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Abstract: Linear complementary dual (abbreviated LCD) generalized Gabidulin codes (including
Gabidulin codes) have been recently investigated by Shi and Liu et al. (Shi et al. IEICE Trans.
Fundamentals E101-A(9):1599-1602, 2018, Liu et al. Journal of Applied Mathematics and Computing
61(1): 281-295, 2019). They have constructed LCD generalized Gabidulin codes of length n over Fqn

by using self-dual bases of Fqn over Fq when q is even or both q and n are odd. Whereas for the case
of odd q and even n, whether LCD generalized Gabidulin codes of length n over Fqn exist or not is
still open. In this paper, it is shown that one can always construct LCD generalized Gabidulin codes of
length n over Fqn for the case of odd q and even n.
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1. Introduction

Rank metric was defined as “arithmetic distance” by Loo-Keng Hua [10]. In 1978, this metric was
firstly studied in coding theory [6], it measured the distance between two codewords, represented
as matrices over a finite field [6] or vectors with entries in an extension field [8], as the rank of
their differences. Rank metric codes have drawn much attention [2, 4, 5, 9, 16, 21, 23, 26] because of
their important applications related to network coding [28], public-key cryptosystems [22], space-time
coding [18], wireless communications [29], storage equipments [24].

Rank metric codes that achieve the Singleton-type bound are called maximum rank distance (MRD)
codes, which are presented in analogy to MDS codes in the Hamming metric. Recently, several results
on subclasses of MRD codes have been investigated [8, 9, 13, 20, 25], in which Gabidulin codes [8]
and generalized Gabidulin codes [13] are of much interest for their efficient encoding and decoding
algorithms. On the other hand, Euclidean linear complementary dual codes (that is, linear codes which
intersect with their Euclidean dual codes trivially), abbreviated by LCD codes, have been extensively
investigated due to their theoretical and practical applications [3, 15, 19, 30, 31]. Devi in [7] found that
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not all MRD codes over an extension field with an even character are LCD codes. Liu et al. pointed
out the relationship between LCD Delsarte codes and LCD Gabidulin codes in [17]. Kandasamy et
al. in [12] have shown that Gabidulin codes of length n over F2n generated by the trace-orthogonal
generator matrix are LCD codes. Later, Shi and Liu et al. [17, 27] generalized the result of [12], by
using a self-dual basis, they discussed the construction of LCD generalized Gabidulin codes over Fqn

when q is even or both q and n are odd. However, for the case of odd q and even n, it is unknown
whether LCD generalized Gabidulin codes of length n exist over Fqn .

Therefore, in this paper we devote to dealing with this open problem, and show that one can always
construct LCD generalized Gabidulin codes of length n over Fqn for the case of odd q and even n.
The main technique is based on constructing a special basis of the extension field Fqn , such that the
associated matrix of the basis over the extension field Fqn satisfies the desired condition. First of all, a
special basis of the extension field Fqn is constructed from a self-dual basis of field Fqm , which ensures
that the product of the associated matrix of the special basis and its transpose matrix is a nonsingular
diagonal matrix, where n = 2m and m is any odd integer. Then, the construction is generalized to
a more general case of n = 2t · m, where t ≥ 2 is a positive integer, and m is any odd integer. As
a consequence, in the case of odd q and even n, LCD generalized Gabidulin codes over Fqn can be
constructed by using an appropriated basis of Fqn .

The rest of this paper is organized as follows. In Section 2, basic definitions and properties about
finite fields, Euclidean LCD codes, and rank metric codes are reviewed. In Section 3, some results
about construction of LCD generalized Gabidulin codes are provided. The conclusion of this paper is
given in Section 4.

2. Preliminaries

Denote Fq be a base field and FqN be an extension field of degree N of Fq, where q is a prime
power and N is a positive integer. Let g1, g2, . . . , gn ∈ FqN , where n is a positive integer, and n ≤ N.
Denote g = {g1, g2, . . . , gn} be some fixed linearly independent set (abbreviated LIS) of the extension
field FqN over Fq, i.e., coordinates gi ∈ FqN , i = 1, 2, . . . , n, are linearly independent over the base
field Fq. If g1, g2, . . . , gN ∈ FqN are linearly independent over Fq, then the LIS g = {g1, g2, . . . , gN} is
called a basis of FqN over Fq. Throughout this paper, we write g[i] = gqi

for an element g ∈ FqN , and
A[i] = (ai j)[i] = (a[i]

i j ) = (aqi

i j) for a matrix A = (ai j) over FqN , where i is a nonnegative integer.
For g ∈ FqN , the trace of g over Fq is defined as

TrFqN /Fq(g) =

N−1∑
i=0

g[i].

