This paper applies two computational techniques for constructing novel solitary wave solutions of the ill-posed Boussinesq dynamic wave (IPB) equation. Jacques Hadamard has formulated this model for studying the dynamic behavior of waves in shallow water under gravity. Extended simple equation (ESE) method and novel Riccati expansion (NRE) method have been applied to the investigated model's converted nonlinear ordinary differential equation through the wave transformation. As a result of this research, many solitary wave solutions have been obtained and represented in different figures in two-dimensional, three-dimensional, and density plots. The explanation of the methods used shows their dynamics and effectiveness in dealing with certain nonlinear evolution equations.
Citation: Mostafa M. A. Khater, S. H. Alfalqi, J. F. Alzaidi, Samir A. Salama, Fuzhang Wang. Plenty of wave solutions to the ill-posed Boussinesq dynamic wave equation under shallow water beneath gravity[J]. AIMS Mathematics, 2022, 7(1): 54-81. doi: 10.3934/math.2022004
[1] | Pinhong Long, Huo Tang, Wenshuai Wang . Functional inequalities for several classes of q-starlike and q-convex type analytic and multivalent functions using a generalized Bernardi integral operator. AIMS Mathematics, 2021, 6(2): 1191-1208. doi: 10.3934/math.2021073 |
[2] | Pinhong Long, Xing Li, Gangadharan Murugusundaramoorthy, Wenshuai Wang . The Fekete-Szegö type inequalities for certain subclasses analytic functions associated with petal shaped region. AIMS Mathematics, 2021, 6(6): 6087-6106. doi: 10.3934/math.2021357 |
[3] | N. E. Cho, G. Murugusundaramoorthy, K. R. Karthikeyan, S. Sivasubramanian . Properties of λ-pseudo-starlike functions with respect to a boundary point. AIMS Mathematics, 2022, 7(5): 8701-8714. doi: 10.3934/math.2022486 |
[4] | Luminiţa-Ioana Cotîrlǎ . New classes of analytic and bi-univalent functions. AIMS Mathematics, 2021, 6(10): 10642-10651. doi: 10.3934/math.2021618 |
[5] | Mohammad Faisal Khan, Jongsuk Ro, Muhammad Ghaffar Khan . Sharp estimate for starlikeness related to a tangent domain. AIMS Mathematics, 2024, 9(8): 20721-20741. doi: 10.3934/math.20241007 |
[6] | Muhammad Ghaffar Khan, Sheza.M. El-Deeb, Daniel Breaz, Wali Khan Mashwani, Bakhtiar Ahmad . Sufficiency criteria for a class of convex functions connected with tangent function. AIMS Mathematics, 2024, 9(7): 18608-18624. doi: 10.3934/math.2024906 |
[7] | Sadaf Umar, Muhammad Arif, Mohsan Raza, See Keong Lee . On a subclass related to Bazilevič functions. AIMS Mathematics, 2020, 5(3): 2040-2056. doi: 10.3934/math.2020135 |
[8] | Aoen, Shuhai Li, Tula, Shuwen Li, Hang Gao . New subclass of generalized close-to-convex function related with quasi-subordination. AIMS Mathematics, 2025, 10(5): 12149-12167. doi: 10.3934/math.2025551 |
[9] | Huo Tang, Gangadharan Murugusundaramoorthy, Shu-Hai Li, Li-Na Ma . Fekete-Szegö and Hankel inequalities for certain class of analytic functions related to the sine function. AIMS Mathematics, 2022, 7(4): 6365-6380. doi: 10.3934/math.2022354 |
[10] | Kholood M. Alsager, Sheza M. El-Deeb, Ala Amourah, Jongsuk Ro . Some results for the family of holomorphic functions associated with the Babalola operator and combination binomial series. AIMS Mathematics, 2024, 9(10): 29370-29385. doi: 10.3934/math.20241423 |
This paper applies two computational techniques for constructing novel solitary wave solutions of the ill-posed Boussinesq dynamic wave (IPB) equation. Jacques Hadamard has formulated this model for studying the dynamic behavior of waves in shallow water under gravity. Extended simple equation (ESE) method and novel Riccati expansion (NRE) method have been applied to the investigated model's converted nonlinear ordinary differential equation through the wave transformation. As a result of this research, many solitary wave solutions have been obtained and represented in different figures in two-dimensional, three-dimensional, and density plots. The explanation of the methods used shows their dynamics and effectiveness in dealing with certain nonlinear evolution equations.
