In this work, we consider a generalization of the nonlinear Langevin equation of fractional orders with boundary value conditions. The existence and uniqueness of solutions are studied by using the results of the fixed point theory. Moreover, the previous results of fractional Langevin equations are a special case of our problem.
Citation: Zheng Kou, Saeed Kosari. On a generalization of fractional Langevin equation with boundary conditions[J]. AIMS Mathematics, 2022, 7(1): 1333-1345. doi: 10.3934/math.2022079
[1] | Abdelatif Boutiara, Mohammed S. Abdo, Manar A. Alqudah, Thabet Abdeljawad . On a class of Langevin equations in the frame of Caputo function-dependent-kernel fractional derivatives with antiperiodic boundary conditions. AIMS Mathematics, 2021, 6(6): 5518-5534. doi: 10.3934/math.2021327 |
[2] | Gang Chen, Jinbo Ni, Xinyu Fu . Existence, and Ulam's types stability of higher-order fractional Langevin equations on a star graph. AIMS Mathematics, 2024, 9(5): 11877-11909. doi: 10.3934/math.2024581 |
[3] | Mohamed A. Barakat, Abd-Allah Hyder, Doaa Rizk . New fractional results for Langevin equations through extensive fractional operators. AIMS Mathematics, 2023, 8(3): 6119-6135. doi: 10.3934/math.2023309 |
[4] | Zohreh Heydarpour, Maryam Naderi Parizi, Rahimeh Ghorbnian, Mehran Ghaderi, Shahram Rezapour, Amir Mosavi . A study on a special case of the Sturm-Liouville equation using the Mittag-Leffler function and a new type of contraction. AIMS Mathematics, 2022, 7(10): 18253-18279. doi: 10.3934/math.20221004 |
[5] | Weerawat Sudsutad, Sotiris K. Ntouyas, Chatthai Thaiprayoon . Nonlocal coupled system for ψ-Hilfer fractional order Langevin equations. AIMS Mathematics, 2021, 6(9): 9731-9756. doi: 10.3934/math.2021566 |
[6] | Arjumand Seemab, Mujeeb ur Rehman, Jehad Alzabut, Yassine Adjabi, Mohammed S. Abdo . Langevin equation with nonlocal boundary conditions involving a ψ-Caputo fractional operators of different orders. AIMS Mathematics, 2021, 6(7): 6749-6780. doi: 10.3934/math.2021397 |
[7] | Muhammad Akram, Ghulam Muhammad, Tofigh Allahviranloo, Ghada Ali . New analysis of fuzzy fractional Langevin differential equations in Caputo's derivative sense. AIMS Mathematics, 2022, 7(10): 18467-18496. doi: 10.3934/math.20221016 |
[8] | Lamya Almaghamsi, Aeshah Alghamdi, Abdeljabbar Ghanmi . Existence of solution for a Langevin equation involving the ψ-Hilfer fractional derivative: A variational approach. AIMS Mathematics, 2025, 10(1): 534-550. doi: 10.3934/math.2025024 |
[9] | Xiaoming Wang, Rizwan Rizwan, Jung Rey Lee, Akbar Zada, Syed Omar Shah . Existence, uniqueness and Ulam's stabilities for a class of implicit impulsive Langevin equation with Hilfer fractional derivatives. AIMS Mathematics, 2021, 6(5): 4915-4929. doi: 10.3934/math.2021288 |
[10] | Abdulkafi M. Saeed, Mohammed A. Almalahi, Mohammed S. Abdo . Explicit iteration and unique solution for ϕ-Hilfer type fractional Langevin equations. AIMS Mathematics, 2022, 7(3): 3456-3476. doi: 10.3934/math.2022192 |
In this work, we consider a generalization of the nonlinear Langevin equation of fractional orders with boundary value conditions. The existence and uniqueness of solutions are studied by using the results of the fixed point theory. Moreover, the previous results of fractional Langevin equations are a special case of our problem.
The Langevin equation has been applied to describe phenomena that have stochastic properties. First, Langevin equation [14] used for a particle submerged in a fluid with Brownian motion. Langevin equation has various versions which proposed in different fields. For instance, Pineda and Stamatakis [19] investigated the stochastic modelling of surface reactions by using reflected chemical Langevin equations. In [15], based on Langevin equation, molecular dynamics simulation was used in the study of structural, thermal properties of matter in different phases. Moreover, the modified Langevin equation was applied as a macroscopic stochastic nonlinear model of many geophysical processes in [3]. Mendoza-Méndez et al. [18] proposed a dynamic equivalence between the longtime dynamic properties of atomic and colloidal liquids by a more formal fundamental derivation of the generalized Langevin equation for a tracer particle in an atomic liquid.
