Research article Special Issues

Further results on LCD generalized Gabidulin codes

  • Received: 14 September 2021 Accepted: 18 October 2021 Published: 19 October 2021
  • MSC : 94B05

  • Linear complementary dual (abbreviated LCD) generalized Gabidulin codes (including Gabidulin codes) have been recently investigated by Shi and Liu et al. (Shi et al. IEICE Trans. Fundamentals E101-A(9):1599-1602, 2018, Liu et al. Journal of Applied Mathematics and Computing 61(1): 281-295, 2019). They have constructed LCD generalized Gabidulin codes of length $ n $ over $ \mathbb{F}_{q^{n}} $ by using self-dual bases of $ \mathbb{F}_{q^{n}} $ over $ \mathbb{F}_{q} $ when $ q $ is even or both $ q $ and $ n $ are odd. Whereas for the case of odd $ q $ and even $ n $, whether LCD generalized Gabidulin codes of length $ n $ over $ \mathbb{F}_{q^{n}} $ exist or not is still open. In this paper, it is shown that one can always construct LCD generalized Gabidulin codes of length $ n $ over $ \mathbb{F}_{q^{n}} $ for the case of odd $ q $ and even $ n $.

    Citation: Xubo Zhao, Xiaoping Li, Tongjiang Yan, Yuhua Sun. Further results on LCD generalized Gabidulin codes[J]. AIMS Mathematics, 2021, 6(12): 14044-14053. doi: 10.3934/math.2021812

    Related Papers:

  • Linear complementary dual (abbreviated LCD) generalized Gabidulin codes (including Gabidulin codes) have been recently investigated by Shi and Liu et al. (Shi et al. IEICE Trans. Fundamentals E101-A(9):1599-1602, 2018, Liu et al. Journal of Applied Mathematics and Computing 61(1): 281-295, 2019). They have constructed LCD generalized Gabidulin codes of length $ n $ over $ \mathbb{F}_{q^{n}} $ by using self-dual bases of $ \mathbb{F}_{q^{n}} $ over $ \mathbb{F}_{q} $ when $ q $ is even or both $ q $ and $ n $ are odd. Whereas for the case of odd $ q $ and even $ n $, whether LCD generalized Gabidulin codes of length $ n $ over $ \mathbb{F}_{q^{n}} $ exist or not is still open. In this paper, it is shown that one can always construct LCD generalized Gabidulin codes of length $ n $ over $ \mathbb{F}_{q^{n}} $ for the case of odd $ q $ and even $ n $.