Let A denote the class of functions of the form:
f(z)=z+∞∑n=2anzn, | (1.1) |
which are analytic in the open unit disk U={z:|z|<1}. Also let S denote the subclass of A consisting of univalent functions in U. It is well-known that for f∈S, |a3−a22|≤1. A classical theorem of Fekete-Szegö [8] states that for f∈S given by (1.1)
|a3−ηa22|≤{3−4η,ifη≤0,1+2exp(−2η1−η),if0<η<1,4η−3,ifη≥1. |
The latter inequality is sharp in the sense that for each η there exists a function in S such that the equality holds. Later, Pfluger [24] has considered the complex values of η and provided the inequality
|a3−ηa22|≤1+2|exp(−2η1−η)|. |
Indeed, many authors have considered the Fekete-Szegö problem for various subclasses of A, the upper bound for |a3−ηa22| is investigated by various authors [1,5,6,13,16,17], see also recent investigations on this subject by [7,11,21,22,23].
A function f∈A is said to be in the class S∗ of starlike functions in U, if
ℜ(zf′(z)f(z))>0 (z∈U). |
On the other hand, a function f∈A is said to be in the class of convex functions in U, denoted by C, if
ℜ(1+zf′′(z)f′(z))>0 (z∈U). |
A function f∈A is said to be in the class of starlike functions of complex order b(b∈C−{0}), denoted by S∗(b), provided that
ℜ{1+1b(zf′(z)f(z)−1)}>0 (z∈U). |
Furthermore, a function f∈C(b) is convex functions of complex order b(b∈C−{0}) if it satisfies the inequality
ℜ{1+1b(zf′′(z)f′(z))}>0 (z∈U). |
Note that S∗(1)=S∗ and C(1)=C.
The class S∗(b) of starlike functions of complex order b(b∈C−{0}) was introduced by Nasr and Aouf [19] while the class C(b) of convex functions of complex order b(b∈C−{0}) was presented earlier by Wiatrowski [28].
Sãlãgean [26] introduced the following differential operator for f(z)∈A which is called the Sãlãgean differential operator:
D0f(z)=f(z)D1f(z)=Df(z)=zf′(z)Dkf(z)=D(Dk−1f(z))(k∈N=1,2,3,...). |
We note that,
Dkf(z)=z+∞∑n=2nkanzn(k∈N0=N∪{0}). | (1.2) |
Recently, Komatu [14] introduced a certain integral operator Lδa defined by
Lδaf(z)=aδΓ(δ)1∫0ta−2(log1t)δ−1f(zt)dt(a>0, δ≥0, f(z)∈A, z∈U). | (1.3) |
Thus, if f(z)∈A is of the form (1.1), it is easily seen from (1.3) that [14]
Lδaf(z)=z+∞∑n=2(aa+n−1)δanzn(a>0, δ≥0). | (1.4) |
We note that:
● L0af(z)=f(z);
● L11f(z)=A[f](z) known as Alexander operator [2];
● L12f(z)=L[f](z) known as Libera operator [15];
● L1c+1f(z)=Lc[f](z) called generalized Libera operator or Bernardi operator [3];
● For a=1 and δ=k (k is any integer), the multiplier transformation Lk1f(z)=Ikf(z) was studied by Flett [9] and Sãlãgean [26];
● For a=1 and δ=−k (k∈N0=N∪{0}), the differential operator L−k1f(z)=Dkf(z) was studied by Sãlãgean [26];
● For a=2 and δ=k (k is any integer), the operator Lk2f(z)=Lkf(z) was studied by Uralegaddi and Somanatha [27];
● For a=2, the multiplier transformation Lδ2f(z)=Iδf(z) was studied by Jung et al. [10].
For Dkf(z) given by (1.2) and Lδaf(z) is given by (1.4), we define the differential operator DkLδaf(z) as follows:
DkLδaf(z)=z+∞∑n=2nk(aa+n−1)δanzn. | (1.5) |
Note that, by taking δ=0 and k=0 in (1.5), the differential operator DkLδaf(z) reduces to Sãl ãgean differential operator and Komatu integral operator, respectively.
Using the operator DkLδaf, we now introduce a new subclass of analytic functions as follows:
Definition 1. A function f∈A is said to be in the class Nk,δa(λ,b) if satisfies the inequality
ℜ(1+1b(z(DkLδaf(z))′+λz2(DkLδaf(z))′′(1−λ)DkLδaf(z)+λz(DkLδaf(z))′−1))>0 |
(a>0, b∈C−{0}, δ≥0, 0≤λ≤1, k∈N=1,2,3,..., z∈U). |
Note that, N0,0a(0,b)=S∗(b) and N0,0a(1,b)=C(b).
By giving specific values to the parameters and a,b,k,δ and λ, we obtain the following important subclasses studied by various authors in earlier works, for instance; N0,δa(0,b) and N0,δa(1,b) (Bulut [4]), N0,δa(λ,1) (Mohapatra and Panigrahi [18]), N0,0a(0,b)=S∗(b) (Nars and Aouf [19]), N0,0a(1,b)=C(b) (Wiatrowski [28], Nars and Aouf [20]).
In this paper, we find an upper bound for the functional |a3−ηa22| for the functions f belongs to the class Nk,δa(λ,b).
We denote by P a class of analytic function in U with p(0)=1 and ℜp(z)>0. In order to derive our main results, we have to recall here the following lemma [25].