The study of existence results of equations with applications in engineering industries and modeling different processes is gaining much importance and attention. Recently, Fallah and Mehrdoust studied [5] the existence and uniqueness of the solution to the stochastic differential equation of the double Heston model which is defined by two independent variance processes with non-Lipschitz diffusion. The existence of global mild solutions was obtained for the incompressible nematic liquid crystal flow in the whole space in [22]. Marasi et al. [17] studied the existence and uniqueness of positive solutions for nonlinear fractional differential equation boundary value problems by using new fixed point results. For some recent works on existence results, see [7,8,9,10,11,12,16,21].
According to the applications of Langevin equation, on the existence theory of solutions for this class of equations is an important subject. Ahmad and Nieto [1] discussed the existence of solutions of nonlinear Langevin equation involving two fractional orders with Dirichlet boundary conditions as follows:
cDβ0+(cDα0++λ)x(t)=f(t,x(t)), t∈(0,1),x(0)=γ1, x(1)=γ2, 0<α,β⩽1, |
where cDα is the Caputo fractional derivative of order α, f:[0,1]×X→X is a continuous function, X is a Banach space, λ is a real number and γ1,γ2∈X. Also, they introduce a q -fractional variant of nonlinear Langevin equation of different orders with q-fractional antiperiodic boundary conditions in [2].
Fazli and J. Nieto [6] investigated the existence and uniqueness of solutions for nonlinear Langevin equation of fractional orders with anti-periodic boundary conditions as:
cDβ0+(cDα0++λ)x(t)=f(t,x(t)), t∈(0,1), 0<α⩽1, 1<β⩽2,x(0)+x(1)=0, cDα0+x(0)+ cDα0+x(1)=0, D2α0+x(0)+D2α0+x(1)=0, |
where the function f:[0,1]×R→R is continuous and λ is a real number and D2α0+ is the sequential fractional derivative. Recently, the existence and uniqueness of initial value problems for nonlinear Langevin equation involving three fractional orders was studied in [4]
This manuscript is concerned to study the existence and uniqueness of solutions a generalization of the nonlinear Langevin equation of different fractional orders with four-point boundary conditions provided as:
cDβ0+(cDα0++γ)x(t)=f(t,x(t),x′(t)), t∈(0,1), | (1.1) |
x(0)=x(1)=x′(0)=x′(1)=0, 0<α⩽1, 2<β⩽3, | (1.2) |
where cDα is the Caputo fractional derivative of order α, f:[0,1]×R×R→R is a continuous function and γ is a real number. Under suitable assumptions on part of nonlinear and by application of the fixed point theory, we obtain the existence results of the considered problem.
The paper is scheduled as follows: In Section 2 are recalled some necessary preliminaries from fractional calculus. Next, we obtain the Green functions corresponding to the problem. In section 3 is devoted to the existence and uniqueness of solutions for boundary value problem (1.1) and (1.2). Also, an example to illustrate our results is given. Finally, we propose some conclusions.
In this section, we present some definitions and lemmas which are needed for our results.
Definition 2.1. [13,20] The Riemann-Liouville fractional integral of order ρ>0 of a function g:(0,∞)→R is defined by
Iρ0+g(ω)=1Γ(ρ)∫ω0(ω−s)ρ−1g(s)ds, |
provided the right-hand side is pointwise defined on (0,∞).
Definition 2.2. [13,20] The Riemann-Liouville fractional derivative of order ρ>0 of a continuous function g:(0,∞)→R is defined by
Dρ0+g(ω)=1Γ(m−ρ)(ddω)m∫ω0(ω−s)m−ρ−1g(s)ds, |
where m=[ρ]+1, provided that right-hand side is pointwise defined on (0,∞).
Definition 2.3. [13,20] For a function g given on the interval [0,∞), the Caputo fractional derivative of order ρ>0 of g is defined by
cDρ0+g(ω)=1Γ(m−ρ)∫ω0(ω−s)m−α−1g(n)(s)ds, |
where m=[ρ]+1.
Lemma 2.4. [13,20] Let α,β⩾0 and n∈N, then the following relations hold:
1) Dαa+Iαa+f(t)=f(t),
2) Dβa+Iαa+f(t)=Dβ−αa+f(t), (if β⩾α),
3) Dβa+Iαa+f(t)=Iα−βa+f(t), (if α⩾β),
4) Iαa+(t−a)β=Γ(β+1)Γ(α+β+1)(t−a)α+β,
5) Dαa+(t−a)β=Γ(β+1)Γ(β−α+1)(t−a)β−α.
Lemma 2.5. [13] Let ρ>0. Then, the fractional differential equation cDρu(t)=0, has a general solution as
u(t)=a0+a1t+a2t2+⋯+am−1tm−1, |
for some ak∈R, k=1,…,m−1, and m=[ρ]+1.
Lemma 2.6. [13] Let ρ>0. Then, we have
Iρ0+cDρ0+u(t)=u(t)+a0+a1t+⋯+am−1tm−1, |
where ak∈R, k=1,…,m−1, and m=[ρ]+1.
