DRL | 11.214 | 1.4497 | - | - | 252.71 | 507.43 | 0.133 | 0.1600 |
Poi | 11.805 | 0.4049 | - | - | 564.38 | 1130.8 | 0.408 | < 0.0001 |
DPr | 0.4770 | 0.0563 | - | - | 276.82 | 555.64 | 0.311 | < 0.0001 |
DR | 12.280 | 0.7239 | - | - | 300.65 | 603.29 | 0.323 | < 0.0001 |
DIR | 4.7947 | 0.6303 | - | - | 331.46 | 664.92 | 0.497 | < 0.0001 |
DBH | 0.9966 | 0.0072 | - | - | 302.29 | 606.57 | 0.572 | < 0.0001 |
DBi | 14.621 | 1.2479 | - | - | 272.50 | 546.99 | 0.257 | 0.0002 |
DL | 0.8592 | 0.0109 | - | - | 264.30 | 530.59 | 0.232 | 0.0009 |
NDL | 0.1373 | 0.0107 | - | - | 262.09 | 526.17 | 0.271 | < 0.0001 |
DBXII | 0.8205 | 0.0591 | 2.6112 | 0.9287 | 270.50 | 544.99 | 0.228 | 0.0011 |
Model | |
|
Goodness-of-fit measures | |||||
mle | se | mle | se | |
aic | ks | p-value | |
DRL | 4.3673 | 0.5510 | - | - | 301.11 | 604.21 | 0.1510 | 0.0140 |
Poi | 5.2000 | 0.2174 | - | - | 434.16 | 870.32 | 0.282 | < 0.0001 |
DPr | 0.6250 | 0.0597 | - | - | 339.05 | 680.10 | 0.352 | < 0.0001 |
DR | 5.6788 | 0.2714 | - | - | 352.72 | 707.45 | 0.261 | < 0.0001 |
DIR | 3.5198 | 0.3748 | - | - | 360.90 | 723.80 | 0.413 | < 0.0001 |
DBH | 0.9833 | 0.0136 | - | - | 352.42 | 706.85 | 0.532 | < 0.0001 |
DBi | 6.7993 | 0.4693 | - | - | 310.75 | 623.49 | 0.107 | < 0.0001 |
DL | 0.7337 | 0.0156 | - | - | 303.88 | 609.75 | 0.193 | 0.0100 |
NDL | 0.2567 | 0.0152 | - | - | 302.73 | 607.47 | 0.169 | 0.0037 |
DBXII | 0.7486 | 0.0459 | 2.4582 | 0.4938 | 325.00 | 654.01 | 0.287 | < 0.0001 |
Model | |
|
Goodness-of-fit measures | |||||
mle | se | mle | se | |
aic | ks | p-value | |
DRL | 61.943 | 15.273 | - | - | 87.425 | 176.85 | 0.152 | 0.8300 |
Poi | 62.470 | 1.9169 | - | - | 475.26 | 952.52 | 0.470 | 0.0011 |
DPr | 0.2838 | 0.0688 | - | - | 98.335 | 198.67 | 0.324 | 0.0560 |
DR | 58.076 | 7.0429 | - | - | 96.794 | 195.59 | 0.309 | 0.0770 |
DIR | 25.310 | 6.543 | - | - | 128.59 | 259.18 | 0.681 | < 0.0001 |
DBH | 0.9999 | 0.0029 | - | - | 119.81 | 241.62 | 0.716 | < 0.0001 |
DBi | 75.109 | 13.164 | - | - | 92.886 | 187.77 | 0.219 | 0.3900 |
DL | 0.9692 | 0.0052 | - | - | 91.858 | 185.72 | 0.215 | 0.4100 |
NDL | 0.0306 | 0.0052 | - | - | 91.458 | 184.92 | 0.218 | 0.3900 |
DBXII | 0.9975 | 0.0008 | 117.30 | 45.982 | 96.151 | 196.30 | 0.327 | 0.0530 |