Lemma 1. Let p∈P with p(z)=1+c1z+c2z2+...., then
|cn|≤2forn≥1. |
If |c1|=2 then p(z)≡p1(z)=(1+γ1z)/(1−γ1z) with γ1=c1/2. Conversely, if p(z)≡p1(z) for some |γ1|=1, then c1=2γ1 and |c1|=2. Furthermore, we have
|c2−c212|≤2−|c1|22. |
If |c1|<2 and |c2−c212|≤2−|c1|22, then p(z)≡p2(z), where p2(z)=1+zγ2z+γ11+¯γ1γ2z1−zγ2z+γ11+¯γ1γ2z, and γ1=c1/2, γ2=2c2−c214−|c1|2. Conversely, if p(z)≡p2(z) for some |γ1|<1 and |γ2|=1 then γ1=c1/2, γ2=2c2−c214−|c1|2 and |c2−c212|≤2−|c1|22.
Now, consider the functional |a3−ηa22| for b∈C−{0} and η∈C.
Theorem 1. Let b∈C−{0} and 0≤λ≤1, η∈C, a>0, δ≥0. If f of the form (1.1) is in Nk,δa(λ,b), then
|a2|≤2|b|(λ+1)Aδ12k, | (2.1) |
|a3|≤|b|(2λ+1)Aδ23kmax{1,|1+2b|} | (2.2) |
and
|a3−ηa22|≤|b|(2λ+1)Aδ23kmax{1,|1+2b−4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k|} | (2.3) |
where A1=(aa+1) and A2=(aa+2). Consider the functions
z(Fk,δλ,a(z))′Fk,δλ,a(z)=1+b[p1(z)−1] | (2.4) |
z(Fk,δλ,a(z))′Fk,δλ,a(z)=1+b[p2(z)−1] | (2.5) |
where p1, p2 are given in Lemma 1. Equality in (2.1) holds if (2.4); in (2.2) if (2.4) and (2.5); for each η in (2.3) if (2.4) and (2.5).
Proof. Denote Fk,δλ,a(z)=(1−λ)DkLδaf(z)+λz(DkLδaf(z))′=z+β2z2+β3z3+...., then
β2=(λ+1)Aδ12ka2,β3=(2λ+1)Aδ23ka3. | (2.6) |
By the definition of the class Nk,δa(λ,b), there exists p∈P such that z(Fk,δλ,a(z))′Fk,δλ,a(z)=1+b(p(z)−1), so that
(z(1+2β2z+3β3z2+...)z+β2z2+β3z3+....)=1−b+b(1+c1z+c2z2+...), |
which implies the equality
z+2β2z2+3β3z3+...=z+(bc1+β2)z2+(bc2+β2bc1+β3)z3+.... |
Equating the coefficients of both sides of the latter, we have
β2=bc1, β3=b2c212+bc22, | (2.7) |
so that, on account of (2.6) and (2.7)
a2=bc1(λ+1)Aδ12k,a3=b2(2λ+1)Aδ23k(bc21+c2). | (2.8) |
Taking into account (2.8) and Lemma 1, we obtain
|a2|=|b(λ+1)Aδ12kc1|≤2|b|(λ+1)Aδ12k | (2.9) |
and
|a3|=|b2(2λ+1)Aδ23k[c2−c212+1+2b2c21]|≤|b|2(2λ+1)Aδ23k[2−|c21|2+|1+2b||c21|2]=|b|(2λ+1)Aδ23k[1+|c1|2+|1+2b|−12]≤|b|(2λ+1)Aδ23kmax{1,[1+|1+2b|−1]}. |
Thus, we have
|a3|≤|b|(2λ+1)Aδ23kmax{1,|1+2b|}. |
Then, with the aid of Lemma 1, we obtain
|a3−ηa22|=|b2(2λ+1)Aδ23k(bc21+c2)−ηb2c21(λ+1)2A2δ122k|≤|b|2(2λ+1)Aδ23k[|c2−c212|+|c21|2|1+2b−4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k|]≤|b|2(2λ+1)Aδ23k[2−|c21|2+|c21|2|1+2b−4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k|]=|b|(2λ+1)Aδ23k[1+|c21|4(|1+2b−4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k|−1)]≤|b|(2λ+1)Aδ23kmax{1,|1+2b−4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k|}. | (2.10) |
We now obtain sharpness of the estimates in (2.1), (2.2) and (2.3).
