Loading [MathJax]/jax/element/mml/optable/MathOperators.js
Research article Special Issues

The least squares Bisymmetric solution of quaternion matrix equation AXB=C

  • In this paper, the idea of partitioning is used to solve quaternion least squares problem, we divide the quaternion Bisymmetric matrix into four blocks and study the relationship between the block matrices. Applying this relation, the real representation of quaternion, and M-P inverse, we obtain the least squares Bisymmetric solution of quaternion matrix equation AXB=C and its compatable conditions. Finally, we verify the effectiveness of the method through numerical examples.

    Citation: Dong Wang, Ying Li, Wenxv Ding. The least squares Bisymmetric solution of quaternion matrix equation AXB=C[J]. AIMS Mathematics, 2021, 6(12): 13247-13257. doi: 10.3934/math.2021766

    Related Papers:

    [1] Xue Han, Tingting Wang . The hybrid power mean of the generalized Gauss sums and the generalized two-term exponential sums. AIMS Mathematics, 2024, 9(2): 3722-3739. doi: 10.3934/math.2024183
    [2] Yan Zhao, Wenpeng Zhang, Xingxing Lv . A certain new Gauss sum and its fourth power mean. AIMS Mathematics, 2020, 5(5): 5004-5011. doi: 10.3934/math.2020321
    [3] Xuan Wang, Li Wang, Guohui Chen . The fourth power mean of the generalized quadratic Gauss sums associated with some Dirichlet characters. AIMS Mathematics, 2024, 9(7): 17774-17783. doi: 10.3934/math.2024864
    [4] Shujie Zhou, Li Chen . On the sixth power mean values of a generalized two-term exponential sums. AIMS Mathematics, 2023, 8(11): 28105-28119. doi: 10.3934/math.20231438
    [5] Jin Zhang, Wenpeng Zhang . A certain two-term exponential sum and its fourth power means. AIMS Mathematics, 2020, 5(6): 7500-7509. doi: 10.3934/math.2020480
    [6] Xiaoxue Li, Wenpeng Zhang . A note on the hybrid power mean involving the cubic Gauss sums and Kloosterman sums. AIMS Mathematics, 2022, 7(9): 16102-16111. doi: 10.3934/math.2022881
    [7] Xiaoge Liu, Yuanyuan Meng . On the k-th power mean of one kind generalized cubic Gauss sums. AIMS Mathematics, 2023, 8(9): 21463-21471. doi: 10.3934/math.20231093
    [8] Wenpeng Zhang, Yuanyuan Meng . On the sixth power mean of one kind two-term exponential sums weighted by Legendre's symbol modulo p. AIMS Mathematics, 2021, 6(7): 6961-6974. doi: 10.3934/math.2021408
    [9] Wenpeng Zhang, Jiafan Zhang . The hybrid power mean of some special character sums of polynomials and two-term exponential sums modulo p. AIMS Mathematics, 2021, 6(10): 10989-11004. doi: 10.3934/math.2021638
    [10] Jinmin Yu, Renjie Yuan, Tingting Wang . The fourth power mean value of one kind two-term exponential sums. AIMS Mathematics, 2022, 7(9): 17045-17060. doi: 10.3934/math.2022937
  • In this paper, the idea of partitioning is used to solve quaternion least squares problem, we divide the quaternion Bisymmetric matrix into four blocks and study the relationship between the block matrices. Applying this relation, the real representation of quaternion, and M-P inverse, we obtain the least squares Bisymmetric solution of quaternion matrix equation AXB=C and its compatable conditions. Finally, we verify the effectiveness of the method through numerical examples.



    Let q3 is a positive integer. For any integers m, n and any Dirichlet character χmodq (see the definition in [6]), we define a generalized quadratic Gauss sums G(m,n,χ;q) as

    G(m,n,χ;q)=qa=1χ(a)e(ma2+naq),

    where as usual, e(y)=e2πiy, and i2=1.

    If taking n=0, then G(m,0,χ;q) is the quadratic Gauss sums. That is,

    G(m,0,χ;q)=qa=1χ(a)e(ma2q).

    About the properties of G(m,n,χ;q), some authors obtained many interesting results. For example, if q=p is an odd prime, then from A. Weil's important work [1] we can get the estimate

    |G(m,n,χ;p)|2p

    for all integer m and n with (m,n,p)=1.

    Li Xiaoxue and Xu Zhefeng [9] obtained the identity

    pm=1|p1a=1χ(a)e(ma2+ap)|4={p33p2+2(1p)p2p8(1p)p, if   χ=χ0;2p33p2, if  χ(1)=1;2p33p24(1p)p2p|p1a=1χ(a+¯a)|2, if   χ(1)=1  and  χχ0,

    where χ0 denotes the principal character mod p, (p) denotes the Legendre's symbol mod p, and ¯a denotes the inverse of a. That is, a¯a1modp.

    Zhang Wenpeng and Lin Xin [7] proved the following conclusion:

    Let p be an odd prime, α be any positive integer with α2. Then for any integer n with (n,p)=1, if λ is any primitive character mod pα(see the definition in [6]), then we have

    pαm=1|pαa=1λ(a)e(ma2+napα)|4=p2αϕ(pα)(α+15p1);

    If λ is any non-primitive character mod pα, then we have the identity

    pαm=1|pαa=1λ(a)e(ma2+napα)|4=p2αϕ(pα),

    where ϕ(n) denotes the Euler function.

    For any integer m with (m,p)=1, Zhang Wenpeng [8] given identities

    χmodp|p1a=1χ(a)e(ma2p)|4={(p1)[3p26p1+4(mp)p], if  p1mod4;(p1)(3p26p1), if   p3mod4.

    For (m,p)=1 and p3mod4, one has the identity

    χmodp|p1a=1χ(a)e(ma2p)|6=(p1)(10p325p24p1).

    If m=0, then G(0,n,χ;q) becomes classical Gauss sums G(n,χ;q). That is,

    G(0,n,χ;q)=G(n,χ;q)=qa=1χ(a)e(naq).

    If χ is a primitive character mod q, then G(n,χ;q)=¯χ(n)τ(χ), where

    τ(χ)=qa=1χ(a)e(aq),

    χ¯χ=χ0 and |τ(χ)|=q, see Theorem 8.15 in [7].

    Some papers related to Gauss sums, Kloosterman sums and two-term exponential sums can also be found in [3,4,5], we will not go through them here.

    In this paper, we are going to be interested in the computational problem of the 2k-th power mean of G(m,n,χ;p). That is,

    χmodpp1m=0|p1a=1χ(a)e(ma2+ap)|2k, (1)

    where p is an odd prime and k is a positive integer.

    When k3, no one seems to research the calculation problem of (1) so far, at least we have not seen any paper about it. Of course, the study of this problem is meaningful, mainly in the following three aspects:

    First of all, Gauss sums plays an important role in the study of number theory, many analytic number theory problems are closely related to it, such as the quadratic reciprocal formula of the Legendre's symbol, Dirichlet L-functions and so on. So it is necessary to study its various properties.

    Secondly, due to the irregular properties of the value distribution of the generalized quadratic Gauss sums, it is difficult to obtain satisfactory results in the study of some number theory problems, and then we can use the exact calculation of the mean value instead. In this way, satisfactory results can be obtained.

    Third, it is always worthwhile to be able to give an exact calculating formula for some discrete sum problems.

    It is because of these reasons, we think it is necessary to further study the various higher power mean of the generalized quadratic Gauss sums. In this paper, we will use elementary methods, the number of the solutions of some congruence equations modp and the properties of the Legendre's symbol to study the calculating problem of (1) with k=3, and give an exact calculating formula for it. That is, we will prove the following main result:

    Theorem. For any prime p2, we have the identity

    χmodpp1m=0|p1a=1χ(a)e(ma2+ap)|6=p(p1)[5p327p2+44p+2+8(1p)].

    Some notes: In the theorem, we only discussed the special case. That is, the modulo is an odd prime p. So we naturally ask:

    (A). What happens if the modulo is a composite number?

    (B). For integer k4, whether there exists a calculating formula for (1)?

    These are two open problems. We need to further study.

    In this section, we first give two simple lemmas, which are necessary in the proof of our theorem. At the same time, in the proofs of these lemmas, we need some knowledge of elementary and analytic number theory, which can be found in [1,2], so we do not need to repeat them here. First we have the following:

    Lemma 1. Let p is an odd prime, then we have the identity

    p1a=1p1b=1p1c=1p1d=1p1e=1a2+b2+c2d2+e2+1modpabcdemodp1=p3+6p225p28(1p).

    Proof. From the properties of the reduced residue system modulo p we know that if d, e passed through a reduced residue system mod p, then da, eb also pass through a reduced residue system modulo p, so notice the symmetry of a and b, and d and e, we have the identity

    p1a=1p1b=1p1c=1p1d=1p1e=1a2+b2+c2d2+e2+1modpabcdemodp1=p1a=1p1b=1p1c=1p1d=1p1e=1a2+b2+c2a2d2+b2e2+1modpcdemodp1=p1a=1p1b=1p1d=1p1e=1a2+b2+d2e2a2d2+b2e2+1modp1=p1a=1p1b=1p1d=1p1e=1a(d1)+b(e1)de1modp(1+(ap))(1+(bp))(1+(dp))(1+(ep))=p1a=1p1b=1p1d=1p1e=1a(d1)+b(e1)de1modp(1+2(dp)+(dep)+2(ap)+(abp))+p1a=1p1b=1p1d=1p1e=1a(d1)+b(e1)de1modp(4(adp)+2(adep)+2(dabp)+(abdep))W1+2W2+W3+2W4+W5+4W6+2W7+2W8+W9, (2)

    where (p) denotes the Legendre's symbol modulo p.

    Now we calculating the exact values of Wi (1i9) in (2) respectively. From the properties of the reduced residue system modulo p we have

    W1=p1a=1p1b=1p1d=1p1e=1a(d1)+b(e1)de1modp1=(p1)(3p5)+p1a=1p1b=1p1d=2p1e=2a+bde1modp1=(p1)(3p5)+(p1)(p2)2(p2)2+(p2)=p33p2+5p5. (3)
    W2=p1a=1p1b=1p1d=1p1e=1a(d1)+b(e1)de1modp(dp)=(p1)(2p3)+(p1)p1d=2(dp)=2(p1)(p2)=2p26p+4. (4)
    W3=p1a=1p1b=1p1d=1p1e=1a(d1)+b(e1)de1modp(dep)=(p1)2+2(p1)p1d=2(dp)+p1a=1p1b=1p1d=2p1e=2a+bde1modp(dep)=(p1)(p3)+p1a=0p1b=1p1d=2p1e=2a+bde1modp(dep)p1b=1p1d=2p1e=2bde1modp(dep)=(p1)(p3)+(p1)p1d=2p1d=2(dep)+p1d=2p1e=2de1modp(dep)=p22p1. (5)
    W4=p1a=1p1b=1p1d=1p1e=1a(d1)+b(e1)de1modp(ap)=p1a=1p1b=1(ap)+p1a=1p1e=2(ap)+p1b=1p1d=21+p1a=1p1b=1p1d=2p1e=2a(d1)+bde1modp(ap)=(p1)(p2)+p1a=1p1b=0p1d=2p1e=2a(d1)+bde1modp(ap)p1a=1p1d=2p1e=2a(d1)de1modp(ap)=(p1)(p2)p1d=2p1e=2((de1)(d1)p)=p(p2)p1d=1p1e=1((de1)(d1)p)=p22p1. (6)
    W5=p1a=1p1b=1p1d=1p1e=1a(d1)+b(e1)de1modp(abp)=p1a=1p1b=1p1d=2p1e=2a(d1)+b(e1)de1modp(abp)=p1a=1p1b=1p1d=1p1e=1a+bde1modp(ab(d1)(e1)p)=p1b=1p1d=2p1e=2(b(de1b)(d1)(e1)p)=p1d=2p1e=2((d1)(e1)p)p1b=1(b(de1b)p). (7)

    Note that identity

    p1a=0(a2+bp)=p1a=1(a(a+b)p)={p1, if  (b,p)=p;1, if   (b,p)=1. (8)