    加载中


    [1] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system Ⅰ: the user language, J. Symb. Comput., 24 (1997), 235–265. doi: 10.1006/jsco.1996.0125
    [2] E. Byrne, A. Ravagnani, An Assmus-Mattson theorem for rank metric codes, SIAM J. Discret. Math., 33 (2019), 1242–1260. doi: 10.1137/18M119183X
    [3] C. Carlet, S. Mesnager, C. Tang, Y. Qi, Euclidean and Hermitian LCD MDS codes, Des. Codes Cryptogr., 86 (2018), 2605–2618. doi: 10.1007/s10623-018-0463-8
    [4] J. De La Cruz, J. R. Evilla, F. $\ddot{O}$zbudak, Hermitian rank metric codes and duality, IEEE Access, 9 (2021), 38479–38487. doi: 10.1109/ACCESS.2021.3064503
    [5] J. De La Cruz, E. Gorla, H. H. López, A. Ravagnani, Weight distribution of rank-metric codes, Des. Codes Cryptogr., 86 (2018), 1–16. doi: 10.1007/s10623-016-0325-1
    [6] P. Delsarte, Bilinear forms over a finite field, with applications to coding theory, J. Comb. Theory, 25 (1978), 226–241. doi: 10.1016/0097-3165(78)90015-8
    [7] M. Devi, On the class of T-direct codes: constructions, properties and applications, Ph.D. Dessertation, Department of Mathematics, Jaypee University of Information Technology, India, 2013.
    [8] E. M. Gabidulin, Theory of codes with maximum rank distance, Probl. Inf. Trans., 21 (1985), 1–12.
    [9] M. Gadouleau, Z. Y. Yan, Properties of codes with the rank metric, IEEE Global Telecommunications Conference, San Francisco, 2006.
    [10] L. K. Hua, A theorem on matrices over a field and its application, Acta Math. Sinica, 1 (1951), 109–163.
    [11] D. Jungnickel, A. J. Menezes, S. A. Vanstone, On the number of self-dual bases of $GF(q^m)$ over $GF(q)$, Proc. Am. Math. Soc., 109 (1990), 23–29.
    [12] W. V. Kandasamy, F. Smarandache, R. Sujatha, R. R. Duray, Erasure Techniques in MRD Codes, Infinite Study, Ohio: Zip Publishing, 2012.
    [13] A. Kshevelskiy, E. Gabidulin, The new construction of rank code, Probl. Inf. Trans., 1 (2005), 2105–2108.
    [14] R. Lidl, H. Niederreiter, P. M. Cohn, Finite Fields, Cambridge: Cambridge University Press, 2003.
    [15] X. Liu, Y. Fan, H. Liu, Galois LCD codes over finite fields, Finite Fields Appl., 49 (2018), 227–242. doi: 10.1016/j.ffa.2017.10.001
    [16] X. Liu, H. Liu, Rank-metric complementary dual codes, J. Appl. Math. Comput., 61 (2019), 281–295. doi: 10.1007/s12190-019-01254-1
    [17] Z. Liu, J. Wang, Further results on Euclidean and Hermitian linear complementary dual code, Finite Fields Appl., 59 (2019), 104–133. doi: 10.1016/j.ffa.2019.05.005
    [18] P. Lusina, E. M. Gabidulin, M. Bossert, Maximum rank distance codes as space-time codes, IEEE T. Inform. Theory, 49 (2003), 2757–2760. doi: 10.1109/TIT.2003.818023
    [19] J. L. Massey, Linear codes with complementary duals, Discret. Math., 106-107 (1992), 337–342. doi: 10.1016/0012-365X(92)90563-U
    [20] K. Otal, F. $\ddot{O}$zbudak, Explicit constructions of some non-Gabidulin linear maximum rank distance codes, Adv. Math. Commun., 3 (2016), 589–600.
    [21] K. Otal, F. $\ddot{O}$zbudak, Constructions of cyclic subspace codes and maximum rank distance codes, Network Coding and Subspace Designs. Signals and Communication Technology, 2018. Available from: https://doi.org/10.1007/978-3-319-70293-3_3.
    [22] A. V. Ourivski, E. M. Gabidulin, Column scramber for the GPT cryptosystems, Discret. Appl. Math., 128 (2003), 207–221. doi: 10.1016/S0166-218X(02)00446-8
    [23] A. Ravagnani, Rank-metric codes and their duality theory, Des. Codes Cryptogr., 80 (2016), 1–20. doi: 10.1007/s10623-015-0059-5
    [24] R. M. Roth, Maximum-rank array codes and their application to crisscross error correction, IEEE T. Inform. Theory, 37 (1991), 328–336. doi: 10.1109/18.75248
    [25] J. Sheekey, A new family of linear maximum rank distance codes, Adv. Math. Commun., 10 (2016), 475–488. doi: 10.3934/amc.2016019
    [26] J. Sheekey, MRD codes: constructions and connections, 2019. Available from: arXiv: 1904.05813.
    [27] M. Shi, D. Huang, On LCD MRD codes, IEICE Trans. Fundamentals, E101-A (2018), 1599–1602. doi: 10.1587/transfun.E101.A.1599
    [28] D. Silva, F. R. Kschischang, R. K$\ddot{o}$etter, A rank-metric approach to error control in random network coding, IEEE T. Inform. Theory, 54 (2008), 3951–3967. doi: 10.1109/TIT.2008.928291
    [29] V. Tarokn, N. Seshadri, A. R. Calderbank, Space-time codes for high data rate wireless communication: Performance criterion and code construction, IEEE T. Inform. Theory, 50 (1998), 19–32.
    [30] Y. Wu, Y. Lee, Binary LCD codes and self-orthogonal codes via simplicial complexes, IEEE Commun. Lett., 24 (2020), 1159–1162. doi: 10.1109/LCOMM.2020.2982381
    [31] Y. Wu, J. Y. Hyun, Y. Lee, New LCD MDS codes of non-Reed-Solomon type, IEEE T. Inform. Theory, 67 (2021), 5069–5078. doi: 10.1109/TIT.2021.3086818
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1283) PDF downloads(72) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog