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1. Introduction

Beginning from the mid of 18th century, Euler, Cauchy, d’Alembert, Hamilton, Jacobi, Lagrange,
Laplace, Monge, and many others have started formulating some complex nonlinear phenomena
through nonlinear partial differential equations [1, 2]. Many complex phenomena, such as solid-
state physics, mechanics, fluid mechanics, surface plasma physics, quantum mechanics, civic
engineering, population climate, neural networks, epidemiology for infectious disorders, plasma
wave, thermodynamics, physics of condensed matter, nonlinear optics, etc., are extracted in distinct
mathematical formulas [3–5]. Many computational schemes have been formulated for constructing
novel solitary wave solutions that describe the physical and dynamical behavior of these phenomena
[6–8]. In 1834 John Russell pointed out the lonely solutions of moving waves by adding a particular
parameter value in the closed shape [9,10]. There are several common types of solitary wave solutions.
Such solitary wave solutions explain much about the physical properties of these models [11–13].

Here, this article studies the well-known nonlinear IPB model through the ESE and NRE methods
for constructing novel lattice soliton solutions and investigating the physical characterizes of the along
wave in shallow water beneath gravity [14, 15]. The mathematical model of the considered model is
given by [16, 17]

Ut t = Ux x +
(
U2

)
x x

+Ux x x, (1.1)

where U = U(x, t) describes promulgation of small amplitude long waves (long compared to
the amplitude of the wave) in sundry physical contexts inclusive shallow water under gravity.
Implementing the next wave transformation U = V(Z), Z = x − c t, where c is arbitrary constant
to be evaluated later, converts the nonlinear partial differential equation into the following the ordinary
differential equation (

c2 − 1
)
V −V2 −V′′ = 0. (1.2)

Applying the homogeneous balance principles to the highest order derivative term and nonlinear term
of Eq (1.2), get N = 2. Using the general formula of the suggested computational schemes [3–7], get
the traveling solutions of the IPB model in the next formula

V(Z) =



N∑
j=−N

a j φ
j(Z) = a−2

φ2(Z) + a−1
φ(Z) + a0 + a1 φ(Z) + a2 φ

2(Z),

N∑
j=−N

a j (d + ψ(Z)) j = a−2

(d+ψ(Z))2 + a−1
(d+ψ(Z)) + a0 + a1 (d + ψ(Z)) + a2 (d + ψ(Z))2,

(1.3)

where a j, j = −2, · · · , 2, are arbitrary constants to be determined later. While φ(Z), ψ(Z) satisfy the
following auxiliary equations

φ′(Z) = G1 + G2 φ(Z) + G3 φ(Z)2,

ψ′(Z) =
(
d2 E3 − d2 − d E2 + E1

)
+ (−2 d E3 + 2d + E2) ψ(Z) + (E3 − 1) ψ(Z)2,

(1.4)

where d, Gi, Ei, (i = 1, 2, 3) are arbitrary constants to be determined through the suggested analytical
schemes’ framework.
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The paper’s rest sections are organized as follows: Section 2 handles the considered model through
the ESE and NRE methods [18–24]. Additionally, the solitary wave solutions are explained through
two, three-dimensional, and density plots to illustrate the dynamical behavior of shallow water waves
beneath gravity. Section 4 discusses the obtained solitary wave solutions and their novelty. Section 5
gives the conclusion of the whole paper.

2. Nonlinear soliton lattice wave solutions

Here, we use the suggested computational schemes’ framework to determine the above-shown
parameters.

2.1. ESE method’s solutions

Handling the considered model along with the ESE method gives the following sets of
parameters’ value.
Set A

G3 =
1 − c2

16G1
, G2 = 0, a−2 = −6G2

1, a−1 = a1 = 0, a0 =
3
4

(
c2 − 1

)
, a2 =

−3
(
1 − 2 c2 + c4

)
128G2

1

.

Thus, the model’s soliton solutions are given by
When G2 = 0, we acquire:
Case 1. When G1G3 > 0

U(Z) = − 6G1G3 cot2
( √
G1G3 (Z + C)

)
+

3
(
c2 − 1

)
4

−
3
(
1 − 2 c2 + c4

)
128G1G3

× tan2
( √
G1G3 (Z + C)

)
,

(2.1)

U(Z) = − 6G1G3 tan2
( √
G1G3 (Z + C)

)
+

3
(
c2 − 1

)
4

−
3
(
1 − 2 c2 + c4

)
128G1G3

× cot2
( √
G1G3 (Z + C)

)
.

(2.2)

Case 2. When G1G3 < 0

U(Z) =6G1G3 coth2
( √
−G1G3 (Z + C)

)
+

3
(
c2 − 1

)
4

+
3
(
1 − 2 c2 + c4

)
128G1G3

× tanh2
( √
−G1G3 (Z + C)

)
,

(2.3)

U(Z) =6G1G3 tanh2
( √
−G1G3 (Z + C)

)
+

3
(
c2 − 1

)
4

+
3
(
1 − 2 c2 + c4

)
128G1G3

× coth2
( √
−G1G3 (Z + C)

)
.

(2.4)
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Set B

G3 =
c2 − 1
16G1

, G2 = 0, a−2 = −6G2
1, a−1 = a1 = 0, a0 =

1
4

(
c2 − 1

)
, a2 =

−3
(
1 − 2 c2 + c4

)
128G2

1

. (2.5)

Thus, the model’s soliton solutions are given by
Case 1. When G1G3 > 0

U(Z) = −6G1G3 cot2
( √
G1G3 (Z + C)

)
+

1
(
c2 − 1

)
4

−
3
(
1 − 2 c2 + c4

)
128G1G3

tan2
( √
G1G3 (Z + C)

)
,(2.6)

U(Z) = −6G1G3 tan2
( √
G1G3 (Z + C)

)
+

1
(
c2 − 1

)
4

−
3
(
1 − 2 c2 + c4

)
128G1G3

cot2
( √
G1G3 (Z + C)

)
.(2.7)

Case 2. When G1G3 < 0

U(Z) =6G1G3 coth2
(√
−G1G3 Z ∓

ln(C)
2

)
+

1
(
c2 − 1

)
4

+
3
(
1 − 2 c2 + c4

)
128G1G3

× tanh2
(√
−G1G3 Z ∓

ln(C)
2

)
,

(2.8)

U(Z) =6G1G3 tanh2
(√
−G1G3 Z ∓

ln(C)
2

)
+

1
(
c2 − 1

)
4

+
3
(
1 − 2 c2 + c4

)
128G1G3

× coth2
(√
−G1G3 Z ∓

ln(C)
2

)
.

(2.9)

Set C

G3 =
c2 − 1 + G2

2

4G1
, a−2 = −6G2

1, a−1 = −6G1G2, a0 = −
1
2

(
3G2

2 − 1 + c2
)
, a1 = a2 = 0.

Thus, the model’s soliton solutions are given by
When G2 = 0, we acquire:
Case 1. When G1G3 > 0

U(Z) = −6G1G3 cot2
( √
G1G3 (Z + C)

)
−

1
2

(
−1 + c2

)
, (2.10)

U(Z) = −6G1G3 tan2
( √
G1G3 (Z + C)

)
−

1
2

(
−1 + c2

)
. (2.11)

Case 2. When G1G3 < 0

U(Z) = 6G1G3 coth2
(√
−G1G3 Z ∓

ln(C)
2

)
−

1
2

(
−1 + c2

)
, (2.12)
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U(Z) = 6G1G3 tanh2
(√
−G1G3 Z ∓

ln(C)
2

)
−

1
2

(
−1 + c2

)
. (2.13)

Additionally, the general soliton solutions are given by
Case 1. When 4G1G3 > G

2
2 and G3 > 0

U(Z) =
−24G2

1G
2
3(√

4G1G3 − G
2
2 tan

( √
4G1 G3−G

2
2

2 (Z + C)
)
− G2

)2

−
12G1G2G3√

4G1G3 − G
2
2 tan

( √
4G1 G3−G

2
2

2 (Z + C)
)
− G2

−
1
2

(
3G2

2 − 1 + c2
)
,

(2.14)

U(Z) =
−24G2

1G
2
3(√

4G1G3 − G
2
2 cot

( √
4G1 G3−G

2
2

2 (Z + C)
)
− G2

)2

−
12G1G2G3√

4G1G3 − G
2
2 cot

( √
4G1 G3−G

2
2

2 (Z + C)
)
− G2

−
1
2

(
3G2

2 − 1 + c2
)
.