Lemma 2.7. Let y∈C[0,1], a unique solution of boundary value problem for following fractional Langevin equation
cDβ0+(cDα0++γ)x(t)=y(t),t∈(0,1),x(0)=x(1)=x′(0)=x′(1)=0, 0<α⩽1,2<β⩽3, |
is given by
x(t)=∫10G(t,s)y(s)ds+∫10H(t,s)x(s)ds, |
where
G(t,s)=1Γ(α+β){(t−s)α+β−1+[(α+1)tα+2−(α+2)tα+1](1−s)α+β−1+(α+β−1)(tα+1−tα+2)(1−s)α+β−2,s⩽t,[(α+1)tα+2−(α+2)tα+1](1−s)α+β−1+(α+β−1)(tα+1−tα+2)(1−s)α+β−2,t⩽s, |
and
H(t,s)=1Γ(α){−γ(t−s)α+β−1+γ[(α+2)tα+1−(α+1)tα+2](1−s)α−1+γ(α−1)(tα+2−tα+1)(1−s)α−2,s⩽t,γ[(α+2)tα+1−(α+1)tα+2](1−s)α−1+γ(α−1)(tα+2−tα+1)(1−s)α−2,t⩽s. |
Proof. For 2<β⩽3, Lemma 2.6 yields
cDαx(t)=Iβ0+y(t)−γx(t)+c0+c1t+c2t2, |
where c0,c1,c2∈R. Also, for 0<α⩽1, we have
x(t)=Iα+β0+y(t)−γIα0+x(t)+c0tαΓ(α+1)+c1tα+1Γ(α+2)+c22tα+2Γ(α+3)+c3. | (2.1) |
By the condition x(0)=0, we give c3=0. Differentiation of (2.1) with respect to t produces
x′(t)=Iα+β−10+y(t)−γIα−10+x(t)+c0tα−1Γ(α)+c1tαΓ(α+1)+c22tα+1Γ(α+2). | (2.2) |
The condition x′(0)=0, for (2.2), implies that c0=0. Now, by conditions x(1)=0 and x′(1)=0, we give
1Γ(α+β)∫10(1−s)α+β−1y(s)ds−γΓ(α)∫10(1−s)α−1x(s)ds+c11Γ(α+2)+c22Γ(α+3)=0, | (2.3) |
and
1Γ(α+β−1)∫10(1−s)α+β−2y(s)ds−γΓ(α−1)∫10(1−s)α−2x(s)ds+c11Γ(α+1)+c22Γ(α+2)=0, | (2.4) |
respectively. By solving the system of (2.3) and (2.4), we obtain
c1=Γ(α+2)Γ(α+β−1)∫10(1−s)α+β−2y(s)ds−Γ(α+3)Γ(α+β)∫10(1−s)α+β−1y(s)ds+γΓ(α+3)Γ(α)∫10(1−s)α−1x(s)ds−γΓ(α+2)Γ(α−1)∫10(1−s)α−2x(s)ds, |
and
c2=(α+1)Γ(α+3)2Γ(α+β)∫10(1−s)α+β−1y(s)ds−Γ(α+3)2Γ(α+β−1)∫10(1−s)α+β−2y(s)ds+γΓ(α+3)2Γ(α−1)∫10(1−s)α−2x(s)ds−γ(α+1)Γ(α+3)2Γ(α)∫10(1−s)α−1x(s)ds. |
By substituting the values of c0,c1,c2,c2 in (2.1), then we give
x(t)=1Γ(α+β)∫t0(t−s)α+β−1y(s)ds−γΓ(α)∫t0(t−s)α−1x(s)ds+[(α+2)tα+1−(α+1)tα+2]γΓ(α)∫10(1−s)α−1x(s)ds+γ(tα+2−tα+1)Γ(α−1)∫10(1−s)α−2x(s)ds+tα+1−tα+2Γ(α+β−1)∫10(1−s)α+β−2y(s)ds+(α+1)tα+2−(α+2)tα+1Γ(α+β)∫10(1−s)α+β−1y(s)ds=∫t0((t−s)α+β−1+[(α+1)tα+2−(α+2)tα+1](1−s)α+β−1Γ(α+β)+(α+β−1)(tα+1−tα+2)(1−s)α+β−2Γ(α+β))y(s)ds+∫1t[(α+1)tα+2−(α+2)tα+1](1−s)α+β−1+(α+β−1)(tα+1−tα+2)(1−s)α+β−2Γ(α+β)y(s)ds+∫t0(−γ(t−s)α+β−1+γ[(α+2)tα+1−(α+1)tα+2](1−s)α−1Γ(α)+γ(α−1)(tα+2−tα+1)(1−s)α−2Γ(α))x(s)ds+∫1tγ[(α+2)tα+1−(α+1)tα+2](1−s)α−1+γ(α−1)(tα+2−tα+1)(1−s)α−2Γ(α)x(s)ds=∫10G(t,s)y(s)ds+∫10H(t,s)x(s)ds. |
In this section, we propose the existence results of Langevin differential equation of fractional orders (1.1) and (1.2). Let the Banach space B=C1[0,1] be equipped with the norm:
‖x‖=maxt∈[0,1]|x(t)|+maxt∈[0,1]|x′(t)|. | (3.1) |
To prove the main results, we need the following assumptions:
A1) f:[0,1]×R×R→R is continuous function.