Two bases g = {g1, g2, . . . , gN} and h = {h1, h2, . . . , hN} of FqN over Fq are said to be dual bases, if
TrFqN /Fq(gih j) = δi, j, for all 1 ≤ i, j ≤ N, where δi, j is Kroneker delta function. If TrFqN /Fq(gig j) = δi, j,
for all 1 ≤ i, j ≤ N, the basis {g1, g2, . . . , gN} is called a self-dual basis.

The criterion for the existence of self-dual bases of FqN over Fq is given by Lemma 2.1.

Lemma 2.1. [11] FqN has a self-dual basis over Fq if and only if either q is even or both q and N are
odd.
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In [8], the linear rank metric was considered as a metric for linear block codes over extension fields.
In this sense, a linear rank metric code C of length n with dimension k over FqN is a k-dimensional
subspace of Fn

qN . And the Euclidean dual code of C is denoted by

C⊥ = {u ∈ Fn
qN | 〈u, v〉 = 0,∀v ∈ C},

where vectors u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) belong to Fn
qN , 〈u, v〉 is defined as 〈u, v〉 =

n∑
i=1

uivi. If C⊥
⋂
C = {0}, C is called a Euclidean LCD (or for short, LCD) code. The following

proposition gives a complete characterization of LCD codes.

Proposition 2.2. [3] If G is a generator matrix for the [n, k] linear block code C ⊆ Fn
qN , then C is an

LCD code of length n if and only if the k × k matrix GG> is nonsingular, where G> is the transpose of
the matrix G.

Definition 2.3. The rank of a vector u = (u1, u2, . . . , un) ∈ Fn
qN , denoted by Rk(u), is defined as the

maximal number of linearly independent coordinates ui over Fq, namely,

Rk(u) = dimFq〈u1, u2, . . . , un〉,

where 〈u1, u2, . . . , un〉 represents the vector space generated by u1, u2, . . . , un. The rank distance
between vectors u, v of Fn

qN , is defined as

dR(u, v) = Rk(u − v).

The minimum rank distance of a linear rank metric code C, denoted by dR(C), is the minimum rank
distance over all nonzero codewords, namely,

dR(C) = min{Rk(u) | u ∈ C, and u , 0}.

The well-known Singleton bound for block codes in the Hamming metric also implies an upper
bound for block codes in the rank metric.

Theorem 2.4. [8] Let C ⊆ Fn
qN be a linear rank metric code of dimension k, then dR(C) ≤ n − k + 1.

Definition 2.5. A linear rank metric code C ⊆ Fn
qN of dimension k is called a maximum rank distance

(MRD) code, if dR(C) = n − k + 1.

Let s be a positive integer. For some ordered set g = {g1, g2, . . . , gn} of n elements gi ∈ FqN (n ≤ N),
i = 1, 2, . . . , n, let Ms,k,g be the k × n associated matrix of g, defined by

Ms,k,g =


g1 g2 · · · gn

g[s]
1 g[s]

2 · · · g[s]
n

...
...

. . .
...

g[(k−1)s]
1 g[(k−1)s]

2 · · · g[(k−1)s]
n

 . (2.1)

Keeping the above notation, a generalized Gabidulin code is defined as follows.

Definition 2.6. [13] Let s be a positive integer such that gcd(s,N) = 1. A generalized Gabidulin code
of dimension k relative to the set g is the code Gs,k,g of length n over FqN generated by the associated
matrix Ms,k,g, where 1 ≤ k ≤ n, g = {g1, g2, . . . , gn} (n ≤ N) is an LIS of FqN over Fq. In particular, if
s = 1, Gs,k,g is called a Gabidulin code.

As discussed in [17, 27], below we study LCD generalized Gabidulin codes of length n over FqN ,
with the assumption of N = n.