(2.15)

Case 2. When 4G1G3 > G
2
2 and G3 < 0

U(Z) =
−24G2

1G
2
3(√

4G1G3 − G
2
2 tan

( √
4G1 G3−G

2
2

2 (Z + C)
)

+ G2

)2

−
12G1G2G3√

4G1G3 − G
2
2 tan

( √
4G1 G3−G

2
2

2 (Z + C)
)

+ G2

−
1
2

(
3G2

2 − 1 + c2
)
,

(2.16)

U(Z) =
−24G2

1G
2
3(√

4G1G3 − G
2
2 cot

( √
4G1 G3−G

2
2

2 (Z + C)
)

+ G2

)2

−
12G1G2G3√

4G1G3 − G
2
2 cot

( √
4G1 G3−G

2
2

2 (Z + C)
)

+ G2

−
1
2

(
3G2

2 − 1 + c2
)
.

(2.17)

Set D

G3 = −
c2 − 1 − G2

2

4G1
, a−2 = −6G2

1, a−1 = −6G1G2, a0 = −
3
2

(
G2

2 − 1 + c2
)
, a1 = a2 = 0.

Thus, the model’s soliton solutions are given by
When G2 = 0, we acquire:
Case 1. When G1G3 > 0

U(Z) = −6G1G3 cot2
( √
G1G3 (Z + C)

)
−

3
2

(
−1 + c2

)
, (2.18)
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U(Z) = −6G1G3 tan2
( √
G1G3 (Z + C)

)
−

3
2

(
−1 + c2

)
. (2.19)

Case 2. When G1G3 < 0

U(Z) = 6G1G3 coth2
(√
−G1G3 Z ∓

ln(C)
2

)
−

3
2

(
−1 + c2

)
, (2.20)

U(Z) = 6G1G3 tanh2
(√
−G1G3 Z ∓

ln(C)
2

)
−

3
2

(
−1 + c2

)
. (2.21)

Additionally, the general soliton solutions are given by
Case 1. When 4G1G3 > G

2
2 and G3 > 0

U(Z) =
−24G2

1G
2
3(√

4G1G3 − G
2
2 tan

( √
4G1 G3−G

2
2

2 (Z + C)
)
− G2

)2 −
12G1G2G3

√
4G1 G3−G

2
2 tan


√

4G1 G3−G
2
2

2 (Z+C)

−G2

2G3

−
3
2

(
G2

2 − 1 + c2
)
,

(2.22)

U(Z) =
−24G2

1G
2
3(√

4G1G3 − G
2
2 cot

( √
4G1 G3−G

2
2

2 (Z + C)
)
− G2

)2 −
12G1G2G3

√
4G1 G3−G

2
2 cot


√

4G1 G3−G
2
2

2 (Z+C)

−G2

2G3

−
3
2

(
G2

2 − 1 + c2
)
.

(2.23)

Case 2. When 4G1G3 > G
2
2 and G3 < 0

U(Z) =
−24G2

1G
2
3(√

4G1G3 − G
2
2 tan

( √
4G1 G3−G

2
2

2 (Z + C)
)

+ G2

)2

−
12G1G2G3√

4G1G3 − G
2
2 tan

( √
4G1 G3−G

2
2

2 (Z + C)
)

+ G2

−
3
2

(
G2

2 − 1 + c2
)
,

(2.24)

U(Z) =
−24G2

1G
2
3(√

4G1G3 − G
2
2 cot

( √
4G1 G3−G

2
2

2 (Z + C)
)

+ G2

)2

−
12G1G2G3√

4G1G3 − G
2
2 cot

( √
4G1 G3−G

2
2

2 (Z + C)
)

+ G2

−
3
2

(
G2

2 − 1 + c2
)
,

(2.25)
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Set E

G1 =
−36G2

3 + 36 c2G2
3 + a2

1

144G3
3

, G2 =
−a1

6G3
, a−2 = a−1 = 0, a0 = −

a2
1 − 12G2

3 + 12 c2G2
3

24G2
3

, a2 = −6G2
3.

Thus, the model’s soliton solutions are given by
When G2 = 0, we acquire:
Case 1. When G1G3 > 0

U(Z) = −
a2

1 − 12G2
3 + 12 c2G2

3

24G2
3

− 6G3G1 tan2
( √
G1G3 (Z + C)

)
, (2.26)

U(Z) = −
a2

1 − 12G2
3 + 12 c2G2

3

24G2
3

− 6G3G1 cot2
( √
G1G3 (Z + C)

)
. (2.27)

Case 2. When G1G3 < 0

U(Z) = −
a2

1 − 12G2
3 + 12 c2G2

3

24G2
3

+ 6G3G1 tanh2
(√
−G1G3 Z ∓

ln(C)
2

)
, (2.28)

U(Z) = −
a2

1 − 12G2
3 + 12 c2G2

3

24G2
3

+ 6G3G1 coth2
(√
−G1G3 Z ∓

ln(C)
2

)
. (2.29)

When G1 = 0, we acquire
Case 1. When G2 > 0

U(Z) = −
a2

1 − 12G2
3 + 12 c2G2

3

24G2
3

+
a1G2 eG2(Z+C)

1 − G3 eG2(Z+C) − 6G2
3

(
G2 eG2(Z+C)

1 − G3 eG2(Z+C)

)2

, (2.30)

Case 2. When G2 < 0

U(Z) = −
a2

1 − 12G2
3 + 12 c2G2

3

24G2
3

−
a1G3 eG2(Z+C)

1 + G3 eG2(Z+C) − 6G2
3

(
G3 eG2(Z+C)

1 + G3 eG2(Z+C)

)2

. (2.31)

Additionally, the general soliton solutions are given by
Case 1. When 4G1G3 > G

2
2 and G3 > 0

U(Z) = −
a2

1 − 12G2
3 + 12 c2G2

3

24G2
3

+
a1

2G3


√

4G1G3 − G
2
2 tan


√

4G1G3 − G
2
2

2
(Z + C)

 − G2


−

3
2


√

4G1G3 − G
2
2 tan


√

4G1G3 − G
2
2

2
(Z + C)

 − G2


2

,

(2.32)

AIMS Mathematics Volume 7, Issue 1, 54–81.



61

U(Z) = −
a2

1 − 12G2
3 + 12 c2G2

3

24G2
3

+
a1

2G3


√

4G1G3 − G
2
2 cot


√

4G1G3 − G
2
2

2
(Z + C)

 − G2


−

3
2


√

4G1G3 − G
2
2 cot


√

4G1G3 − G
2
2

2
(Z + C)

 − G2


2

.

(2.33)

Case 2. When 4G1G3 > G
2
2 and G3 < 0

U(Z) = −
a2

1 − 12G2
3 + 12 c2G2

3

24G2
3

+
a1

2G3


√

4G1G3 − G
2
2 tan


√

4G1G3 − G
2
2

2
(Z + C)

 + G2


−

3
2


√

4G1G3 − G
2
2 tan


√

4G1G3 − G
2
2

2
(Z + C)

 + G2


2

,

(2.34)

U(Z) = −
a2

1 − 12G2
3 + 12 c2G2

3

24G2
3

+
a1

2G3


√

4G1G3 − G
2
2 cot


√

4G1G3 − G
2
2

2
(Z + C)

 + G2


−

3
2


√

4G1G3 − G
2
2 cot


√

4G1G3 − G
2
2

2
(Z + C)

 + G2


2

.

(2.35)

Set F

G1 = −
36G2

3 + 36 c2G2
3 − a2

1

144G3
3

, G2 =
−a1

6G3
, a−2 = a−1 = 0, a0 = −

a2
1 + 36G2

3 − 36 c2G2
3

24G2
3

, a2 = −6G2
3.