A2) There exists a constant w>0 such that
|f(t,x,y)−f(t,u,v)|≤w(|x−u|+|y−v|), |
for all t∈[0,1], x,y,u,v∈R.
A3) There exists a nonnegative function σ∈L[0,1] such that
|f(t,x,y)|≤σ(t)+a1|x|τ1+a2|y|τ2, |
where a1,a2∈R+ and 0<τ1,τ2<1.
For the sake of convenience, we define the following constants:
K1={4(α+1)+2βΓ(α+β+1)},K2={2α+4Γ(α+β)+2(α+1)(α+2)Γ(α+β+1)},K=K1+K2,
L1={|γ|4(α+1)Γ(α+1)},L2={|γ|(2α+4)Γ(α)+2|γ|(α+1)(α+2)Γ(α+1)},L=L1+L2.
Theorem 3.1. Under the hypotheses (A1) and (A3), the fractional Langevin Eqs (1.1) and (1.2) has a solution.
Proof. We define the operator Z:B→B as follow:
(Zx)(t)=∫10G(t,s)f(s,x(s),x′(s))ds+∫10H(t,s)x(s)ds. | (3.2) |
Lemma 2.7 implies that the fixed points of the operator Z in (3.2) are the same solutions of the boundary value problem (1.1) and (1.2). We consider a ball Ur={x∈B,‖x‖≤r} so that max{4K‖σ‖,(4a1K)1/1−τ1,(4a2K)1/1−τ2,4rL}≤r. For any x∈Ur and by (A3), we show that ZUr⊂Ur, then
|(Zx)(t)|≤1Γ(α+β)∫t0(t−s)α+β−1|f(s,x(s),x′(s))|ds+tα+1+tα+2Γ(α+β−1)∫10(1−s)α+β−2|f(s,x(s),x′(s))|ds+(α+1)tα+2+(α+2)tα+1Γ(α+β)∫10(1−s)α+β−1|f(s,x(s),x′(s))|ds+|γ|Γ(α)∫t0(t−s)α−1|x(s)|ds+[(α+2)tα+1+(α+1)tα+2]|γ|Γ(α)∫10(1−s)α−1|x(s)|ds+|γ|(tα+2+tα+1)Γ(α−1)∫10(1−s)α−2|x(s)|ds≤1Γ(α+β)∫t0(t−s)α+β−1(σ(s)+a1|x(s)|τ1+a2|x′(s)|τ2)ds+2Γ(α+β−1)∫10(1−s)α+β−2(σ(s)+a1|x(s)|τ1+a2|x′(s)|τ2)ds+2α+3Γ(α+β)∫10(1−s)α+β−1(σ(s)+a1|x(s)|τ1+a2|x′(s)|τ2)ds+|γ|‖x‖Γ(α)∫t0(t−s)α−1ds+(2α+3)|γ|‖x‖Γ(α)∫10(1−s)α−1ds+2|γ|‖x‖Γ(α−1)∫10(1−s)α−2ds≤(‖σ‖+a1rτ1+a2rτ2){tα+βΓ(α+β+1)+2Γ(α+β)+2α+3Γ(α+β+1)}+‖x‖{|γ|tαΓ(α+1)+(2α+3)|γ|Γ(α+1)+2|γ|Γ(α)}≤(‖σ‖+a1rτ1+a2rτ2){4(α+1)+2βΓ(α+β+1)}+r{|γ|4(α+1)Γ(α+1)}=(‖σ‖+a1rτ1+a2rτ2)K1+rL1, | (3.3) |
and
|(Zx)′(t)|≤1Γ(α+β−1)∫t0(t−s)α+β−2|f(s,x(s),x′(s))|ds+(α+1)tα+(α+2)tα+1Γ(α+β−1)∫10(1−s)α+β−2|f(s,x(s),x′(s))|ds+(α+1)(α+2)(tα+1+tα)Γ(α+β)∫10(1−s)α+β−1|f(s,x(s),x′(s))|ds+|γ|Γ(α−1)∫t0(t−s)α−2|x(s)|ds+|γ|(α+1)(α+2)(tα+tα+1)Γ(α)∫10(1−s)α−1|x(s)|ds+|γ|[(α+2)tα+1+(α+1)tα]Γ(α−1)∫10(1−s)α−2|x(s)|ds≤(‖σ‖+a1rτ1+a2rτ2){tα+βΓ(α+β)+2α+3Γ(α+β)+2(α+1)(α+2)Γ(α+β+1)}+‖x‖{|γ|tα−1Γ(α)+2|γ|(α+1)(α+2)Γ(α+1)+|γ|(2α+3)Γ(α)}≤(‖σ‖+a1rτ1+a2rτ2){2α+4Γ(α+β)+2(α+1)(α+2)Γ(α+β+1)}+r{|γ|(2α+4)Γ(α)+2|γ|(α+1)(α+2)Γ(α+1)}=(‖σ‖+a1rτ1+a2rτ2)K2+rL2. | (3.4) |
So by (3.3) and (3.4), we have
‖Zx‖=max|(Zx)(t)|+max|(Zx)′(t)|≤(‖σ‖+a1rτ1+a2rτ2)(K1+K2)+r(L1+L2)=(‖σ‖+a1rτ1+a2rτ2)K+rL≤r4+r4+r4+r4=r. |
Next, we prove that the operator Z is completely continuous. The functions f, G(t,s) and H(t,s) are continuous, hence the operator Z is continuous. Let M=maxt∈[0,1],x∈Ur|f(t,x(t),x′(t))|+1, for any x∈Ur and t1,t2∈[0,1] such that t1<t2, we have
|(Zx)(t2)−(Zx)(t1)|≤|1Γ(α+β)∫t20(t2−s)α+β−1f(s,x(s),x′(s))ds−1Γ(α+β)∫t10(t1−s)α+β−1f(s,x(s),x′(s))ds|+|(tα+12−tα+11)+(tα+22−tα+21)Γ(α+β−1)∫10(1−s)α+β−2f(s,x(s),x′(s))ds|+|(α+1)(tα+22−tα+21)+(α+2)(tα+12−tα+11)Γ(α+β)∫10(1−s)α+β−1f(s,x(s),x′(s))ds|+|γΓ(α)∫t20(t2−s)α−1x(s)ds−γΓ(α)∫t10(t1−s)α−1x(s)ds|+|[(α+2)(tα+12−tα+11)+(α+1)(tα+22−tα+21)]γΓ(α)∫10(1−s)α−1x(s)ds|+|γ(tα+12−tα+11)+(tα+22−tα+21)Γ(α−1)∫10(1−s)α−2x(s)ds|≤2MΓ(α+β+1)(t2−t1)α+β+MΓ(α+β+1)(tα+β2−tα+β1)+M(tα+12−tα+11)+(tα+22−tα+21)Γ(α+β)+M(α+1)(tα+22−tα+21)+(α+2)(tα+12−tα+11)Γ(α+β+1)+2r|γ|Γ(α+1)(t2−t1)α+r|γ|Γ(α+1)(tα2−tα1)+r|γ|Γ(α)[(tα+12−tα+11)+(tα+22−tα+21)]+r|γ|Γ(α+1)[(α+2)(tα+12−tα+11)+(α+1)(tα+22−tα+21)]. | (3.5) |
Also,
|(Zx)′(t2)−(Zx)′(t1)|≤|1Γ(α+β−1)∫t20(t2−s)α+β−2f(s,x(s),x′(s))ds−1Γ(α+β−1)∫t10(t1−s)α+β−2f(s,x(s),x′(s))ds|+|(α+1)(tα2−tα1)+(α+2)(tα+12−tα+11)Γ(α+β−1)∫10(1−s)α+β−2f(s,x(s),x′(s))ds|+|(α+1)(α+2)[(tα+12−tα+11)+(tα2−tα1)]Γ(α+β)∫10(1−s)α+β−1f(s,x(s),x′(s))ds|+|γΓ(α−1)∫t20(t2−s)α−2x(s)ds−γΓ(α−1)∫t10(t1−s)α−2x(s)ds|+|γ(α+1)(α+2)[(tα+12−tα+11)+(tα2−tα1)]Γ(α)∫10(1−s)α−1x(s)ds|+|γ[(α+2)(tα+12−tα+11)+(α+1)(tα2−tα1)]Γ(α−1)∫10(1−s)α−2x(s)ds|≤2MΓ(α+β)(t2−t1)α+β−1+MΓ(α+β)(tα+β−12−tα+β−11)+MΓ(α+β)[(α+1)(tα2−tα1)+(α+2)(tα+12−tα+11)]+MΓ(α+β+1)(α+1)(α+2)[(tα+12−tα+11)+(tα2−tα1)]+2r|γ|Γ(α)(t2−t1)α−1+r|γ|Γ(α)(tα−12−tα−11)+r|γ|(α+1)(α+2)Γ(α+1)[(tα+12−tα+11)+(tα2−tα1)]+r|γ|Γ(α)[(α+2)(tα+12−tα+11)+(α+1)(tα2−tα1)]. | (3.6) |
By (3.5) and (3.6), clearly that the functions (t2−t1)α+β−i, tα+β−i2−tα+β−i1, (t2−t1)α−i (i=0,1) and tα+j2−tα+j1 (j=0,1,2) are uniformly continuous on [0,1]. Then, Z(Ur) is equicontinuous and the Arzela–Ascoli theorem implies that ¯Z(Ur) is compact, hence the operator Z:Ur→Ur is completely continuous. Therefore, by the Schauder fixed-point theorem, we conclude that the problem (1.1) and (1.2) has a solution.