Firstly, in (2.1) the equality holds if c1=2. Equivalently, we have p(z)≡p1(z)=(1+z)/(1−z). Therefore, the extremal functions in Nk,δa(λ,b) is given by
z(Fk,δλ,a(z))′Fk,δλ,a(z)=1+(2b−1)z1−z. | (2.11) |
Next, in (2.2), for first case, the equality holds if c1=c2=2. Therefore, the extremal functions in Nk,δa(λ,b) is given by (2.11) and for the second case, the equality holds if c1=0, c2=2. Equivalently, we have p(z)≡p2(z)=(1+z2)/(1−z2). Therefore, the extremal functions in Nk,δa(λ,b) is given by
z(Fk,δλ,a(z))′Fk,δλ,a(z)=1+(2b−1)z21−z2. | (2.12) |
Finally, in (2.3), the equality holds. Obtained extremal functions for (2.2) is also valid for (2.3).
Thus, the proof of Theorem 1 is completed.
Taking k=0 and λ=0 in Theorem 1, we have
Corollary 1. [4] Let b∈C−{0}, η∈C, a>0 and δ≥0. If f of the form (1.1), is in N0,δa(0,b), then
|a2|≤2|b|Aδ1, |
|a3|≤|b|Aδ2max{1,|1+2b|} |
and
|a3−ηa22|≤|b|Aδ2max{1,|1+2b−4ηbAδ2A2δ1|} |
where A1=(aa+1) and A2=(aa+2).
If we choose k=0 and λ=1 in Theorem 1, we get
Corollary 2. [4] Let b∈C−{0}, η∈C, a>0 and δ≥0. If f of the form (1.1), is in N0,δa(1,b), then
|a2|≤|b|Aδ1, |
|a3|≤|b|3Aδ2max{1,|1+2b|} |
and
|a3−ηa22|≤|b|3Aδ2max{1,|1+2b−3ηbAδ2A2δ1|} |
where A1=(aa+1) and A2=(aa+2).
For k=0, δ=0, λ=0 and b=1 in (2.3), we obtain
Corollary 3. [12] Let η∈C. If f of the form (1.1), is in S∗(1), then
|a3−ηa22|≤max{1,|4η−3|}. |
Taking k=0, δ=0, λ=1 and b=1 in (2.3), we have
Corollary 4. [12] Let η∈C. If f of the form (1.1), is in C(1), then
|a3−ηa22|≤max{13,|η−1|} |
We next consider the case, when η and b are real. In this case, the following theorem holds.
Theorem 2. Let b>0 and let Nk,δa(λ,b). Then for η∈R, we have
|a3−ηa22|≤{b(2λ+1)Aδ23k{1+2b[1−2η(2λ+1)Aδ23k(λ+1)2A2δ122k]},η≤M1,b(2λ+1)Aδ23k,M1≤η≤M2,b(2λ+1)Aδ23k[4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k−2b−1],η≥M2, |
where A1=(aa+1), A2=(aa+2), M1=(λ+1)2A2δ122k2(2λ+1)Aδ23k and M2=(1+2b)(λ+1)2A2δ122k4b(2λ+1)Aδ23k. For each η, the equality holds for the functions given in equations (2.4) and (2.5).
Proof. First, let η≤(λ+1)2A2δ122k2(2λ+1)Aδ23k≤(1+2b)(λ+1)2A2δ122k4b(2λ+1)Aδ23k. In this case it follows from (2.8) and Lemma 1 that
|a3−ηa22|≤b2(2λ+1)Aδ23k[2−|c21|2+|c21|2(1+2b−4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k)]≤b(2λ+1)Aδ23k[1+2b(1−2η(2λ+1)Aδ23k(λ+1)2A2δ122k)]. |
Let, now (λ+1)2A2δ122k2(2λ+1)Aδ23k≤η≤(1+2b)(λ+1)2A2δ122k4b(2λ+1)Aδ23k. Then, using the estimations obtained above we arrived
|a3−ηa22|≤b(2λ+1)Aδ23k. |
Finally, if η≥(1+2b)(λ+1)2A2δ122k4b(2λ+1)Aδ23k, then
|a3−ηa22|≤b2(2λ+1)Aδ23k[2−|c21|2+|c21|2(4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k−1−2b)]=b2(2λ+1)Aδ23k[2+|c21|2(4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k−2−2b)]≤b(2λ+1)Aδ23k[4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k−2b−1]. |
Thus, the proof of Theorem 2 is completed.
Taking k=0 and λ=0 in Theorem 2, we have
Corollary 5. [4] Let b>0 and let N0,δa(0,b). Then for η∈R, we have
|a3−ηa22|≤{bAδ2{1+2b(1−2ηAδ2A2δ1)},η≤A2δ12Aδ2,bAδ2,A2δ12Aδ2≤η≤(1+2b)A2δ14bAδ2,bAδ2[4ηbAδ2A2δ1−2b−1],η≥(1+2b)A2δ14bAδ2, |
where A1=(aa+1) and A2=(aa+2).