Thus, the model’s soliton solutions are given by
When G2 = 0, we acquire:
Case 1. When G1G3 > 0

U(Z) = −
a2

1 + 36G2
3 − 36 c2G2

3

24G2
3

− 6G3G1 tan2
( √
G1G3 (Z + C)

)
, (2.36)

U(Z) = −
a2

1 + 36G2
3 − 36 c2G2

3

24G2
3

− 6G3G1 cot2
( √
G1G3 (Z + C)

)
. (2.37)

Case 2. When G1G3 < 0

U(Z) = −
a2

1 + 36G2
3 − 36 c2G2

3

24G2
3

+ 6G3G1 tanh2
(√
−G1G3 Z ∓

ln(C)
2

)
, (2.38)
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U(Z) = −
a2

1 + 36G2
3 − 36 c2G2

3

24G2
3

+ 6G3G1 coth2
(√
−G1G3 Z ∓

ln(C)
2

)
. (2.39)

When G1 = 0, we acquire
Case 1. When G2 > 0

U(Z) = −
a2

1 + 36G2
3 − 36 c2G2

3

24G2
3

+
a1G2 eG2(Z+C)

1 − G3 eG2(Z+C) − 6G2
3

(
G2 eG2(Z+C)

1 − G3 eG2(Z+C)

)2

, (2.40)

Case 2. When G2 < 0

U(Z) = −
a2

1 + 36G2
3 − 36 c2G2

3

24G2
3

−,
a1G3 eG2(Z+C)

1 + G3 eG2(Z+C) − 6G2
3

(
G3 eG2(Z+C)

1 + G3 eG2(Z+C)

)2

. (2.41)

Additionally, the general soliton solutions are given by
Case 1. When 4G1G3 > G

2
2 and G3 > 0

U(Z) = −
a2

1 + 36G2
3 − 36 c2G2

3

24G2
3

+
a1

2G3


√

4G1G3 − G
2
2 tan


√

4G1G3 − G
2
2

2
(Z + C)

 − G2


−

3
2


√

4G1G3 − G
2
2 tan


√

4G1G3 − G
2
2

2
(Z + C)

 − G2


2

,

(2.42)

U(Z) = −
a2

1 + 36G2
3 − 36 c2G2

3

24G2
3

+
a1

2G3


√

4G1G3 − G
2
2 cot


√

4G1G3 − G
2
2

2
(Z + C)

 − G2


−

3
2


√

4G1G3 − G
2
2 cot


√

4G1G3 − G
2
2

2
(Z + C)

 − G2


2

.

(2.43)

Case 2. When 4G1G3 > G
2
2 and G3 < 0

U(Z) = −
a2

1 + 36G2
3 − 36 c2G2

3

24G2
3

+
a1

2G3


√

4G1G3 − G
2
2 tan


√

4G1G3 − G
2
2

2
(Z + C)

 + G2


3
2


√

4G1G3 − G
2
2 tan


√

4G1G3 − G
2
2

2
(Z + C)

 + G2


2

,

(2.44)
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U(Z) = −
a2

1 + 36G2
3 − 36 c2G2

3

24G2
3

+
a1

2G3


√

4G1G3 − G
2
2 cot


√

4G1G3 − G
2
2

2
(Z + C)

 + G2


3
2


√

4G1G3 − G
2
2 cot


√

4G1G3 − G
2
2

2
(Z + C)

 + G2


2

.

(2.45)

2.2. NRE method’s solutions

Handling the considered model along with the NRE method gives the following sets of parameters’
value.
Set A

c =

√
4E1 E3 − 4E1 + 1 − E2

2, a−2 = a−1 = 0, a0 = − (2E3 − 2)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2

+ 12E3 d2 − 6 d2, a1 = −E2 (6E3 − 6) + 12E3
2d − 24E3 d + 12 d, a2 = −6E3

2
− 6 + 12E3.

Thus, the model’s soliton solutions are given by
When

(
C = E2

2 − 4E2 E1 + 4E1 > 0
)

and (E2(E3 − 1) , 0) or (E1(E3 − 1) , 0):

U(Z) = − (2E3 − 2)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 + (−E2

× (6E3 − 6) + 12E3
2d − 24E3 d + 12 d)(d −

1
2(E3 − 1)

(E2 +
√
C tanh(

√
C

2
Z)))

+
(
−6E3

2
− 6 + 12E3

) d − 1
2(E3 − 1)

(E2 +
√
C tanh(

√
C

2
Z))

2

,

(2.46)

U(Z) = − (2E3 − 2)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 + (−E2 (6E3 − 6)

+ 12E3
2d − 24E3 d + 12 d)(d −

1
2(E3 − 1)

(E2 +
√
C coth(

√
C

2
Z))) + (−6E3

2
− 6

+ 12E3)
(
d −

1
2(E3 − 1)

(E2 +
√
C coth(

√
C

2
Z))

)2

,

(2.47)

U(Z) = − (2E3 − 2)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 + (−E2 (6E3 − 6)

+ 12E3
2d − 24E3 d + 12 d)(d −

1
2(E3 − 1)

(E2 +
√
C (tanh

(√
CZ

)
± i sech(

√
CZ))))

+
(
−6E3

2
− 6 + 12E3

) (
d −

1
2(E3 − 1)

(E2 +
√
C (tanh(

√
CZ) ± i sech(

√
CZ)))

)2

,

(2.48)

U(Z) = − (2E3 − 2)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 +
(
− E2 (6E3 − 6)

+ 12E3
2d − 24E3 d + 12 d

)
(d −

1
2(E3 − 1)

(E2 +
√
C (coth(

√
CZ) ± csch(

√
CZ))))

+
(
−6E3

2
− 6 + 12E3

) (
d −

1
2(E3 − 1)

(E2 +
√
C (coth(

√
CZ) ± csch(

√
CZ)))

)2

.

(2.49)
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U(Z) = − (2E3 − 2)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 +
(
− E2 (6E3 − 6)

+ 12E3
2d − 24E3 d + 12 d

)
(d −

1
4(E3 − 1)

(2E2 +
√
C (tanh

 √C4 Z) ± coth(

√
C

4
Z

)))
+ (−6E3

2
− 6 + 12E3)(d −

1
4(E3 − 1)

(2E2 +
√
C (tanh

 √C4 Z) ± coth(

√
C

4
Z

)))2,

(2.50)

U(Z) = − (2E3 − 2)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 + (−E2 (6E3 − 6)

+ 12E3
2d − 24E3 d + 12 d)(d +

1
2(E3 − 1)

(−E2 +
±

√
C (A2 + B2) − A

√
C cosh(

√
CZ)

A sinh(
√
CZ) + B

))

+
(
−6E3

2
− 6 + 12E3

) d +
1

2(E3 − 1)
(−E2 +

±
√
C (A2 + B2) − A

√
C cosh(

√
CZ)

A sinh(
√
CZ) + B

)

2

,

(2.51)

U(Z) = − (2E3 − 2)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 + (−E2 (6E3 − 6)

+ 12E3
2d − 24E3 d + 12 d)(d +

1
2(E3 − 1)

(−E2 +
±

√
C (A2 + B2) + A

√
C cosh(

√
CZ)

A sinh(
√
CZ) + B

))

+ (−6E3
2
− 6 + 12E3)

d +
1

2(E3 − 1)

−E2 +
±

√
C (A2 + B2) + A

√
C cosh(

√
CZ)

A sinh(
√
CZ) + B

2

,

(2.52)

U(Z) = − (2E3 − 2)E1 − E2
2 − (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 + (−E2 (6E3 − 6) + 12E3
2d

− 24E3 d + 12 d)

d +
2E1 cosh(

√
C

2 Z)
√
C sinh(

√
C

2 Z) − E2 cosh(
√
C

2 Z)

 +
(
−6E3

2 − 6 + 12E3

) (
d

+
2E1 cosh(

√
C

2 Z)
√
C sinh(

√
C

2 Z) − E2 cosh(
√
C

2 Z)

)2

,

(2.53)

U(Z) = − (2E3 − 2)E1 − E2
2 − (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 + (−E2 (6E3 − 6) + 12E3
2d

− 24E3 d + 12 d)(d +
2E1 sinh(

√
C

2 Z)
√
C cosh(

√
C

2 Z) − E2 sinh(
√
C

2 Z)
) +

(
−6E3

2 − 6 + 12E3

) (
d

+
2E1 sinh(

√
C

2 Z)
√
C cosh(

√
C

2 Z) − E2 sinh(
√
C

2 Z)

)2

,

(2.54)

U(Z) = − (2E3 − 2)E1 − E2
2 − (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 + (−E2 (6E3 − 6) + 12E3
2d

− 24E3 d + 12 d)(d +
2E1 cosh(

√
CZ)

√
C sinh(

√
CZ) − E2 cosh(

√
CZ) ± i

√
C

) +
(
−6E3

2 − 6 + 12E3

)
(d

+
2E1 cosh(

√
CZ)

√
C sinh(

√
CZ) − E2 cosh(

√
CZ) ± i

√
C

)2,

(2.55)
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U(Z) = − (2E3 − 2)E1 − E2
2 − (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 + (−E2 (6E3 − 6) + 12E3
2d

− 24E3 d + 12 d)(d +
2E1 sinh(

√
CZ)

√
C cosh(

√
CZ) − E2 sinh(

√
CZ) ± i

√
C

) +
(
−6E3

2 − 6 + 12E3

)
(d

+
2E1 sinh(

√
CZ)

√
C cosh(

√
CZ) − E2 sinh(

√
CZ) ± i

√
C

)2,

(2.56)

While A, B are arbitrary real constants and A2 + B2 > 0.
When

(
C = E2

2 − 4E2 E1 + 4E1 < 0
)

and (E2(E3 − 1) , 0) or (E1(E3 − 1) , 0):

U(Z) = − (2E3 − 2)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 + (−E2 (6E3 − 6)

+ 12E3
2d − 24E3 d + 12 d)(d +

1
2(E3 − 1)

(−E2 +
√
−C tanh(

√
−C

2
Z)))

+
(
−6E3

2
− 6 + 12E3

)
(d +

1
2(E3 − 1)

(−E2 +
√
−C tanh(

√
−C

2
Z)))2,

(2.57)

U(Z) = − (2E3 − 2)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 + (−E2 (6E3 − 6)

+ 12E3
2d − 24E3 d + 12 d)(d −

1
2(E3 − 1)

(E2 +
√
−C coth(

√
−C

2
Z)))

+
(
−6E3

2
− 6 + 12E3

)
(d −

1
2(E3 − 1)

(E2 +
√
−C coth(

√
−C

2
Z)))2,

(2.58)

U(Z) = − (2E3 − 2)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 + (−E2 (6E3 − 6)

+ 12E3
2d − 24E3 d + 12 d)(d +

1
2(E3 − 1)

(−E2 +
√
−C (tan(

√
−CZ) ± sec(

√
−CZ))))

+
(
−6E3

2
− 6 + 12E3

)
(d +

1
2(E3 − 1)

(−E2 +
√
−C (tan(

√
−CZ) ± sec(

√
−CZ))))2,

(2.59)

U(Z) = − (2E3 − 2)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 + (−E2 (6E3 − 6)

+ 12E3
2d − 24E3 d + 12 d)(d +

1
2(E3 − 1)

(−E2 +
√
−C (tan(

√
−CZ) ± sec(

√
−CZ))))

+
(
−6E3

2
− 6 + 12E3

)
(d +

1
2(E3 − 1)

(−E2 +
√
−C (tan(

√
−CZ) ± sec(

√
−CZ))))2,

(2.60)

U(Z) = − (2E3 − 2)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 + (−E2 (6E3 − 6)

+ 12E3
2d − 24E3 d + 12 d)(d −

1
2(E3 − 1)

(E2 +
√
−C (cot(

√
−CZ) ± csc(

√
−CZ))))

+
(
−6E3

2
− 6 + 12E3

) (
d −

1
2(E3 − 1)

(E2 +
√
−C (cot(

√
−CZ) ± csc(

√
−CZ)))

)2

,

(2.61)
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U(Z) = − (2E3 − 2)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 + (−E2 (6E3 − 6)

+ 12E3
2d − 24E3 d + 12 d)

(
d +

1
4(E3 − 1)

(−2E2 +
√
−C (tan(

√
−C

4
Z)−

cot(

√
−C

4
Z)))

)
+ (−6E3

2
− 6 + 12E3)

(
d +

1
4(E3 − 1)

(
− 2E2 +

√
−C

×

tan(

√
−C

4
Z) − cot(

√
−C

4
Z)

 ))2

,

(2.62)

U(Z) = − (2E3 − 2)E1 − E2
2 − (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 +
(
− E2 (6E3 − 6) + 12E3

2d

− 24E3 d + 12 d
) d +

1
2(E3 − 1)

−E2 +
±

√
−C (A2 − B2) − A

√
−C cos(

√
−CZ)

A sin(
√
−CZ) + B


+

(
−6E3

2 − 6 + 12E3

) (
d +

1
2(E3 − 1)

−E2 +
±

√
−C (A2 − B2) − A

√
−C cos(

√
−CZ)

A sin(
√
−CZ) + B

 )2

,

(2.63)

U(Z) = − (2E3 − 2)E1 − E2
2 − (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 + (−E2 (6E3 − 6) + 12E3
2d

− 24E3 d + 12 d)

d +
1

2(E3 − 1)
(−E2 +

±
√
−C (A2 − B2) + A

√
−C cos(

√
−CZ)

A sin(
√
−CZ) + B

)

 + (−6E3
2

− 6 + 12E3)
(
d +

1
2(E3 − 1)

−E2 +
±

√
−C (A2 − B2) + A

√
−C cos(

√
−CZ)

A sin(
√
−CZ) + B

 )2

,

(2.64)

U(Z) = − (2E3 − 2)E1 − E2
2 − (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 + (−E2 (6E3 − 6) + 12E3
2d

− 24E3 d + 12 d)(d −
2E1 cos(

√
−C

2 Z)
√
−C sin(

√
−C

2 Z) + E2 cos(
√
−C

2 Z)
) +

(
−6E3

2 − 6 + 12E3

)

×

d − 2E1 cos(
√
−C

2 Z)
√
−C sin(

√
−C

2 Z) + E2 cos(
√
−C

2 Z)


2

,

(2.65)

U(Z) = − (2E3 − 2)E1 − E2
2 − (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 + (−E2 (6E3 − 6) + 12E3
2d

− 24E3 d + 12 d)(d +
2E1 sin(

√
−C

2 Z)
√
−C cos(

√
−C2Z) − E2 sin(

√
−C

2 Z)
) +

(
−6E3

2 − 6 + 12E3

)

×

d +
2E1 sin(

√
−C

2 Z)
√
−C cos(

√
−C

2 Z) − E2 sin(
√
−C

2 Z)


2

,

(2.66)

U(Z) = − (2E3 − 2)E1 − E2
2 − (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 + (−E2 (6E3 − 6) + 12E3
2d

− 24E3 d + 12 d)
d +

2E1 sin(
√
−CZ)

√
−C cos(

√
−CZ) − E2 sin(

√
−CZ) ±

√
−C

 +
(
−6E3

2 − 6 + 12E3

)
×

d +
2E1 sin(

√
−CZ)

√
−C cos(

√
−CZ) − E2 sin(

√
−CZ) ±

√
−C

2

,

(2.67)
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While A, B are arbitrary real constants and A2 − B2 > 0.
When E1 = 0 and E2(E3 − 1) , 0, we have:

U(Z) = − (2E3 − 2)E1 − E2
2 − (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 + (−E2 (6E3 − 6) + 12E3
2d

− 24E3 d + 12 d)(d −
E2 k

(E3 − 1) (k + cosh(E2 Z) − sinh(E2 Z))
) +

(
−6E3

2 − 6 + 12E3

)
×

(
d −

E2 k
(E3 − 1) (k + cosh(E2 Z) − sinh(E2 Z))

)2

,

(2.68)

U(Z) = − (2E3 − 2)E1 − E2
2 − (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 + (−E2 (6E3 − 6) + 12E3
2d

− 24E3 d + 12 d)(d −
E2 (cosh(E2 Z) + sinh(E2 Z))

(E3 − 1) (k + cosh(E2 Z) + sinh(E2 Z))
) +

(
−6E3

2 − 6 + 12E3

)
×

(
d −

E2 (cosh(E2 Z) + sinh(E2 Z))
(E3 − 1) (k + cosh(E2 Z) + sinh(E2 Z))

)2

,

(2.69)

U(Z) = − (2E3 − 2)E1 − E2
2 − (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 + (−E2 (6E3 − 6) + 12E3
2d

− 24E3 d + 12 d)(d −
1

(E3 − 1)Z + C
) +

(
−6E3

2 − 6 + 12E3

)
×

(
d −

1
(E3 − 1)Z + C

)2

.

(2.70)

Set B

c =

√
−4E1 E3 + 4E1 + 1 − E2

2, a−2 = a−1 = 0, a0 = − (6E3 − 6)E1 − E2
2 − (−6E3 d + 6 d)E2 − 6E3

2d2

+ 12E3 d2 − 6 d2, a1 = −E2 (6E3 − 6) + 12E3
2d − 24E3 d + 12 d, a2 = −6E3

2 − 6 + 12E3.
(2.71)

Thus, the model’s soliton solutions are given by
When

(
C = E2

2 − 4E2 E1 + 4E1 > 0
)

and (E2(E3 − 1) , 0) or (E1(E3 − 1) , 0):

U(Z) = − (6E3 − 6)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 + (−E2 (6E3 − 6) + 12E3
2d

− 24E3 d + 12 d)(d −
1

2(E3 − 1)
(E2 +

√
C tanh(

√
C

2
Z))) +

(
−6E3

2
− 6 + 12E3

)
× (d −

1
2(E3 − 1)

(E2 +
√
C tanh(

√
C

2
Z)))2,

(2.72)

U(Z) = − (6E3 − 6)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 + (−E2 (6E3 − 6) + 12E3
2d

− 24E3 d + 12 d)(d −
1

2(E3 − 1)
(E2 +

√
C coth(

√
C

2
Z))) +

(
−6E3

2
− 6 + 12E3

)
× (d −

1
2(E3 − 1)

(E2 +
√
C coth(

√
C

2
Z)))2,

(2.73)

AIMS Mathematics Volume 7, Issue 1, 54–81.