By applying Banach fixed point theorem, we prove the uniqueness of solution of the problem (1.1) and (1.2).
Theorem 3.2. Let the assumptions (A1–A3) are satisfied, then the boundary value problem (1.1) and (1.2) has a uniqueness solution provided that ψ=ψ1+ψ2<1, where
ψ1={14wΓ(α+β+1)+8|γ|Γ(α+1)},ψ2={36wΓ(α+β+1)+18|γ|Γ(α+1)}. |
Proof. For any x,y∈B, t∈[0,1] and by condition (A2), we give
|(Zx)(t)−(Zy)(t)|≤1Γ(α+β)∫t0(t−s)α+β−1|f(s,x(s),x′(s))−f(s,y(s),y′(s))|ds+(α+1)tα+2+(α+2)tα+1Γ(α+β)∫10(1−s)α+β−1|f(s,x(s),x′(s))−f(s,y(s),y′(s))|ds+tα+1+tα+2Γ(α+β−1)∫10(1−s)α+β−2|f(s,x(s),x′(s))−f(s,y(s),y′(s))|ds+|γ|Γ(α)∫t0(t−s)α−1|x(s)−y(s)|ds+|γ|[(α+2)tα+1+(α+1)tα+2]Γ(α)∫10(1−s)α−1|x(s)−y(s)|ds+|γ|[tα+2+tα+1]Γ(α−1)∫10(1−s)α−2|x(s)−y(s)|ds≤w‖x−y‖Γ(α+β)∫t0(t−s)α+β−1ds+5w‖x−y‖Γ(α+β)∫10(1−s)α+β−1ds+2w‖x−y‖Γ(α+β−1)∫10(1−s)α+β−2ds+|γ|‖x−y‖Γ(α)∫t0(t−s)α−1ds+5|γ|‖x−y‖Γ(α)∫10(1−s)α−1ds+2|γ|‖x−y‖Γ(α−1)∫10(1−s)α−2ds≤w‖x−y‖{tα+βΓ(α+β+1)+5Γ(α+β+1)+2Γ(α+β)}+‖x−y‖{|γ|tαΓ(α+1)+5|γ|Γ(α+1)+2|γ|Γ(α)}≤‖x−y‖{14wΓ(α+β+1)+8|γ|Γ(α+1)}=ψ1‖x−y‖, | (3.7) |
and
|(Zx)′(t)−(Ty)′(t)|≤1Γ(α+β−1)∫t0(t−s)α+β−2|f(s,x(s),x′(s))−f(s,y(s),y′(s))|ds+(α+1)(α+2)(tα+1+tα)Γ(α+β)∫10(1−s)α+β−1|f(s,x(s),x′(s))−f(s,y(s),y′(s))|ds+(α+1)tα+(α+2)tα+1Γ(α+β−1)∫10(1−s)α+β−2|f(s,x(s),x′(s))−f(s,y(s),y′(s))|ds+|γ|Γ(α−1)∫t0(t−s)α−2|x(s)−y(s)|ds+|γ|(α+1)(α+2)(tα+tα+1)Γ(α)∫10(1−s)α−1|x(s)−y(s)|ds+|γ|[(α+2)tα+1+(α+1)tα]Γ(α−1)∫10(1−s)α−2|x(s)−y(s)|ds≤w‖x−y‖Γ(α+β−1)∫t0(t−s)α+β−2ds+12w‖x−y‖Γ(α+β)∫10(1−s)α+β−1ds+5w‖x−y‖Γ(α+β−1)∫10(1−s)α+β−2ds+|γ|‖x−y‖Γ(α−1)∫t0(t−s)α−2ds+12|γ|‖x−y‖Γ(α)∫10(1−s)α−1ds+5|γ|‖x−y‖Γ(α−1)∫10(1−s)α−2ds≤w‖x−y‖{tα+β−1Γ(α+β)+12Γ(α+β+1)+5Γ(α+β)}+‖x−y‖{|γ|tα−1Γ(α)+12|γ|Γ(α+1)+5|γ|Γ(α)}≤‖x−y‖{36wΓ(α+β+1)+18|γ|Γ(α+1)}=ψ2‖x−y‖. | (3.8) |
Using (3.7) and (3.8), we obtain
‖Zx−Zy‖≤ψ‖x−y‖, |
where ψ<1. Hence the operator Z is a contraction operator and the contraction mapping principle implies that the problem (1.1) and (1.2) has a unique solution.
In the following examples, we investigate the existence and uniqueness of solutions to fractional Langevin equations.