    From (7) and (8) we have

    W5=p1d=2p1e=2(de1,p)=1((d1)(e1)p)p1b=1(b(1b)p)+p1b=1p1e=2((e1)(1¯e)p)=pp1e=2(ep)(1p)p1d=2p1e=2((d1)(e1)p)=p(1p). (9)
    W6=p1a=1p1b=1p1d=1p1e=1a(d1)+b(e1)de1modp(adp)=p1b=1p1d=2(dp)+p1a=1p1b=1p1d=2p1e=2a(d1)+bde1modp(adp)=(p1)+p1b=1p1d=2p1e=2((de1b)d(d1)p)=(p1)p1d=2p1e=2((de1)d(d1)p)=(p1)p1d=2p1e=1((e1)d(d1)p)+p1d=2(dp)=p+(1p)p1d=1(d(d1)p)=p(1p). (10)
    W7=p1a=1p1b=1p1d=1p1e=1a(d1)+b(e1)de1modp(adep)=p1a=1p1e=2(aep)+p1b=1p1d=2(dp)+p1a=1p1b=1p1d=2p1e=2a(d1)+b(e1)de1modp(adep)=(p1)+p1a=1p1b=1p1d=2p1e=2a+bde1modp(ad(d1)ep)=(p1)+p1a=1p1b=0p1d=2p1e=2a+bde1modp(ad(d1)ep)p1a=1p1d=2p1e=2ade1modp(ad(d1)ep)=(p1)p1d=2p1e=2((de1)d(d1)ep)=(p1)p1d=2p1e=1((de1)d(d1)ep)+p1d=2(dp)=pp1d=2p1e=1((d¯e)d(d1)p)=p(1p). (11)
    W8=p1a=1p1b=1p1d=1p1e=1a(d1)+b(e1)de1modp(abdp)=p1a=1p1b=1p1d=2p1e=2a(d1)+b(e1)de1modp(abdp)=p1a=1p1b=1p1d=2p1e=2a+bde1modp(ab(d1)(e1)dp)=p1b=1p1d=2p1e=2((de1b)b(d1)(e1)dp)=p1b=1p1d=2(b2(d1)(¯d1)dp)p1d=2p1e=2(de1,p)=1((d1)(e1)dp)=(p1)(p2)p1d=1p1e=1((d1)(e1)dp)+(p2)=p(p2)+p1d=1(d(d1)p)=p22p1. (12)
    W9=p1a=1p1b=1p1d=1p1e=1a(d1)+b(e1)de1modp(abdep)=p1a=1p1b=1p1d=2p1e=2a(d1)+b(e1)de1modp(abdep)=p1a=1p1b=1p1d=2p1e=2a+bde1modp(abd(d1)e(e1)p)=p1b=1p1d=2p1e=2((de1b)(d1)(e1)bdep)=p1d=2p1e=2(de1,p)=1p1b=1(b(bde+1)(d1)(e1)dep)+p1d=2p1e=2de1modpp1b=1(b2(d1)(e1)p)=(1p)p1d=2p1e=2(de1,p)=1((d1)(e1)dep)(p1)=(1p)p1d=2p1e=2((d1)(e1)dep)+p1d=2(dp)(p1)=p(1p). (13)

    Now combining (2)-(6), (9)-(13) we may immediately deduce the identity

    p1a=1p1b=1p1c=1p1d=1p1e=1a2+b2+c2d2+e2+1modpabcdemodp1=p3+6p225p28(1p).

    This proves Lemma 1.

    Lemma 2. Let p is an odd prime, then we have the identity

    p1a=1p1b=1p1c=1p1d=1p1e=1a+b+cd+e+1modpa2+b2+c2d2+e2+1modpabcdemodp1=6p221p+19.

    Proof. For all integers 1a,b,c,d,ep1, from the properties of the reduced residue system modulo p we know that the conditions a+b+cd+e+1modp, a2+b2+c2d2+e2+1modp and abcdemodp are equivalent to a+b+cad+be+1modp, a2+b2+c2a2d2+b2e2+1modp and cdemodp, they are equivalent to a+b+dead+be+1modp, ab+(a+b)deabde+ad+bemodp, or a+b+dead+be+1modp, ab+(a+b)deabde+a+b+de1modp, or a(d1)+b(e1)de1modp, (a1)(b1)(de1)0modp. So from these conditions we have

    p1a=1p1b=1p1c=1p1d=1p1e=1a+b+cd+e+1modpa2+b2+c2d2+e2+1modpabcdemodp1=p1a=1p1b=1p1d=1p1e=1a(d1)+b(e1)de1modp(a1)(b1)(de1)0modp1. (14)

    Now we calculate (14) according to a1modp, b1modp and de1modp; a1modp, b1modp and p\nmid (de-1) ; p\nmid (a-1) , b\equiv 1\bmod p and de\equiv 1\bmod p ; a\equiv 1\bmod p , p\nmid (b-1) and p\nmid (de-1) ; p\nmid (a-1) , p\nmid (b-1) and de\equiv 1\bmod p . From (14) we have

    \begin{eqnarray*} &&\mathop{\mathop{\mathop{\sum\limits_{a = 1}^{p-1}\sum\limits_{b = 1}^{p-1}\sum\limits_{c = 1}^{p-1}\sum\limits_{d = 1}^{p-1}\sum\limits_{e = 1}^{p-1}}_{a+b+c\equiv d+e+1\bmod p} }_{ a^2+b^2+c^2\equiv d^2+e^2 +1 \bmod p}}_{abc\equiv de\bmod p}1 = \mathop{\mathop{\sum\limits_{a = 1}^{p-1}\sum\limits_{b = 1}^{p-1}\sum\limits_{d = 1}^{p-1}\sum\limits_{e = 1}^{p-1}}_{a(d-1)+b(e-1)\equiv de-1\bmod p} }_{ (a-1)(b-1)(de-1)\equiv0 \bmod p}1\nonumber\\ & = &\mathop{\sum\limits_{d = 1}^{p-1}}_{d+\overline{d}-2\equiv 0\bmod p}1+ \mathop{\mathop{\sum\limits_{d = 1}^{p-1}\sum\limits_{e = 1}^{p-1}}_{d+e-2 \equiv de-1\bmod p}}_{(de-1, p) = 1}1+ 2\mathop{\sum\limits_{a = 2}^{p-1}\sum\limits_{d = 1}^{p-1}}_{a(d-1)+\overline{d}-1 \equiv 0\bmod p}1\nonumber\\ &&+2 \mathop{\mathop{\sum\limits_{a = 2}^{p-1}\sum\limits_{d = 1}^{p-1}\sum\limits_{e = 1}^{p-1}}_{a(d-1)+e-1\equiv de-1\bmod p}}_{(de-1, p) = 1} 1 + \mathop{\sum\limits_{a = 2}^{p-1}\sum\limits_{b = 2}^{p-1}\sum\limits_{d = 1}^{p-1}}_{a(d-1)+b(\overline{d}-1)\equiv 0\bmod p} 1 \nonumber\\ & = &1+2(p-2)+4(p-2)+2(p-2)(2p-5)+(p-2)(2p-5)\nonumber\\ & = &6p^2-21p+19. \end{eqnarray*}

    This proves Lemma 2.

    In this section, we use the two basic lemmas of the previous section to prove our main result. In fact from Lemma 1, Lemma 2, the properties of the reduced residue system modulo p , the trigonometric identity

    \begin{eqnarray*} \sum\limits_{a = 0}^{p-1}e\left(\frac{ma}{p}\right) = \left\{ \begin{array}{ll} p, & \text{ if}~~ p\mid m ; \\ 0, & \text{ if }~~ p\nmid m \end{array}\right. \end{eqnarray*}

    and the orthogonality of characters modulo p

    \begin{eqnarray*} \sum\limits_{\chi\bmod p}\chi(a) = \left\{ \begin{array}{ll} p-1, & \text{ if }~~ a\equiv 1\bmod p ; \\ 0, & \text{ otherwise }\end{array}\right. \end{eqnarray*}