AIMS Mathematics Volume 6, Issue 12, 14044–14053.



14047

3. Construction of LCD generalized Gabidulin codes

In this section, in the case of odd q and even n, LCD generalized Gabidulin codes of length n over
Fqn are constructed. Firstly, we give the description of LCD generalized Gabidulin codes.

Definition 3.1. Let Gs,k,g be an k-dimensional generalized Gabidulin code over Fqn , generated by the
matrix Ms,k,g, where 1 ≤ k ≤ n, gcd(s, n) = 1, and g = {g1, g2, . . . , gn} is a basis of Fqn over Fq. If the
intersection of Gs,k,g and its dual G⊥s,k,g is trivial, namely, Gs,k,g ∩ G

⊥
s,k,g = {0}, then Gs,k,g is called an

LCD generalized Gabidulin code of length n over Fqn .

Let the notations be the same as before, the following Theorems 3.2-3.3 on generalized Gabidulin
codes can be found in [13].

Theorem 3.2. Let Gs,k,g be an k-dimensional generalized Gabidulin code of length n over Fqn ,
generated by the matrix Ms,k,g, where gcd(s, n) = 1, and g = {g1, g2, . . . , gn} is a basis of Fqn over
Fq. Then, dR(Gs,k,g) = n − k + 1. Thus, generalized Gabidulin codes are MRD codes.

Theorem 3.3. Let Gs,k,g be an k-dimensional generalized Gabidulin code of length n over Fqn ,
generated by the matrix Ms,k,g, where gcd(s, n) = 1, and g = {g1, g2, . . . , gn} is a basis of Fqn over
Fq. Then, the dual G⊥s,k,g of Gs,k,g is also a generalized Gabidulin code of dimension n − k.

It is known [17, 27] that in the case of q is even or both of q and n are odd, an LCD generalized
Gabidulin code over Fqn can be constructed by employing a self-dual basis of Fqn over Fq as follows.

Theorem 3.4. Assume that q is even or both of q and n are odd. Let g = {g1, g2, . . . , gn} be a self-dual
basis of Fqn over Fq. Then, Ms,n,gM>

s,n,g = In, where Ms,n,g is the associated matrix of basis g, and s is
a positive integer such that gcd(s, n) = 1. Furthermore, let Gs,k,g be a generalized Gabidulin code of
length n over Fqn with Ms,k,g as its generator matrix, then Gs,k,g is an LCD MRD code, with parameters
[n, k, n − k + 1].

For the associated matrix M1,n,g of some ordered set g = {g1, g2, . . . , gn} over Fqn , we have the
following result (see Lemma 3.51 in [14]).

Lemma 3.5. Let g1, g2, . . . , gn be elements of Fqn . Then the n × n associated matrix M1,n,g of g =

{g1, g2, . . . , gn} is nonsingular if and only if g = {g1, g2, . . . , gn} is a basis of Fqn over Fq, where

M1,n,g =


g1 g2 · · · gn

g[1]
1 g[1]

2 · · · g[1]
n

...
...

. . .
...

g[(n−1)]
1 g[(n−1)]

2 · · · g[(n−1)]
n

 .
A generalization variation of the above lemma is as follows.

Lemma 3.6. Let g1, g2, . . . , gn be elements of Fqn , and s be a positive integer such that gcd(s, n) =

1. Then the n × n associated matrix Ms,n,g of g = {g1, g2, . . . , gn} is nonsingular if and only if g =

{g1, g2, . . . , gn} is a basis of Fqn over Fq.

AIMS Mathematics Volume 6, Issue 12, 14044–14053.



14048

Proof. In terms of (2.1), we have

Ms,n,g =


g1 g2 · · · gn

g[s]
1 g[s]

2 · · · g[s]
n

...
...

. . .
...

g[(n−1)s]
1 g[(n−1)s]

2 · · · g[(n−1)s]
n

 .
Note that the matrix Ms,n,g is a row permutation of the matrix M1,n,g, since gcd(s, n) = 1, and for index
[ js], js mod n, j = 0, 1, . . . , n − 1, overrun all values from 0 to n − 1. Therefore, the desired result
follows by Lemma 3.5. �

The following two theorems are important for the construction of LCD generalized Gabidulin codes
in the case of odd q and even n.

Theorem 3.7. Let q, m be odd integers, n = 2m, and s be a positive integer such that gcd(s, n) = 1.
Denote g = {g1, g2, . . . , gm} be a self-dual basis of Fqm over Fq, and Ms,n,h be the n×n associated matrix
of h = {g1, g2, . . . , gm, θg1, θg2, . . . , θgm}, where θ = ξ

qm−1
2 , and ξ is a primitive element of Fqn . Then h is

a basis of Fqn over Fq, and Ms,n,hM>
s,n,h is a nonsingular diagonal matrix.

Proof. Notice that for the set h, its associated matrix Ms,n,h is with the form of

Ms,n,h =

(
Ms,m,g XMs,m,g

M[ms]
s,m,g X[ms]M[ms]

s,m,g

)
=

(
Ms,m,g XMs,m,g

Ms,m,g X[ms]Ms,m,g

)
,

where Ms,m,g is the associated matrix of g, and X is the following m × m diagonal matrix

X =


θ 0 · · · 0
0 θ[s] · · · 0
...

...
. . .

...

0 0 · · · θ[(m−1)s]

 .
Hence,

Ms,n,hM>
s,n,h =

(
Ms,m,g XMs,m,g

Ms,m,g X[ms]Ms,m,g

)
·

(
M>

s,m,g M>
s,m,g

M>
s,m,gX> M>

s,m,gX[ms]>

)
=

(
Im + X2 Im + X1+[ms]

Im + X1+[ms] In + X2[ms]

)
=

(
Im + X2 0
0 Im + X2[ms]

)
,

(3.1)

where Im is the m × m identity matrix. Notice that both q and s are odd. Thus, the last equality of
(3.1) follows from the fact that θ1+[ms] = ξ

qm−1
2 ·(qms+1) = ξ

qn−1
2 ·

qms+1
qm+1 = −1, and (θ[ js])1+[ms] = (θ1+[ms])[ js] =

(−1)q js
= −1 for j ∈ {1, 2, . . . ,m − 1}.

Furthermore, we notice that all the eigenvalues of matrix X2 (resp. X2[ms]) are θ2[ js] (resp. θ2[(m+ j)s]),
for j ∈ {1, 2, . . . ,m − 1}. It is easy to check that for any j ∈ {0, 1, . . . ,m − 1}, the order of θ2[ js]
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(resp. θ2[(m+ j)s]), denoted by ord(θ2[ js]) (resp. ord(θ2[(m+ j)s]) is not equal to 2, which is the order of
−1. In fact, for j ∈ {0, 1, . . . ,m − 1}, one can derive that ord(θ2[ js])=ord(ξ(qm−1)·q js

)= qn−1
gcd(qn−1,(qm−1)·q js)

=
qn−1

gcd(qn−1,qm−1)=qm + 1. Analogously, one can obtain that ord(θ2[(m+ j)s])=qm + 1, for j ∈ {0, 1, . . . ,m− 1}.
So −1 is not an eigenvalue of matrices X2 and X2[ms]. Therefore, we conclude that

Ms,n,hM>
s,n,h =

(
Im + X2 0
0 Im + X2[ms]

)
,

which is a nonsingular diagonal matrix. And using Lemma 3.6, h = {g1, g2, . . . , gm, θg1, θg2, . . . , θgm}

is a basis of Fqn over Fq. �
The result of Theorem 3.7 can be generalized as follows.

Theorem 3.8. Let s be a positive integer, q, m are odd integers, and n = 2t · m. Assume that
gcd(s, n) =gcd(s, 2t · m) = 1, where t ≥ 1 is a positive integer. Then, there exists a basis of Fqn = Fq2t ·m

over Fq, denoted by h, such that Ms,n,hM>
s,n,h is a nonsingular diagonal matrix, where Ms,n,h is the n× n

associated matrix of basis h.

Proof. We prove this result by mathematical induction.
For t = 1, in terms of Theorem 3.7, the result follows.
Assume that the conclusion holds for the case of t−1, we will prove that it also holds for the case of t,

where t ≥ 2 is a positive integer. Let s be a positive integer such that gcd(s, n) =gcd(s, 2t ·m) = 1, which
implies gcd(s, n

2 ) =gcd(s, 2t−1 · m) = 1. By induction assumption, there exists a basis of Fq
n
2

= Fq2t−1 ·m

over Fq, denoted by g = {g1, g2, . . . , g n
2
}, such that Ms, n

2 ,gM>

s, n
2 ,g

= D is a nonsingular diagonal matrix,

where Ms, n
2 ,g is the n

2 ×
n
2 associated matrix of basis g. Let θ = ξ

q
n
2 −1
2 , where ξ is a primitive element of

Fqn . Denote h = {g, θg} = {g1, g2, . . . , g n
2
, θg1, θg2, . . . , θg n

2
}. Then, the associated matrix Ms,n,h of h is

with the form of

Ms,n,h =

 Ms, n
2 ,g XMs, n

2 ,g

M[ ns
2 ]

s, n
2 ,g

X[ ns
2 ]M[ ns

2 ]
s, n

2 ,g


=

(
Ms, n

2 ,g XMs, n
2 ,g

Ms, n
2 ,g X[ ns

2 ]Ms, n
2 ,g

)
,

where Ms, n
2 ,g is the n

2 ×
n
2 associated matrix of basis g, and

X =


θ 0 · · · 0
0 θ[s] · · · 0
...

...
. . .

...

0 0 · · · θ[( n
2−1)s]

 .
Hence,

Ms,n,hM>
s,n,h =

(
Ms, n

2 ,g XMs, n
2 ,g

Ms, n
2 ,g X[ ns

2 ]Ms, n
2 ,g

)
·

 M>

s, n
2 ,g

M>

s, n
2 ,g

M>

s, n
2 ,g

X> M>

s, n
2 ,g

X[ ns
2 ]>


=

(
D(I n

2
+ X2) D(I n

2
+ X1+[ ns

2 ])
D(I n

2
+ X1+[ ns

2 ]) D(I n
2

+ X2[ ns
2 ])

)
=

(
D(I n

2
+ X2) 0
0 D(I n

2
+ X2[ ns

2 ])

)
.

(3.2)
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Notice that both q and s are odd. Thus, the last equality of (3.2) follows from the fact that θ1+[ ns
2 ] =

ξ
q

n
2 −1
2 ·(q

ns
2 +1) ξ

qn−1
2 ·

q
ns
2 +1

q
n
2 +1 = −1, and (θ[ js])1+[ ns

2 ] = (θ1+[ ns
2 ])[ js] = (−1)q js

= −1 for j ∈ {1, 2, . . . , n
2 − 1}.

Furthermore, we notice that all the eigenvalues of matrix X2 (resp. X2[ ns
2 ]) are θ2[ js] (resp. θ2[( n

2 + j)s])
for j ∈ {0, 1, . . . , n

2 − 1}. It is easy to check that for any j ∈ {0, 1, . . . , n
2 − 1}, the order of θ2[ js]

(resp. θ2[( n
2 + j)s]), denoted by ord(θ2[ js]) (resp. ord(θ2[( n

2 + j)s]) is not equal to 2, which is the order of
−1. In fact, for j ∈ {0, 1, . . . , n

2 − 1}, one can derive that ord(θ2[ js])=ord(ξ(q
n
2 −1)·q js

)= qn−1

gcd(qn−1,(q
n
2 −1)·q js)

=
qn−1

gcd(qn−1,q
n
2 −1)

=q
n
2 +1. Analogously, one can obtain that ord(θ2[( n

2 + j)s])=q
n
2 +1, where j ∈ {0, 1, . . . , n

2−1}.

So −1 is not an eigenvalue of matrices X2 and X2[ ns
2 ]. Therefore, we conclude that

Ms,n,hM>
s,n,h =

(
D(I n

2
+ X2) 0

0 D(I n
2

+ X2[ ns
2 ])

)
,

which is a nonsingular diagonal matrix. And using Lemma 3.6, h = {g1, g2, . . . , gm, θg1, θg2, . . . , θgm}

is a basis of Fqn over Fq. �
Now we are going to illustrate Theorem 3.8 by two explicit examples. For the sake of simplicity,

we assume that s = 1 in the following examples.

Example 3.9. Let q = 3, and n = 4. Assume that ω1 is a primitive element of field F32 , and ω

is a primitive element of field F34 . Denote θ1 = ω
q−1

2
1 = ω1, and θ = ω

q2−1
2 = ω4. Utilizing the

computer algebra system Magma [1], we verify that {1, θ1} is a basis of F32 over F3, h = {1, θ1, θ, θθ1}=

{1, ω10, ω4, ω14} is a basis of F34 over F3. Moreover, the associated matrix of basis h is

M1,4,h =


1 ω10 ω4 ω14

1 ω30 ω12 ω42

1 ω10 ω36 ω46

1 ω30 ω28 ω58

 ,
and

M1,4,hM>
1,4,h =


ω19 0 0 0
0 ω57 0 0
0 0 ω11 0
0 0 0 ω33

 .
Example 3.10. Let q = 3, and n = 6. Assume that ω1 is a primitive element of field F33 , and ω is
a primitive element of field F36 . Utilizing the computer algebra system Magma [1], we find a self-

dual basis of F33 over F3, denoted by {ω4
1, ω

10
1 , ω

12
1 }. Let θ = ω

q3−1
2 , h = {ω4

1, ω
10
1 , ω

12
1 , θω

4
1, θω

10
1 , θω

12
1 }

= {ω112, ω280, ω336, ω125, ω293, ω349}. Then, it is easy to verify that h is a basis of F36 over F3. Moreover,
the associated matrix of basis h is

M1,6,h =



ω112 ω280 ω336 ω125 ω293 ω349

ω336 ω112 ω280 ω375 ω151 ω319

ω280 ω336 ω112 ω397 ω453 ω229

ω112 ω280 ω336 ω463 ω631 ω687

ω336 ω112 ω280 ω661 ω437 ω605

ω280 ω336 ω112 ω527 ω583 ω359


,
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and

M1,6,hM>
1,6,h =



ω83 0 0 0 0 0
0 ω249 0 0 0 0
0 0 ω19 0 0 0
0 0 0 ω57 0 0
0 0 0 0 ω171 0
0 0 0 0 0 ω513


.

Based on the above results, one can construct LCD generalized Gabidulin codes over Fqn in the case
of q is odd and n is even.

Theorem 3.11. Assume that q is odd and n is even. Let g = {g1, g2, . . . , gn} be a basis of Fqn over Fq

satisfying Ms,n,gM>
s,n,g is a nonsingular diagonal matrix, where Ms,n,g is the associated matrix of basis

g, and s is a positive integer such that gcd(s, n) = 1. Let Gs,k,g be a generalized Gabidulin code of
length n over Fqn with Ms,k,g as its generator matrix, then Gs,k,g is an LCD MRD code, with parameters
[n, k, n − k + 1].

Proof. By Theorem 3.8, we know that there exists a basis g of Fqn over Fq such that the associated matrix
Ms,n,g of basis g satisfying Ms,n,gM>

s,n,g is a nonsingular diagonal matrix. Denote the n × n nonsingular
diagonal matrix by Ms,n,gM>

s,n,g=diag(λ1, λ2, . . . , λn), where λi ∈ Fqn , and λi , 0, i = 1, 2, . . . , n, are
diagonal entries.

Note that the k × n matrix Ms,k,g consists of the first k rows of the n × n matrix Ms,n,g. Thus,
Ms,k,gM>

s,k,g consists of the first k rows and first k columns of matrix Ms,n,gM>
s,n,g =diag(λ1, λ2, . . . , λn),

which is equal to diag(λ1, λ2, . . . , λk). Therefore, Ms,k,gM>
s,k,g is an k × k nonsingular diagonal matrix.

Then the desired result readily follows by Proposition 2.2 and Theorem 3.2. �

Remark 3.12. In terms of Theorems 3.2 and 3.3, the dual of the code Gs,k,g in Theorem 3.11 is also an
LCD generalized Gabidulin code with parameters [n, n − k, k + 1] .

4. Conclusions

In this paper, for the case of odd q and even n, LCD generalized Gabidulin codes of length n over
Fqn are constructed by using an appropriated basis of Fqn . This work complements results previously
obtained for constructing LCD generalized Gabidulin codes of length n over Fqn when q is even or both
q and n are odd. Therefore, one can always construct LCD generalized Gabidulin codes of length n
over Fqn for any positive n and prime power q.
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