Example 3.3. Consider the following nonlinear Langevin equation of fractional orders
{cD520+(cD120++15)u(t)=f(t,u(t),u′(t)), t∈(0,1),u(0)=u(1)=0, u′(0)=u′(1)=0, | (3.9) |
where f(t,u(t),u′(t))=tan−1t+(t−13)2(u(t))τ1+te(u′(t))τ2, 0<τ1,τ2<1. Observe that the function f is continuous, also
|f(t,u(t),u′(t))|≤t+(t−13)2|u(t)|τ1+te|u′(t)|τ2≤1+49|u(t)|τ1+1e|u′(t)|τ2. |
Thus, the assumptions (A1) and (A2) are satisfied and Theorem 3.1 implies that the problem (3.9) has a solution.
Example 3.4. Consider the following boundary value problem of fractional orders
{cD2.80+(cD0.80++0.1)u(t)=u′(t)−tan−1u(t)4(t+2)2, t∈(0,1)u(0)=u(1)=0, u′(0)=u′(1)=0, | (3.10) |
Here, β=2.8, α=0.8, γ=0.1 and f(t,u(t),u′(t))=u′(t)−tan−1u(t)4(t+1)2. Clearly that the function f is continuous and
|f(t,u(t),u′(t))−f(t,v(t),v′(t))|≤14(t+1)2(|u′(t)−v′(t)|+|tan−1u(t)−tan−1v(t)|)≤116(|u′(t)−v′(t)|+|u(t)−v(t)|). |
So w=116, also, Ψ1=14wΓ(α+β+1)+8|γ|Γ(α+1)=14(1/16)Γ(0.8+2.8+1)+8(0.1)Γ(2.8+1)≈0.2358 and\newline Ψ2=36wΓ(α+β+1)+18|γ|Γ(α+1)=36(1/16)Γ(0.8+2.8+1)+18(0.1)Γ(2.8+1)≈0.5516, then Ψ1+Ψ2≈0.7874<1. Hence the assumptions (A1–A3) are satisfied. Thus by applying Theorem 3.2, the BVP (3.10) has a unique solution.
We have provided a generalization of the nonlinear Langevin equation of fractional orders with boundary conditions. By considering the Banach space C1[0,1] be equipped with the norm ‖x‖=maxt∈[0,1]|x(t)|+maxt∈[0,1]|x′(t)|, under the assumptions (A1) and (A3), we have shown the existence of solution for BVP (1.1) and (1.2). Then, the uniqueness of solution of the problem is proved by Banach fixed point theorem. Also, we have proposed an example to illustrate the results. In future researches, we can investigate the Langevin equations with different fractional derivatives and new boundary value conditions. Moreover, the existence results for the stochastic type of Langevin equation has not been studied so far.
The authors declare no conflict of interest.
[1] |
B. Ahmad, J. J. Nieto, Solvability of nonlinear Langevin equation involving two fractional orders with Dirichlet boundary conditions, Int. J. Differ. Equ., 2010 (2010), 649486. doi: 10.1155/2010/649486. doi: 10.1155/2010/649486
![]() |
[2] |
B. Ahmad, J. J. Nieto, A. Alsaedi, H. Al-Hutami, On a q-fractional variant of nonlinear Langevin equation of different orders, J. Contemp. Mathemat. Anal., 49 (2014), 277–286. doi: 10.3103/S1068362314060041. doi: 10.3103/S1068362314060041
![]() |
[3] | Z. Czechowski, Modelling of persistent time series by the nonlinear Langevin equation, In: Complexity of seismic time series, Elsevier, 2018,141–160. doi: 10.1016/B978-0-12-813138-1.00005-5. |
[4] |
R. Darzi, B. Agheli, J. J. Nieto, Langevin equation involving three fractional orders, J. Stat. Phys., 178 (2020), 986–995. doi: 10.1007/s10955-019-02476-0. doi: 10.1007/s10955-019-02476-0
![]() |
[5] | S. Fallah, F. Mehrdoust, On the existence and uniqueness of the solution to the double Heston model equation and valuing Lookback option, J. Comput. Appl. Math., 350 (2019), 412–422. doi: 10.1016/j.cam.2018.10.045. |
[6] |
H. Fazli, J. J. Nieto, Fractional Langevin equation with anti-periodic boundary conditions, Chaos, Soliton. Fract., 114 (2018), 332–337. doi: 10.1016/j.chaos.2018.07.009. doi: 10.1016/j.chaos.2018.07.009
![]() |
[7] |
A. Khan, H. Khan, J. F. Gómez-Aguilar, T. Abdeljawad, Existence and Hyers-Ulam stability for a nonlinear singular fractional differential equations with Mittag-Leffler kernel, Chaos Soliton. Fract., 127 (2019), 422–427. doi: 10.1016/j.chaos.2019.07.026. doi: 10.1016/j.chaos.2019.07.026
![]() |
[8] |
A. Khan, J. F. Gómez-Aguilar, T. S. Khan, H. Khan, Stability analysis and numerical solutions of fractional order HIV/AIDS model, Chaos Soliton. Fract., 122 (2019), 119–128. doi: 10.1016/j.chaos.2019.03.022. doi: 10.1016/j.chaos.2019.03.022