68

U(Z) = − (6E3 − 6)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 + (−E2 (6E3 − 6) + 12E3
2d

− 24E3 d + 12 d)(d −
1

2(E3 − 1)
(E2 +

√
C (tanh

(√
CZ

)
± i sech(

√
CZ)))) +

(
−6E3

2
− 6 + 12E3

)
× (d −

1
2(E3 − 1)

(E2 +
√
C (tanh(

√
CZ) ± i sech(

√
CZ))))2,

(2.74)

U(Z) = − (6E3 − 6)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 + (−E2 (6E3 − 6) + 12E3
2d

− 24E3 d + 12 d)(d −
1

2(E3 − 1)
(E2 +

√
C (coth(

√
CZ) ± csch(

√
CZ)))) +

(
−6E3

2
− 6 + 12E3

)
× (d −

1
2(E3 − 1)

(E2 +
√
C (coth(

√
CZ) ± csch(

√
CZ))))2.

(2.75)

U(Z) = − (6E3 − 6)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 + (−E2 (6E3 − 6) + 12E3
2d

− 24E3 d + 12 d)(d −
1

4(E3 − 1)
(2E2 +

√
C (tanh

 √C4 Z) ± coth(

√
C

4
Z

))) + (−6E3
2
− 6

+ 12E3)(d −
1

4(E3 − 1)
(2E2 +

√
C (tanh(

√
C

4
Z) ± coth(

√
C

4
Z))))2,

(2.76)

U(Z) = − (6E3 − 6)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 + (−E2 (6E3 − 6) + 12E3
2d

− 24E3 d + 12 d)(d +
1

2(E3 − 1)
(−E2 +

±
√
C (A2 + B2) − A

√
C cosh(

√
CZ)

A sinh(
√
CZ) + B

)) + (−6E3
2
− 6

+ 12E3)(d +
1

2(E3 − 1)
(−E2 +

±
√
C (A2 + B2) − A

√
C cosh(

√
CZ)

A sinh(
√
CZ) + B

))2,

(2.77)

U(Z) = − (6E3 − 6)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 + (−E2 (6E3 − 6) + 12E3
2d

− 24E3 d + 12 d)(d +
1

2(E3 − 1)
(−E2 +

±
√
C (A2 + B2) + A

√
C cosh(

√
CZ)

A sinh(
√
CZ) + B

)) + (−6E3
2
− 6

+ 12E3)

d +
1

2(E3 − 1)
(−E2 +

±
√
C (A2 + B2) + A

√
C cosh(

√
CZ)

A sinh(
√
CZ) + B

)

2

,

(2.78)

U(Z) = − (6E3 − 6)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 + (−E2 (6E3 − 6) + 12E3
2d

− 24E3 d + 12 d)

d +
2E1 cosh(

√
C

2 Z)
√
C sinh(

√
C

2 Z) − E2 cosh(
√
C

2 Z)

 +
(
−6E3

2
− 6 + 12E3

)
×

d +
2E1 cosh(

√
C

2 Z)
√
C sinh(

√
C

2 Z) − E2 cosh(
√
C

2 Z)


2

,

(2.79)
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U(Z) = − (6E3 − 6)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 + (−E2 (6E3 − 6) + 12E3
2d

− 24E3 d + 12 d)

d +
2E1 sinh(

√
C

2 Z)
√
C cosh(

√
C

2 Z) − E2 sinh(
√
C

2 Z)

 +
(
−6E3

2
− 6 + 12E3

)
×

d +
2E1 sinh(

√
C

2 Z)
√
C cosh(

√
C

2 Z) − E2 sinh(
√
C

2 Z)


2

,

(2.80)

U(Z) = − (6E3 − 6)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 + (−E2 (6E3 − 6) + 12E3
2d

− 24E3 d + 12 d)
d +

2E1 cosh(
√
CZ)

√
C sinh(

√
CZ) − E2 cosh(

√
CZ) ± i

√
C

 +
(
−6E3

2
− 6 + 12E3

)
(d

+
2E1 cosh(

√
CZ)

√
C sinh(

√
CZ) − E2 cosh(

√
CZ) ± i

√
C

)2,

(2.81)

U(Z) = − (6E3 − 6)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 + (−E2 (6E3 − 6) + 12E3
2d

− 24E3 d + 12 d)
d +

2E1 sinh(
√
CZ)

√
C cosh(

√
CZ) − E2 sinh(

√
CZ) ± i

√
C

 +
(
−6E3

2
− 6 + 12E3

)
(d

+
2E1 sinh(

√
CZ)

√
C cosh(

√
CZ) − E2 sinh(

√
CZ) ± i

√
C

)2,

(2.82)

While A, B are arbitrary real constants and A2 + B2 > 0.
When

(
C = E2

2 − 4E2 E1 + 4E1 < 0
)

and (E2(E3 − 1) , 0) or (E1(E3 − 1) , 0):

U(Z) = − (6E3 − 6)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 + (−E2 (6E3 − 6) + 12E3
2d

− 24E3 d + 12 d)(d +
1

2(E3 − 1)
(−E2 +

√
−C tanh(

√
−C

2
Z))) +

(
−6E3

2
− 6 + 12E3

)
d +

1
2(E3 − 1)

(−E2 +
√
−C tanh(

√
−C

2
Z))

2

,

(2.83)

U(Z) = − (6E3 − 6)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 + (−E2 (6E3 − 6) + 12E3
2d

− 24E3 d + 12 d)(d −
1

2(E3 − 1)
(E2 +

√
−C coth(

√
−C

2
Z))) +

(
−6E3

2
− 6 + 12E3

)
×

d − 1
2(E3 − 1)

(E2 +
√
−C coth(

√
−C

2
Z))

2

,

(2.84)
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U(Z) = − (6E3 − 6)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 + (−E2 (6E3 − 6) + 12E3
2d

− 24E3 d + 12 d)(d +
1

2(E3 − 1)
(−E2 +

√
−C (tan(

√
−CZ) ± sec(

√
−CZ)))) + (−6E3

2
− 6

+ 12E3)
(
d +

1
2(E3 − 1)

(−E2 +
√
−C (tan(

√
−CZ) ± sec(

√
−CZ)))

)2

,

(2.85)

U(Z) = − (6E3 − 6)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 + (−E2 (6E3 − 6) + 12E3
2d

− 24E3 d + 12 d)(d +
1

2(E3 − 1)
(−E2 +

√
−C (tan(

√
−CZ) ± sec(

√
−CZ)))) + (−6E3

2

− 6 + 12E3)
(
d +

1
2(E3 − 1)

(−E2 +
√
−C (tan(

√
−CZ) ± sec(

√
−CZ)))

)2

,

(2.86)

U(Z) = − (6E3 − 6)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 + (−E2 (6E3 − 6) + 12E3
2d

− 24E3 d + 12 d)(d −
1

2(E3 − 1)
(E2 +

√
−C (cot(

√
−CZ) ± csc(

√
−CZ)))) + (−6E3

2

− 6 + 12E3)
(
d −

1
2(E3 − 1)

(E2 +
√
−C (cot(

√
−CZ) ± csc(

√
−CZ)))

)2

,

(2.87)

U(Z) = − (6E3 − 6)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 + (−E2 (6E3 − 6) + 12E3
2d

− 24E3 d + 12 d)(d +
1

4(E3 − 1)
(−2E2 +

√
−C (tan(

√
−C

4
Z) − cot(

√
−C

4
Z)))) + (−6E3

2

− 6 + 12E3)
d +

1
4(E3 − 1)

(−2E2 +
√
−C (tan(

√
−C

4
Z) − cot(

√
−C

4
Z)))

2

,

(2.88)

U(Z) = − (6E3 − 6)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 + (−E2 (6E3 − 6) + 12E3
2d

− 24E3 d + 12 d)(d +
1

2(E3 − 1)
(−E2 +

±
√
−C (A2 − B2) − A

√
−C cos(

√
−CZ)

A sin(
√
−CZ) + B

))

+
(
−6E3

2
− 6 + 12E3

) d +
1

2(E3 − 1)
(−E2 +

±
√
−C (A2 − B2) − A

√
−C cos(

√
−CZ)

A sin(
√
−CZ) + B

)

2

,

(2.89)

U(Z) = − (6E3 − 6)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 + (−E2 (6E3 − 6) + 12E3
2d

− 24E3 d + 12 d)(d −
2E1 cos(

√
−C

2 Z)
√
−C sin(

√
−C

2 Z) + E2 cos(
√
−C

2 Z)
) +

(
−6E3

2
− 6 + 12E3

)
× (d −

2E1 cos(
√
−C

2 Z)
√
−C sin(

√
−C

2 Z) + E2 cos(
√
−C

2 Z)
)2,

(2.90)
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U(Z) = − (6E3 − 6)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 + (−E2 (6E3 − 6) + 12E3
2d

− 24E3 d + 12 d)(d +
2E1 sin(

√
−C

2 Z)
√
−C cos(

√
−C2Z) − E2 sin(

√
−C

2 Z)
) +

(
−6E3

2
− 6 + 12E3

)
×

d +
2E1 sin(

√
−C

2 Z)
√
−C cos(

√
−C

2 Z) − E2 sin(
√
−C

2 Z)


2

,

(2.91)

U(Z) = − (6E3 − 6)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 + (−E2 (6E3 − 6) + 12E3
2d

− 24E3 d + 12 d)(d +
2E1 sin(

√
−CZ)

√
−C cos(

√
−CZ) − E2 sin(

√
−CZ) ±

√
−C

) +
(
−6E3

2
− 6 + 12E3

)
× (d +

2E1 sin(
√
−CZ)

√
−C cos(

√
−CZ) − E2 sin(

√
−CZ) ±

√
−C

)2,

(2.92)

While A, B are arbitrary real constants and A2 − B2 > 0.
When E1 = 0 and E2(E3 − 1) , 0, we have:

U(Z) = − (6E3 − 6)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 + (−E2 (6E3 − 6) + 12E3
2d

− 24E3 d + 12 d)(d −
E2 k

(E3 − 1) (k + cosh(E2 Z) − sinh(E2 Z))
) +

(
−6E3

2
− 6 + 12E3

)
×

(
d −

E2 k
(E3 − 1) (k + cosh(E2 Z) − sinh(E2 Z))

)2

,

(2.93)

U(Z) = − (6E3 − 6)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 + (−E2 (6E3 − 6) + 12E3
2d

− 24E3 d + 12 d)(d −
E2 (cosh(E2 Z) + sinh(E2 Z))

(E3 − 1) (k + cosh(E2 Z) + sinh(E2 Z))
) +

(
−6E3

2
− 6 + 12E3

)
×

(
d −

E2 (cosh(E2 Z) + sinh(E2 Z))
(E3 − 1) (k + cosh(E2 Z) + sinh(E2 Z))

)2

,

(2.94)

U(Z) = − (6E3 − 6)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2 + (−E2 (6E3 − 6) + 12E3
2d

− 24E3 d + 12 d)(d −
1

(E3 − 1)Z + C
) +

(
−6E3

2
− 6 + 12E3

) (
d −

1
(E3 − 1)Z + C

)2

,

(2.95)

Set C

c =

√
4E1 E3 − 4E1 + 1 − E2

2, a−2 = −6E1
2
−

(
−12E2 d − 12 d2 + 12E3 d2

)
E1 − 6E2

2d2 − (−12E3 d3

+ 12 d3)E2 − 6 d4 − 6E3
2d4 + 12E3d4, a−1 = − (−12E3 d + 12 d + 6E2)E1 + 6E2

2d − (18E3 d2

− 18 d2)E2 + 12E3
2d3 − 24E3d3 + 12 d3, a1 = a2 = 0, a0 = − (2E3 − 2)E1 − E2

2
− (−6E3 d + 6 d)E2

− 6E3
2d2 + 12E3 d2 − 6 d2.

AIMS Mathematics Volume 7, Issue 1, 54–81.



72

Thus, the model’s soliton solutions are given by
When

(
C = E2

2 − 4E2 E1 + 4E1 > 0
)

and (E2(E3 − 1) , 0) or (E1(E3 − 1) , 0):

U(Z) =(−6E1
2
− (−12E2 d − 12 d2 + 12E3 d2)E1 − 6E2

2d2 − (−12E3 d3 + 12 d3)E2 − 6 d4 − 6E3
2d4

+ 12E3d4)(d −
1

2(E3 − 1)
(E2 +

√
C tanh(

√
C

2
Z)))−2 + (−(−12E3 d + 12 d + 6E2)E1 + 6E2

2d

− (18E3 d2 − 18 d2)E2 + 12E3
2d3 − 24E3d3 + 12 d3) (d −

1
2(E3 − 1)

(E2 +
√
C tanh(

√
C

2
Z)))−1

− (2E3 − 2)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2,

(2.96)

U(Z) =(−6E1
2
− (−12E2 d − 12 d2 + 12E3 d2)E1 − 6E2

2d2 − (−12E3 d3 + 12 d3)E2 − 6 d4 − 6E3
2d4

+ 12E3d4)(d −
1

2(E3 − 1)
(E2 +

√
C coth(

√
C

2
Z)))−2 + (−(−12E3 d + 12 d + 6E2)E1 + 6E2

2d

− (18E3 d2 − 18 d2)E2 + 12E3
2d3 − 24E3d3 + 12 d3) (d −

1
2(E3 − 1)

(E2 +
√
C coth(

√
C

2
Z)))−1

− (2E3 − 2)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2,

(2.97)

U(Z) =(−6E1
2 − (−12E2 d − 12 d2 + 12E3 d2)E1 − 6E2

2d2 − (−12E3 d3 + 12 d3)E2 − 6 d4 − 6E3
2d4

+ 12E3d4)(d −
1

2(E3 − 1)
(E2 +

√
C (tanh(

√
CZ) ± i sech(

√
CZ))))−2 + (−(−12E3 d + 12 d + 6E2)

× E1 + 6E2
2d − (18E3 d2 − 18 d2)E2 + 12E3

2d3 − 24E3d3 + 12 d3) (d −
1

2(E3 − 1)
(E2 +

√
C

× (tanh(
√
CZ) ± i sech(

√
CZ))))−1 − (2E3 − 2)E1 − E2

2 − (−6E3 d + 6 d)E2 − 6E3
2d2

+ 12E3 d2 − 6 d2,

(2.98)

U(Z) =(−6E1
2
− (−12E2 d − 12 d2 + 12E3 d2)E1 − 6E2

2d2 − (−12E3 d3 + 12 d3)E2 − 6 d4

− 6E3
2d4 + 12E3d4)(d −

1
2(E3 − 1)

(E2 +
√
C (coth(

√
CZ) ± csch(

√
CZ))))−2

+ (−(−12E3 d + 12 d + 6E2)E1 + 6E2
2d − (18E3 d2 − 18 d2)E2 + 12E3

2d3 − 24E3d3

+ 12 d3)(d −
1

2(E3 − 1)
(E2 +

√
C(coth(

√
CZ) ± csch(

√
CZ))))−1 − (2E3 − 2)E1 − E2

2

− (−6E3 d + 6 d)E2 − 6E3
2d2 + 12E3 d2 − 6 d2,

(2.99)

U(Z) =(−6E1
2
− (−12E2 d − 12 d2 + 12E3 d2)E1 − 6E2

2d2 − (−12E3 d3 + 12 d3)E2 − 6 d4

− 6E3
2d4 + 12E3d4)(d −

1
4(E3 − 1)

(2E2 +
√
C (tanh(

√
C

4
Z) ± coth(

√
C

4
Z))))−2

+ (−(−12E3 d + 12 d + 6E2)E1 + 6E2
2d − (18E3 d2 − 18 d2)E2 + 12E3

2d3

− 24E3d3 + 12 d3) (d −
1

4(E3 − 1)
(2E2 +

√
C(tanh(

√
C

4
Z) ± coth(

√
C

4
Z))))−1

− (2E3 − 2)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2,

(2.100)
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U(Z) =(−6E1
2
− (−12E2 d − 12 d2 + 12E3 d2)E1 − 6E2

2d2 − (−12E3 d3 + 12 d3)E2 − 6 d4

− 6E3
2d4 + 12E3d4)(d +

1
2(E3 − 1)

(−E2 +
±

√
C (A2 + B2) − A

√
C cosh(

√
CZ)

A sinh(
√
CZ) + B

))−2

+ (−(−12E3 d + 12 d + 6E2)E1 + 6E2
2d − (18E3 d2 − 18 d2)E2 + 12E3

2d3

− 24E3d3 + 12 d3)(d +
1

2(E3 − 1)
(−E2 +

±
√
C (A2 + B2) − A

√
C cosh(

√
CZ)

A sinh(
√
CZ) + B

))−1

− (2E3 − 2)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2,

(2.101)

U(Z) =(−6E1
2
− (−12E2 d − 12 d2 + 12E3 d2)E1 − 6E2

2d2 − (−12E3 d3 + 12 d3)E2 − 6 d4

− 6E3
2d4 + 12E3d4)(d +

1
2(E3 − 1)

(−E2 +
±

√
C (A2 + B2) + A

√
C cosh(

√
CZ)