    we have

    \begin{eqnarray*} && \frac{1}{p(p-1)}\sum\limits_{\chi\bmod p}\sum\limits_{m = 0}^{p-1}\left|\sum\limits_{a = 1}^{p-1}\chi(a) e\left(\frac{a+ma^2}{p}\right)\right|^6\nonumber\\ & = &\mathop{\mathop{\sum\limits_{a = 1}^{p-1}\sum\limits_{b = 1}^{p-1}\sum\limits_{c = 1}^{p-1}\sum\limits_{d = 1}^{p-1}\sum\limits_{e = 1}^{p-1}\sum\limits_{f = 1}^{p-1}}_{abc\equiv def\bmod p}}_{a^2+b^2+c^2\equiv d^2+e^2+f^2\bmod p}e\left(\frac{a+b+c-d-e-f}{p}\right)\nonumber\\ & = &\mathop{\mathop{\sum\limits_{a = 1}^{p-1}\sum\limits_{b = 1}^{p-1}\sum\limits_{c = 1}^{p-1}\sum\limits_{d = 1}^{p-1}\sum\limits_{e = 1}^{p-1}\sum\limits_{f = 1}^{p-1}}_{abc\equiv de\bmod p}}_{a^2+b^2+c^2\equiv d^2+e^2+1\bmod p}e\left(\frac{f(a+b+c-d-e-1)}{p}\right)\nonumber\\ & = &p\mathop{\mathop{\mathop{\sum\limits_{a = 1}^{p-1}\sum\limits_{b = 1}^{p-1}\sum\limits_{c = 1}^{p-1}\sum\limits_{d = 1}^{p-1}\sum\limits_{e = 1}^{p-1}}_{abc\equiv de\bmod p}}_{a^2+b^2+c^2\equiv d^2+e^2+1\bmod p}}_{a+b+c\equiv d+e+1\bmod p}1-\mathop{\mathop{\sum\limits_{a = 1}^{p-1}\sum\limits_{b = 1}^{p-1}\sum\limits_{c = 1}^{p-1}\sum\limits_{d = 1}^{p-1}\sum\limits_{e = 1}^{p-1}}_{abc\equiv de\bmod p}}_{a^2+b^2+c^2\equiv d^2+e^2+1\bmod p}1 \nonumber\\ & = &p\left(6p^2-21p+19\right)-\left[p^3+6p^2-25p-2-8\left(\frac{-1}{p}\right)\right]\nonumber\\ & = &5p^3-27p^2+44p+2+8\left(\frac{-1}{p}\right). \end{eqnarray*}

    This completes the proof of our theorem.

    The main result of this paper is a theorem. It gives an exact calculating formula for the sixth power mean of the generalized quadratic Gauss sums. At the same time, we also proposed two open problems. We deeply believe that the research work in this paper and the proposal of the open problems in this paper will contribute to the further research in the related fields.

    The authors would like to thank the referee for their very helpful and detailed comments.This work is supported by Hainan Provincial N. S. F. (118MS041) and the N. S. F. (11771351) of P. R. China.

    The authors declare that there are no conflicts of interest regarding the publication of this paper.