![]() |
[9] |
H. Khan, J.F. Gómez-Aguilar, A. Alkhazzan, A. Khan, A fractional order HIV-TB coinfection model with nonsingular Mittag-Leffler Law, Math. Method. Appl. Sci., 43 (2020), 3786–3806. doi: 10.1002/mma.6155. doi: 10.1002/mma.6155
![]() |
[10] | A. Khan, T. Abdeljawad, J. F. Gómez-Aguilar, H. Khan, Dynamical study of fractional order mutualism parasitism food web module, Chaos, Chaos Soliton. Fract. 134 (2020), 109685. doi: 10.1016/j.chaos.2020.109685. |
[11] | A. Khan, H. M. Alshehri, T. Abdeljawad, Q. M. Al-Mdallal, H. Khan, Stability analysis of fractional nabla difference COVID-19 model, Res. Phys. 22 (2021), 103888. doi: 10.1016/j.rinp.2021.103888. |
[12] |
A. Khan, H. M. Alshehri, J. F. Gómez-Aguilar, Z. A. Khan, G. Fernández-Anaya, A predator–prey model involving variable-order fractional differential equations with Mittag-Leffler kernel, Adv. Differ. Equ., 2021 (2021), 183. doi: 10.1186/s13662-021-03340-w. doi: 10.1186/s13662-021-03340-w
![]() |
[13] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and application of fractional differential equations, Netherlands: Elsevier, 2006. |
[14] | P. Langevin, On the theory of Brownian motion, Compt. Rendus, 146 (1908), 530–533. |
[15] |
J. T. Lü, B. Z. Hu, P. Hedegȧrd, M. Brandbyge, Semi-classical generalized Langevin equation for equilibrium and nonequilibrium molecular dynamics simulation, Prog. Surf. Sci., 94 (2019), 21–40. doi: 10.1016/j.progsurf.2018.07.002. doi: 10.1016/j.progsurf.2018.07.002
![]() |
[16] |
W. Lv, Existence of solutions for discrete fractional difference inclusions with boundary conditions, J. Contemp. Mathemat. Anal., 52 (2017), 261–266. doi: 10.3103/S1068362317060012. doi: 10.3103/S1068362317060012
![]() |
[17] |
H. R. Marasi, H. Afshari, M. Daneshbastam, C. B. Zhai, Fixed points of mixed monotone operators for existence and uniqueness of nonlinear fractional differential equations, J. Contemp. Mathemat. Anal., 52 (2017), 8–13. doi: 10.3103/S1068362317010022. doi: 10.3103/S1068362317010022
![]() |
[18] |
P. Mendoza-Méndez, L. López-Flores, A. Vizcarra-Rendón, L. E. Sánchez-Díaz, M. Medina-Noyola, Generalized Langevin equation for tracer diffusion in atomic liquids, Physica A, 394 (2014), 1–16. doi: 10.1016/j.physa.2013.09.061. doi: 10.1016/j.physa.2013.09.061
![]() |
[19] |
M. Pineda, M. Stamatakis, On the stochastic modelling of surface reactions through reflected chemical Langevin equations, Comput. Chem. Eng., 117 (2018), 145–158. doi: 10.1016/j.compchemeng.2018.05.003. doi: 10.1016/j.compchemeng.2018.05.003
![]() |
[20] | I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, San Diego: Academic Press, 1998. |
[21] |
B. K. Sahu, O. Chadli, R. N. Mohapatra, S. Pani, Existence of solutions for extended generalized complementarity problems, Positivity, 25 (2021), 769–789. doi: 10.1007/s11117-020-00786-2. doi: 10.1007/s11117-020-00786-2
![]() |
[22] |
Q. Zhang, X. M. Deng, Q. Y. Bie, Existence and uniqueness of mild solutions to the incompressible nematic liquid crystal flow, Comput. Math. Appl., 77 (2019), 2489–2498. doi: 10.1016/j.camwa.2018.12.036. doi: 10.1016/j.camwa.2018.12.036
![]() |
1. | McSylvester Ejighikeme Omaba, Eze R. Nwaeze, On a Nonlinear Fractional Langevin Equation of Two Fractional Orders with a Multiplicative Noise, 2022, 6, 2504-3110, 290, 10.3390/fractalfract6060290 | |
2. | Kaihong Zhao, Stability of a Nonlinear Langevin System of ML-Type Fractional Derivative Affected by Time-Varying Delays and Differential Feedback Control, 2022, 6, 2504-3110, 725, 10.3390/fractalfract6120725 | |
3. | Hacen Serrai, Brahim Tellab, Sina Etemad, İbrahim Avcı, Shahram Rezapour, Ψ-Bielecki-type norm inequalities for a generalized Sturm–Liouville–Langevin differential equation involving Ψ-Caputo fractional derivative, 2024, 2024, 1687-2770, 10.1186/s13661-024-01863-1 |