Finally, considering the case of b∈C−{0} and η∈R, we obtain
Theorem 3. Let b∈C−{0} and let f∈Nk,δa(λ,b). For η∈R, we have
|a3−ηa22|≤{4|b|2(λ+1)2A2δ122k[ℜ(k1)−η]+|b||sinθ|(2λ+1)Aδ23k,ifη≤T1,|b|(2λ+1)Aδ23k,ifT1≤η≤T2,4|b|2(λ+1)2A2δ122k[η−ℜ(k1)]+|b||sinθ|(2λ+1)Aδ23k,ifη≥T2, |
where A1=(aa+1) and A2=(aa+2), |b|=beiθ, k1=(λ+1)2A2δ122k2(2λ+1)Aδ23k+(λ+1)2A2δ122keiθ4|b|(2λ+1)Aδ23k, l1=(λ+1)2A2δ122k4|b|(2λ+1)Aδ23k, T1=ℜ(k1)−l1(1−|sinθ|) and T2=ℜ(k1)+l1(1−|sinθ|). For each η there is a function in Nk,δa(λ,b) such that the equality holds.
Proof. From inequality (2.10), we may write
|a3−ηa22|=|b|2(2λ+1)Aδ23k[|c2−c212|+|c21|2|1+2b−4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k|]≤|b|2(2λ+1)Aδ23k[2−|c21|2+|c21|2|1+2b−4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k|]=|b|2(2λ+1)Aδ23k[|c21|2(|1+2b−4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k|−1)+2]=|b|(2λ+1)Aδ23k+|b|4(2λ+1)Aδ23k[|4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k−2b−1|−1]|c21|=|b|(2λ+1)Aδ23k+|b|2(λ+1)2A2δ122k×[|η−(λ+1)2A2δ122k2(2λ+1)Aδ23k−(λ+1)2A2δ122k4b(2λ+1)Aδ23k|−(λ+1)2A2δ122k4|b|(2λ+1)Aδ23k]|c21|. |
If we write |b|=beiθ (or b=|b|e−iθ), k1=(λ+1)2A2δ122k2(2λ+1)Aδ23k+(λ+1)2A2δ122keiθ4|b|(2λ+1)Aδ23k and l1=(λ+1)2A2δ122k4|b|(2λ+1)Aδ23k in the last inequality, we get
|a3−ηa22|≤|b|(2λ+1)Aδ23k+|b|2(λ+1)2A2δ122k[|η−k1|−l1]|c21|≤|b|(2λ+1)Aδ23k+|b|2(λ+1)2A2δ122k[|η−ℜ(k1)|+l1|sinθ|−l1]|c21|=|b|(2λ+1)Aδ23k+|b|2(λ+1)2A2δ122k[|η−ℜ(k1)|−l1(1−|sinθ|)]|c21|. | (2.13) |
We consider the following cases for (2.13). Suppose η≤ℜ(k1). Then
|a3−ηa22|≤|b|(2λ+1)Aδ23k+|b|2(λ+1)2A2δ122k[ℜ(k1)−l1(1−|sinθ|)−η]|c21|=|b|(2λ+1)Aδ23k+|b|2(λ+1)2A2δ122k[T1−η]|c21|. | (2.14) |
Let η≤T1=ℜ(k1)−l1(1−|sinθ|). On using Lemma 1 and l1=(λ+1)2A2δ122k4|b|(2λ+1)Aδ23k in inequality (2.14), we get
|a3−ηa22|≤|b|(2λ+1)Aδ23k+4|b|2(λ+1)2A2δ122k(ℜ(k1)−η)−|b|(2λ+1)Aδ23k(1−|sinθ|)=4|b|2(λ+1)2A2δ122k(ℜ(k1)−η)+|b||sinθ|(2λ+1)Aδ23k. |
If we take T1=ℜ(k1)−l1(1−|sinθ|)≤η≤ℜ(k1), then (2.14) gives
|a3−ηa22|≤|b|(2λ+1)Aδ23k. |
Let η≥ℜ(k1). It then follows, from (2.13), that
|a3−ηa22|≤|b|(2λ+1)Aδ23k+|b|2(λ+1)2A2δ122k[η−ℜ(k1)+l1(1−|sinθ|)]|c21|=|b|(2λ+1)Aδ23k+|b|2(λ+1)2A2δ122k[η−T1]|c21|. | (2.15) |
Let η≤T2=ℜ(k1)+l1(1−|sinθ|). On using (2.15) we obtain
|a3−ηa22|≤|b|(2λ+1)Aδ23k. |
Let η≥T2=ℜ(k1)+l1(1−|sinθ|). Employing Lemma 1 together with l1=(λ+1)2A2δ122k4|b|(2λ+1)Aδ23k in equality (2.15), we obtain
|a3−ηa22|≤|b|(2λ+1)Aδ23k+4|b|2(λ+1)2A2δ122k(η−ℜ(k1))−|b|(2λ+1)Aδ23k(1−|sinθ|)≤4|b|2(λ+1)2A2δ122k(η−ℜ(k1))+|b||sinθ|(2λ+1)Aδ23k. |
Therefore, the proof is completed.