A sinh(
√
CZ) + B

))−2

+ (−(−12E3 d + 12 d + 6E2)E1 + 6E2
2d − (18E3 d2 − 18 d2)E2 + 12E3

2d3

− 24E3d3 + 12 d3) (d +
1

2(E3 − 1)
(−E2 +

±
√
C (A2 + B2) + A

√
C cosh(

√
CZ)

A sinh(
√
CZ) + B

))−1

− (2E3 − 2)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2,

(2.102)

U(Z) =(−6E1
2
− (−12E2 d − 12 d2 + 12E3 d2)E1 − 6E2

2d2 − (−12E3 d3 + 12 d3)E2 − 6 d4 − 6E3
2d4

+ 12E3d4)(d +
2E1 cosh(

√
C

2 Z)
√
C sinh(

√
C

2 Z) − E2 cosh(
√
C

2 Z)
)−2 + (−(−12E3 d + 12 d + 6E2)E1 + 6E2

2d

− (18E3 d2 − 18 d2)E2 + 12E3
2d3 − 24E3d3 + 12 d3) (d +

2E1 cosh(
√
C

2 Z)
√
C sinh(

√
C

2 Z) − E2 cosh(
√
C

2 Z)
)−1

− (2E3 − 2)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2,

(2.103)

U(Z) =(−6E1
2
− (−12E2 d − 12 d2 + 12E3 d2)E1 − 6E2

2d2 − (−12E3 d3 + 12 d3)E2 − 6 d4 − 6E3
2d4

+ 12E3d4)(d +
2E1 sinh(

√
C

2 Z)
√
C cosh(

√
C

2 Z) − E2 sinh(
√
C

2 Z)
)−2 + (−(−12E3 d + 12 d + 6E2)E1 + 6E2

2d

− (18E3 d2 − 18 d2)E2 + 12E3
2d3 − 24E3d3 + 12 d3) (d +

2E1 sinh(
√
C

2 Z)
√
C cosh(

√
C

2 Z) − E2 sinh(
√
C

2 Z)
)−1

− (2E3 − 2)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2,

(2.104)
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U(Z) =(−6E1
2
− (−12E2 d − 12 d2 + 12E3 d2)E1 − 6E2

2d2 − (−12E3 d3 + 12 d3)E2 − 6 d4 − 6E3
2d4

+ 12E3d4)(d +
2E1 cosh(

√
CZ)

√
C sinh(

√
CZ) − E2 cosh(

√
CZ) ± i

√
C

)−2 + (−(−12E3 d + 12 d

+ 6E2)E1 + 6E2
2d − (18E3 d2 − 18 d2)E2 + 12E3

2d3 − 24E3d3 + 12 d3)

× (d +
2E1 cosh(

√
CZ)

√
C sinh(

√
CZ) − E2 cosh(

√
CZ) ± i

√
C

)−1 − (2E3 − 2)E1 − E2
2
− (−6E3 d

+ 6 d)E2 − 6E3
2d2 + 12E3 d2 − 6 d2,

(2.105)

U(Z) =(−6E1
2
− (−12E2 d − 12 d2 + 12E3 d2)E1 − 6E2

2d2 − (−12E3 d3 + 12 d3)E2 − 6 d4 − 6E3
2d4

+ 12E3d4)(d +
2E1 sinh(

√
CZ)

√
C cosh(

√
CZ) − E2 sinh(

√
CZ) ± i

√
C

)−2 + (−(−12E3 d + 12 d + 6E2)E1

+ 6E2
2d − (18E3 d2 − 18 d2)E2 + 12E3

2d3 − 24E3d3 + 12 d3) (d+

2E1 sinh(
√
CZ)

√
C cosh(

√
CZ) − E2 sinh(

√
CZ) ± i

√
C

)−1 − (2E3 − 2)E1 − E2
2
− (−6E3 d + 6 d)E2

− 6E3
2d2 + 12E3 d2 − 6 d2,

(2.106)

While A, B are arbitrary real constants and A2 + B2 > 0.
When

(
C = E2

2 − 4E2 E1 + 4E1 < 0
)

and (E2(E3 − 1) , 0) or (E1(E3 − 1) , 0):

U(Z) =(−6E1
2
− (−12E2 d − 12 d2 + 12E3 d2)E1 − 6E2

2d2 − (−12E3 d3 + 12 d3)E2 − 6 d4 − 6E3
2d4

+ 12E3d4)(d +
1

2(E3 − 1)
(−E2 +

√
−C tanh(

√
−C

2
Z)))−2 + (−(−12E3 d + 12 d + 6E2)E1

+ 6E2
2d − (18E3 d2 − 18 d2)E2 + 12E3

2d3 − 24E3d3 + 12 d3) (d +
1

2(E3 − 1)
(−E2 +

√
−C

× tanh(

√
−C

2
Z)))−1 − (2E3 − 2)E1 − E2

2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2,

(2.107)

U(Z) =(−6E1
2 − (−12E2 d − 12 d2 + 12E3 d2)E1 − 6E2

2d2 − (−12E3 d3 + 12 d3)E2 − 6 d4 − 6E3
2d4

+ 12E3d4)(d −
1

2(E3 − 1)
(E2 +

√
−C coth(

√
−C

2
Z)))−2 + (−(−12E3 d + 12 d + 6E2)E1 + 6E2

2d

− (18E3 d2 − 18 d2)E2 + 12E3
2d3 − 24E3d3 + 12 d3) (d −

1
2(E3 − 1)

(E2 +
√
−C coth(

√
−C

2
Z)))−1

− (2E3 − 2)E1 − E2
2 − (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2,

(2.108)

U(Z) =(−6E1
2
− (−12E2 d − 12 d2 + 12E3 d2)E1 − 6E2

2d2 − (−12E3 d3 + 12 d3)E2 − 6 d4 − 6E3
2d4

+ 12E3d4)(d +
1

2(E3 − 1)
(−E2 +

√
−C (tan(

√
−CZ) ± sec(

√
−CZ))))−2 + (−(−12E3 d

+ 12 d + 6E2)E1 + 6E2
2d − (18E3 d2 − 18 d2)E2 + 12E3

2d3 − 24E3d3 + 12 d3) (d +
1

2(E3 − 1)

× (−E2 +
√
−C (tan(

√
−CZ) ± sec(

√
−CZ))))−1 − (2E3 − 2)E1 − E2

2

− (−6E3 d + 6 d)E2 − 6E3
2d2 + 12E3 d2 − 6 d2,

(2.109)
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U(Z) =(−6E1
2
− (−12E2 d − 12 d2 + 12E3 d2)E1 − 6E2

2d2 − (−12E3 d3 + 12 d3)E2 − 6 d4 − 6E3
2d4

+ 12E3d4)(d −
1

2(E3 − 1)
(E2 +

√
−C (cot(

√
−CZ) ± csc(

√
−CZ))))−2 + (−(−12E3 d + 12 d

+ 6E2)E1 + 6E2
2d − (18E3 d2 − 18 d2)E2 + 12E3

2d3 − 24E3d3 + 12 d3) (d −
1

2(E3 − 1)
(E2

+
√
−C (cot(

√
−CZ) ± csc(

√
−CZ))))−1 − (2E3 − 2)E1 − E2

2
− (−6E3 d + 6 d)E2

− 6E3
2d2 + 12E3 d2 − 6 d2,

(2.110)

U(Z) =(−6E1
2
− (−12E2 d − 12 d2 + 12E3 d2)E1 − 6E2

2d2 − (−12E3 d3 + 12 d3)E2 − 6 d4 − 6E3
2d4

+ 12E3d4)(d +
1

4(E3 − 1)
(−2E2 +

√
−C (tan(

√
−C

4
Z) − cot(

√
−C

4
Z))))−2 + (−(−12E3 d

+ 12 d + 6E2)E1 + 6E2
2d − (18E3 d2 − 18 d2)E2 + 12E3

2d3 − 24E3d3 + 12 d3) (d +
1

4(E3 − 1)

× (−2E2 +
√
−C (tan(

√
−C

4
Z) − cot(

√
−C

4
Z))))−1 − (2E3 − 2)E1 − E2

2

− (−6E3 d + 6 d)E2 − 6E3
2d2 + 12E3 d2 − 6 d2,

(2.111)

U(Z) =(−6E1
2
− (−12E2 d − 12 d2 + 12E3 d2)E1 − 6E2

2d2 − (−12E3 d3 + 12 d3)E2 − 6 d4 − 6E3
2d4

+ 12E3d4)(d +
1

2(E3 − 1)
(−E2 +

±
√
−C (A2 − B2) − A

√
−C cos(

√
−CZ)

A sin(
√
−CZ) + B

))−2

+ (−(−12E3 d + 12 d + 6E2)E1 + 6E2
2d − (18E3 d2 − 18 d2)E2 + 12E3

2d3 − 24E3d3 + 12 d3)