Corollary 6. If we take a=1 in Theorems 2.1-2.3, we have the following results, respectively:
1. Let b∈C−{0} and f∈Nk,δ1(λ,b). Then, for η∈C, we have
|a2|≤|b|(λ+1)2k−δ−1, |
|a3|≤|b|(2λ+1)3k−δmax{1,|1+2b|} |
and
|a3−ηa22|≤|b|(2λ+1)3k−δmax{1,|1+2b−4ηb(2λ+1)(λ+1)2(34)k−δ|}. |
Equality holds for the cases a=1 of (2.4) and (2.5) in Theorem 2.1.
2. Let b>0 and f∈Nk,δ1(λ,b).Then, for η∈R, we have
|a3−ηa22|≤{b(2λ+1)3k−δ{1+2b[1−2η(2λ+1)(λ+1)2(34)k−δ]},ifη≤Y1,b(2λ+1)3k−δ,ifY1≤η≤Y2,b(2λ+1)3k−δ[4ηb(2λ+1)(λ+1)2(34)k−δ−2b−1],ifη≥Y2, |
where Y1=(λ+1)22(2λ+1)(43)k−δ and Y2=(1+2b)(λ+1)24b(2λ+1)(43)k−δ. For each η, the equality holds for the cases a=1 of (2.4) and (2.5).
3. Let b∈C−{0} and f∈Nk,δ1(λ,b). Then, for η∈R, we have
|a3−ηa22|≤{|b|2(λ+1)24k−δ−1[ℜ(k1)−η]+|b||sinθ|(2λ+1)3k−δ,ifη≤T1,b(2λ+1)3k−δ,ifT1≤η≤T2,|b|2(λ+1)24k−δ−1[η−ℜ(k1)]+|b||sinθ|(2λ+1)3k−δ,ifη≥T2, |
where |b|=beiθ, k1=(λ+1)22(2λ+1)(43)k−δ−(43)k−δ(λ+1)2eiθ4|b|(2λ+1), l1=(43)k−δ(λ+1)24|b|(2λ+1), T1=ℜ(k1)−l1(1−|sinθ|) and T2=ℜ(k1)+l1(1−|sinθ|). For each η there is a function in Nk,δ1(λ,b) such that the equality holds.
The authors would like to thank the anonymous referees for the useful improvements suggested.
All authors declare no conflicts of interest.
[1] |
D. D. Holm, J. E. Marsden, T. S. Ratiu, The euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. Math., 137 (1998), 1–81. doi: 10.1006/aima.1998.1721. doi: 10.1006/aima.1998.1721
![]() |
[2] |
V. I. Sbitnev, Bohmian trajectories and the path integral paradigm: Complexified lagrangian mechanics, Int. J. Bifurcat. Chaos, 19 (2009), 2335–2346. doi: 10.1142/S0218127409024104. doi: 10.1142/S0218127409024104
![]() |
[3] |
M. M. Khater, M. Inc, K. Nisar, R. A. Attia, Multi-solitons, lumps, and breath solutions of the water wave propagation with surface tension via four recent computational schemes, Ain Shams Eng. J., 12 (2021), 3031–3041. doi: 10.1016/j.asej.2020.10.029. doi: 10.1016/j.asej.2020.10.029
![]() |
[4] |
M. M. Khater, M. S. Mohamed, R. A. Attia, On semi analytical and numerical simulations for a mathematical biological model; the time-fractional nonlinear Kolmogorov-Petrovskii-Piskunov (KPP) equation, Chaos Soliton. Fract., 144 (2021), 110676. doi: 10.1016/j.chaos.2021.110676. doi: 10.1016/j.chaos.2021.110676
![]() |
[5] | M. M. Khater, A. Mousa, M. El-Shorbagy, R. A. Attia, Analytical and semi-analytical solutions for Phi-four equation through three recent schemes, Results Phys., 2021, 103954. doi: 10.1016/j.rinp.2021.103954. |
[6] |
M. M. Khater, A. E. S. Ahmed, M. El-Shorbagy, Abundant stable computational solutions of Atangana-Baleanu fractional nonlinear HIV-1 infection of CD4+ T-cells of immunodeficiency syndrome, Results Phys., 144 (2021), 103890. doi: 10.1016/j.rinp.2021.103890. doi: 10.1016/j.rinp.2021.103890
![]() |
[7] |
M. M. Khater, S. Anwar, K. U. Tariq, M. S. Mohamed, Some optical soliton solutions to the perturbed nonlinear Schrödinger equation by modified Khater method, AIP Adv., 11 (2021), 025130. doi: 10.1063/5.0038671. doi: 10.1063/5.0038671
![]() |
[8] |
M. M. Khater, R. A. Attia, A. Bekir, D. Lu, Optical soliton structure of the sub-10-fs-pulse propagation model, J. Opt., 50 (2021), 109–119. doi: 10.1007/s12596-020-00667-7. doi: 10.1007/s12596-020-00667-7
![]() |
[9] |
Y. Chu, M. M. Khater, Y. Hamed, Diverse novel analytical and semi-analytical wave solutions of the generalized (2+1)-dimensional shallow water waves model, AIP Adv., 11 (2021), 015223. doi: 10.1063/5.0036261. doi: 10.1063/5.0036261
![]() |
[10] |
R. A. Attia, D. Baleanu, D. Lu, M. M. Khater, E. S. Ahmed, Computational and numerical simulations for the deoxyribonucleic acid (DNA) model, Discrete Cont. Dyn-S., 14 (2021), 3459–3478. doi: 10.3934/dcdss.2021018. doi: 10.3934/dcdss.2021018
![]() |
[11] |
M. M. Khater, A. Bekir, D. Lu, R. A. Attia, Analytical and semi-analytical solutions for time-fractional Cahn-Allen equation, Math. Method. Appl. Sci., 44 (2021), 2682–2691. doi: 10.1002/mma.6951. doi: 10.1002/mma.6951
![]() |
[12] |
A. Saha, K. K. Ali, H. Rezazadeh, Y. Ghatani, Analytical optical pulses and bifurcation analysis for the traveling optical pulses of the hyperbolic nonlinear Schrödinger equation, Opt. Quant. Electron., 53 (2021), 1–19. doi: 10.1007/s11082-021-02787-1. doi: 10.1007/s11082-021-02787-1
![]() |
[13] |
H. Rezazadeh, M. Odabasi, K. U. Tariq, R. Abazari, H. M. Baskonus, On the conformable nonlinear Schrödinger equation with second order spatiotemporal and group velocity dispersion coefficients, Chinese J. Phys., 72 (2021), 403–414. doi: 10.1016/j.cjph.2021.01.012. doi: 10.1016/j.cjph.2021.01.012
![]() |
[14] |
F. Tchier, A. I. Aliyu, A. Yusuf, Dynamics of solitons to the ill-posed Boussinesq equation, Eur. Phys. J. Plus, 132 (2017), 1–9. doi: 10.1140/epjp/i2017-11430-0. doi: 10.1140/epjp/i2017-11430-0
![]() |
[15] |
S. Duran, M. Askin, T. A. Sulaiman, New soliton properties to the ill-posed Boussinesq equation arising in nonlinear physical science, Int. J. Opt. Control (IJOCTA), 7 (2017), 240–247. doi: 10.11121/ijocta.01.2017.00495. doi: 10.11121/ijocta.01.2017.00495
![]() |
[16] | P. Daripa, W. Hua, A numerical study of an ill-posed Boussinesq equation arising in water waves and nonlinear lattices: Filtering and regularization techniques, Appl. Math. Comput., 101 (1999), 159–207. doi; 10.1016/S0096-3003(98)10070-X. |
[17] |
S. Bibi, N. Ahmed, U. Khan, S. T. Mohyud-Din, Auxiliary equation method for ill-posed Boussinesq equation, Phys. Scripta, 94 (2019), 085213. doi: 10.1088/1402-4896/ab1951. doi: 10.1088/1402-4896/ab1951
![]() |
[18] |
C. Park, M. M. Khater, A. H. Abdel-Aty, R. A. Attia, H. Rezazadeh, A. Zidan, et al., Dynamical analysis of the nonlinear complex fractional emerging telecommunication model with higher-order dispersive cubic-quintic, Alex. Eng. J., 59 (2020), 1425–1433. doi: 10.1016/j.aej.2020.03.046. doi: 10.1016/j.aej.2020.03.046
![]() |
[19] |
M. M. Khater, R. A. Attia, A. H. Abdel-Aty, W. Alharbi, D. Lu, Abundant analytical and numerical solutions of the fractional microbiological densities model in bacteria cell as a result of diffusion mechanisms, Chaos Soliton. Fract., 136 (2020), 109824. doi: 10.1016/j.chaos.2020.109824. doi: 10.1016/j.chaos.2020.109824
![]() |
[20] |
C. Park, M. M. Khater, A. H. Abdel-Aty, R. A. Attia, D. Lu, On new computational and numerical solutions of the modified Zakharov-Kuznetsov equation arising in electrical engineering, Alex. Eng. J., 59 (2020), 1099–1105. doi: 10.1016/j.aej.2019.12.043. doi: 10.1016/j.aej.2019.12.043
![]() |
[21] |
M. M. Khater, R. A. Attia, A. H. Abdel-Aty, M. Abdou, H. Eleuch, D. Lu, Analytical and semi-analytical ample solutions of the higher-order nonlinear Schrödinger equation with the non-kerr nonlinear term, Results Phys., 16 (2020), 103000. doi: 10.1016/j.rinp.2020.103000. doi: 10.1016/j.rinp.2020.103000
![]() |
[22] |
D. Lu, M. Osman, M. M. Khater, R. A. Attia, D. Baleanu, Analytical and numerical simulations for the kinetics of phase separation in iron (Fe–Cr–X (X = Mo, Cu)) based on ternary alloys, Physica A, 537 (2020), 122634. doi: 10.1016/j.physa.2019.122634. doi: 10.1016/j.physa.2019.122634