× (d +
1

2(E3 − 1)
(−E2 +

±
√
−C (A2 − B2) − A

√
−C cos(

√
−CZ)

A sin(
√
−CZ) + B

))−1 − (2E3 − 2)E1 − E2
2

− (−6E3 d + 6 d)E2 − 6E3
2d2 + 12E3 d2 − 6 d2,

(2.112)

U(Z) =(−6E1
2
− (−12E2 d − 12 d2 + 12E3 d2)E1 − 6E2

2d2 − (−12E3 d3 + 12 d3)E2 − 6 d4 − 6E3
2d4

+ 12E3d4)(d +
1

2(E3 − 1)
(−E2 +

±
√
−C (A2 − B2) + A

√
−C cos(

√
−CZ)

A sin(
√
−CZ) + B

))−2

+ (−(−12E3 d + 12 d + 6E2)E1 + 6E2
2d − (18E3 d2 − 18 d2)E2 + 12E3

2d3 − 24E3d3 + 12 d3)

× (d +
1

2(E3 − 1)
(−E2 +

±
√
−C (A2 − B2) + A

√
−C cos(

√
−CZ)

A sin(
√
−CZ) + B

))−1 − (2E3 − 2)E1 − E2
2

− (−6E3 d + 6 d)E2 − 6E3
2d2 + 12E3 d2 − 6 d2,

(2.113)
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U(Z) =(−6E1
2
− (−12E2 d − 12 d2 + 12E3 d2)E1 − 6E2

2d2 − (−12E3 d3 + 12 d3)E2 − 6 d4 − 6E3
2d4

+ 12E3d4)(d −
2E1 cos(

√
−C

2 Z)
√
−C sin(

√
−C

2 Z) + E2 cos(
√
−C

2 Z)
)−2 + (−(−12E3 d + 12 d + 6E2)E1 + 6E2

2d

− (18E3 d2 − 18 d2)E2 + 12E3
2d3 − 24E3d3 + 12 d3) (d −

2E1 cos(
√
−C

2 Z)
√
−C sin(

√
−C

2 Z) + E2 cos(
√
−C

2 Z)
)−1

− (2E3 − 2)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2,

(2.114)

U(Z) =(−6E1
2
− (−12E2 d − 12 d2 + 12E3 d2)E1 − 6E2

2d2 − (−12E3 d3 + 12 d3)E2 − 6 d4 − 6E3
2d4

+ 12E3d4)(d +
2E1 sin(

√
−C

2 Z)
√
−C cos(

√
−C2Z) − E2 sin(

√
−C

2 Z)
)−2 + (−(−12E3 d + 12 d + 6E2)E1 + 6E2

2d

− (18E3 d2 − 18 d2)E2 + 12E3
2d3 − 24E3d3 + 12 d3) (d +

2E1 sin(
√
−C

2 Z)
√
−C cos(

√
−C2Z) − E2 sin(

√
−C

2 Z)
)−1

− (2E3 − 2)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2,

(2.115)

U(Z) =(−6E1
2
− (−12E2 d − 12 d2 + 12E3 d2)E1 − 6E2

2d2 − (−12E3 d3 + 12 d3)E2 − 6 d4 − 6E3
2d4

+ 12E3d4)(d +
2E1 sin(

√
−CZ)

√
−C cos(

√
−CZ) − E2 sin(

√
−CZ) ±

√
−C

)−2 + (−(−12E3 d + 12 d + 6E2)E1

+ 6E2
2d − (18E3 d2 − 18 d2)E2 + 12E3

2d3 − 24E3d3 + 12 d3) (d

+
2E1 sin(

√
−CZ)

√
−C cos(

√
−CZ) − E2 sin(

√
−CZ) ±

√
−C

)−1 − (2E3 − 2)E1 − E2
2
− (−6E3 d + 6 d)E2

− 6E3
2d2 + 12E3 d2 − 6 d2,

(2.116)

while A, B are arbitrary real constants and A2 − B2 > 0.
When E1 = 0 and E2(E3 − 1) , 0, we have:

U(Z) =(−6E1
2
− (−12E2 d − 12 d2 + 12E3 d2)E1 − 6E2

2d2 − (−12E3 d3 + 12 d3)E2 − 6 d4 − 6E3
2d4

+ 12E3d4)(d −
E2 k

(E3 − 1) (k + cosh(E2 Z) − sinh(E2 Z))
)−2 + (−(−12E3 d + 12 d + 6E2)E1

+ 6E2
2d − (18E3 d2 − 18 d2)E2 + 12E3

2d3 − 24E3d3 + 12 d3)

× (d −
E2 k

(E3 − 1) (k + cosh(E2 Z) − sinh(E2 Z))
)−1 − (2E3 − 2)E1 − E2

2
− (−6E3 d + 6 d)E2

− 6E3
2d2 + 12E3 d2 − 6 d2,

(2.117)
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U(Z) =(−6E1
2
− (−12E2 d − 12 d2 + 12E3 d2)E1 − 6E2

2d2 − (−12E3 d3 + 12 d3)E2 − 6 d4 − 6E3
2d4

+ 12E3d4)(d −
E2 (cosh(E2 Z) + sinh(E2 Z))

(E3 − 1) (k + cosh(E2 Z) + sinh(E2 Z))
)−2 + (−(−12E3 d + 12 d + 6E2)E1 + 6E2

2d

− (18E3 d2 − 18 d2)E2 + 12E3
2d3 − 24E3d3 + 12 d3) (d −

E2 (cosh(E2 Z) + sinh(E2 Z))
(E3 − 1) (k + cosh(E2 Z) + sinh(E2 Z))

)−1

− (2E3 − 2)E1 − E2
2
− (−6E3 d + 6 d)E2 − 6E3

2d2 + 12E3 d2 − 6 d2,

(2.118)

U(Z) =(−6E1
2
− (−12E2 d − 12 d2 + 12E3 d2)E1 − 6E2

2d2 − (−12E3 d3 + 12 d3)E2 − 6 d4 − 6E3
2d4

+ 12E3d4)(d −
1

(E3 − 1)Z + C
)−2 + (−(−12E3 d + 12 d + 6E2)E1 + 6E2

2d − (18E3 d2

− 18 d2)E2 + 12E3
2d3 − 24E3d3 + 12 d3) (d −

1
(E3 − 1)Z + C

)−1 − (2E3 − 2)E1 − E2
2

− (−6E3 d + 6 d)E2 − 6E3
2d2 + 12E3 d2 − 6 d2,

(2.119)

3. Solutions’ demonstrating

This section explains the constructed solutions through some distinct plots in two, three, and contour
graphs under some special values of above-mentioned parameters. The following Figures 1–5 show
cone, dark, solitary, bright, and singular dark waves respectively.

Figure 1. Cone wave graphs of Eq (2.3) represented by three, two-dimensional and contour
plot three dimensional.

Figure 2. Dark wave graphs of Eq (2.12) represented by three, two-dimensional and contour
plot three dimensional.
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Figure 3. Solitary wave graphs of Eq (2.30) represented by three, two-dimensional and
contour plot three dimensional.

Figure 4. Bright wave graphs of Eq (2.46) represented by three, two-dimensional and contour
plot three dimensional.

Figure 5. Singular dark wave graphs of Eq (2.50) represented by three, two-dimensional and
contour plot three dimensional.

4. Results and discussion

Here, the solutions’ physical interpretation and novelty are shown for demonstrating the research
paper’s contribution. This process is given in the following items:

• Employed schemes:
Two computational schemes (ESE and NRE methods) have been employed in the nonlinear IPB
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model for constructing novel nonlinear soliton lattice wave solutions. These methods have not
been applied to this model before. Both schemes depend on different forms of well-known Riccati
equation that helps formulate their solutions in various forms such as hyperbolic, trigonometric,
exponential and rational forms. Additionally, Their obtained solutions show the dynamical and
physical characterizations of the shallow water waves under gravity.
• Obtained results:

The obtained schemes have obtained many different forms of solutions that cover many previous
published solutions through using some different schemes. All our solutions are completely
different and novel that have been obtained in [25–30].
• Shown figures:

Some solutions have been explained through some different figures in various forms such as
contour, two, three-dimensional plots. These solutions show many novel properties of the shallow
water waves under gravity, such as cone, solitary, dark, bright and periodic features. These figures
have been plotted using a particular value of each show-parameters in the solutions.

5. Conclusions

This article has studied the nonlinear IPB model along with two recent analytical schemes. Many
novel solutions have been obtained and demonstrated through some magnificent figures to show many
undiscovered features of the considered model. The novelty and paper’s contribution are investigated.
The used schemes’ performance shows their effectiveness and the ability to handle many nonlinear
evolution equations.
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