![]() |
[23] |
A. T. Ali, M. M. Khater, R. A. Attia, A. H. Abdel-Aty, D. Lu, Abundant numerical and analytical solutions of the generalized formula of Hirota-Satsuma coupled KdV system, Chaos Soliton. Fract., 131 (2020), 109473. doi: 10.1016/j.chaos.2019.109473. doi: 10.1016/j.chaos.2019.109473
![]() |
[24] |
A. H. Abdel-Aty, M. M. Khater, H. Dutta, J. Bouslimi, M. Omri, Computational solutions of the HIV-1 infection of CD4+ T-cells fractional mathematical model that causes acquired immunodeficiency syndrome (AIDS) with the effect of antiviral drug therapy, Chaos Soliton. Fract., 139 (2020), 110092. doi: 10.1016/j.chaos.2020.110092. doi: 10.1016/j.chaos.2020.110092
![]() |
[25] |
B. Gao, H. Tian, Symmetry reductions and exact solutions to the ill-posed Boussinesq equation, Int. J. Nonlin. Mech., 72 (2015), 80–83. doi: 10.1016/j.ijnonlinmec.2015.03.004. doi: 10.1016/j.ijnonlinmec.2015.03.004
![]() |
[26] |
F. Wang, H. Cheng, J. Si, Response solution to ill-posed Boussinesq equation with quasi-periodic forcing of Liouvillean frequency, J. Nonlinear Sci., 30 (2021), 657–710. doi: 10.1007/s00332-019-09587-8. doi: 10.1007/s00332-019-09587-8
![]() |
[27] |
E. Yaşar, S. San, Y. S. Özkan, Nonlinear self adjointness, conservation laws and exact solutions of ill-posed Boussinesq equation, Open Phys., 14 (2016), 37–43. doi: 10.1515/phys-2016-0007. doi: 10.1515/phys-2016-0007
![]() |
[28] |
N. Kishimoto, Sharp local well-posedness for the "good" Boussinesq equation, J. Differ. Equations, 254 (2013), 2393–2433. doi: 10.1016/j.jde.2012.12.008. doi: 10.1016/j.jde.2012.12.008
![]() |
[29] |
R. Temam, J. Tribbia, Open boundary conditions for the primitive and Boussinesq equations, J. Atmos. Sci., 60 (2003), 2647–2660. doi: 10.1175/1520-0469(2003)060<2647:obcftp>2.0.co;2. doi: 10.1175/1520-0469(2003)060<2647:obcftp>2.0.co;2
![]() |
[30] |
H. Cheng, R. de la Llave, Stable manifolds to bounded solutions in possibly ill-posed PDEs, J. Differ. Equations, 268 (2020), 4830–4899. doi: 10.1016/j.jde.2019.10.042. doi: 10.1016/j.jde.2019.10.042
![]() |
1. | Kolade M. Owolabi, Sonal Jain, Edson Pindza, Eben Mare, Comprehensive Numerical Analysis of Time-Fractional Reaction–Diffusion Models with Applications to Chemical and Biological Phenomena, 2024, 12, 2227-7390, 3251, 10.3390/math12203251 | |
2. | Lin Qiu, Yanjie Wang, Yan Gu, Qing-Hua Qin, Fajie Wang, Adaptive physics-informed neural networks for dynamic coupled thermo-mechanical problems in large-size-ratio functionally graded materials, 2024, 0307904X, 115906, 10.1016/j.apm.2024.115906 | |
3. | Lin Qiu, Fajie Wang, Wenzhen Qu, Ji Lin, Yan Gu, Qing‐Hua Qin, A Hybrid Collocation Method for Long‐Time Simulation of Heat Conduction in Anisotropic Functionally Graded Materials, 2025, 126, 0029-5981, 10.1002/nme.70002 | |
4. | Lin Qiu, Fajie Wang, Yingjie Liang, Qing-Hua Qin, Physics-informed radial basis function network based on Hausdorff fractal distance for solving Hausdorff derivative elliptic problems, 2025, 183, 08981221, 271, 10.1016/j.camwa.2025.02.012 | |
5. | Chih-Yu Liu, Cheng-Yu Ku, Wei-Da Chen, Ying-Fan Lin, Jun-Hong Lin, Solving Inverse Wave Problems Using Spacetime Radial Basis Functions in Neural Networks, 2025, 13, 2227-7390, 725, 10.3390/math13050725 | |
6. | Hao Chang, Fajie Wang, Xingxing Yue, Lin Qiu, Linlin Sun, A 2.5D Generalized Finite Difference Method for Elastic Wave Propagation Problems, 2025, 13, 2227-7390, 1249, 10.3390/math13081249 |