    [1] S. L. Adler, Scattering and decay theory for quaternionic quantum mechanics, and the structure of induced T nonconservation, Phys. Rev. D, 37 (1988), 3654–3662.
    [2] N. L. Bihan, S. J. Sangwine, Color image decomposition using quaternion singular value decomposition, In: International conference on visual information engineering (VIE 2003), 2003,113–116.
    [3] F. Caccavale, C. Natale, B. Siciliano, L. Villani, Six-Dof impedance control based on angle/axis representations, IEEE T. Robotic. Autom., 15 (1999), 289–300. doi: 10.1109/70.760350
    [4] D. R. Farenick, B. A. F. Pidkowich, The spectral theorem in quaternions, Linear Algebra Appl., 371 (2003), 75–102. doi: 10.1016/S0024-3795(03)00420-8
    [5] P. Ji, H. T. Wu, A closed-form forward kinematics solution for the 6-6P Stewart platform, IEEE T. Robotic. Autom., 17 (2001), 522–526. doi: 10.1109/70.954766
    [6] T. S. Jiang, Y. H. Liu, M. S. Wei, Quaternion generalized singular value decomposition and its applications, Appl. Math. J. Chin. Univ., 21 (2006), 113–118. doi: 10.1007/s11766-996-0030-3
    [7] I. Kyrchei, Explicit representation formulas for the minimum norm least squares solutions of some quaternion matrix equations, Linear Algebra Appl., 438 (2013), 136–152. doi: 10.1016/j.laa.2012.07.049
    [8] I. Kyrchei, Determinantal representations of general and (skew-)Hermitian solutions to the generalized Sylvester-type quaternion matrixequation, Abstr. Appl. Anal., 2019 (2019), 5926832.
    [9] Z. Al-Zhour, Some new linear representations of matrix quaternions with some applications, J. King Saud Univ. Sci., 31 (2019), 42–47. doi: 10.1016/j.jksus.2017.05.017
    [10] A. Kilicman, Z. Al-Zhour, On Convergents Infinite Products and Some Generalized Inverses of Matrix Sequences, Abstr. Appl. Anal., 2011 (2011), 536935.
    [11] T. Jiang, L. Chen, Algebraic algorithms for least squares problem in quaternionic quantum theory, Comput. Phys. Commun., 176 (2007), 481–485. doi: 10.1016/j.cpc.2006.12.005
    [12] Y. H. Liu, On the best approximation problem of quaternion matrices, J. Math. Study, 37 (2004), 129–134.
    [13] L. P. Huang, The matrix equation AXB- GXD = E over the quaternion field, Linear Algebra Appl., 234 (1996), 197–208. doi: 10.1016/0024-3795(94)00103-0
    [14] S. F. Yuan, A. P. Liao, Least squares solution of the quaternion matrix equation with the least norm, Linear Multilinear A., 59 (2011), 985–998. doi: 10.1080/03081087.2010.509928
    [15] G. R. Wang, S. Z. Qiao, Solving constrained matrix equations and Cramer rule, Appl. Math. Comput., 159 (2004) 333–340.
    [16] Q. W. Wang, A system of matrix equations and a linear matrix equation over arbitrary regular rings with identity, Linear Algebra Appl., 384 (2004), 43–54. doi: 10.1016/j.laa.2003.12.039
    [17] Q. W. Wang, Bisymmetric and centrosymmetric solutions to system of real quaternion matrix equation, Comput. Math. Appl., 49 (2005), 641–650. doi: 10.1016/j.camwa.2005.01.014
    [18] Q. W. Wang, S. W. Yu, C. Y. Lin, Extreme ranks of a linear quaternion matrix expression subject to triple quaternion matrix equations with applications, Appl. Math. Comput., 195 (2007), 733–744.
    [19] Q. W. Wang, H. X. Chang, Q. Ning, The common solution to six quaternion matrix equations with applications, Appl. Math. Comput., 198 (2007), 209–226.
    [20] Q. W. Wang, H. X. Chang, C. Y. Lin, P-(skew)symmetric common solutions to a pair of quaternion matrix equations, Appl. Math. Comput., 195 (2008), 721–732.
    [21] Q. W. Wang, F. Zhang, The reflexive re-nonnegative definite solution to a quaternion matrix equation, Electron. J. Linear Algebra, 17 (2008), 88–101.
    [22] G. J. Song, Q. W. Wang, H. X. Chang, Cramer rule for the unique solution of restricted matrix equations over the quaternion skew field, Comput. Math. Appl., 61 (2011), 1576–1589. doi: 10.1016/j.camwa.2011.01.026
    [23] G. J. Song, Q. W. Wang, Condensed Cramer rule for some restricted quaternion linear equations, Appl. Math. Comput., 218 (2011), 3110–3121.
    [24] W. S. Cao, Solvability of a quaternion matrix equation, Appl. Math. J. Chin. Univ., 17 (2002), 490–498. doi: 10.1007/s11766-996-0015-2
    [25] I. I. Kyrchei, Cramer's rule for some quaternion matrix equations, Appl. Math. Comput., 217 (2010), 2024–2030.
    [26] F. X. Zhang, M. S. Wei, Y. Li, J. L. Zhao, An efficient method for least squares problem of the quaternion matrix equation X- A \hat{X}B = C, Linear Multilinear A., 2020 (2020), 1–13.
  • This article has been cited by:

    1. Wenxu Ge, Weiping Li, Tianze Wang, A remark for Gauss sums of order 3 and some applications for cubic congruence equations, 2022, 7, 2473-6988, 10671, 10.3934/math.2022595
    2. Xuan Wang, Li Wang, Guohui Chen, The fourth power mean of the generalized quadratic Gauss sums associated with some Dirichlet characters, 2024, 9, 2473-6988, 17774, 10.3934/math.2024864
    3. Xue Han, Tingting Wang, The hybrid power mean of the generalized Gauss sums and the generalized two-term exponential sums, 2024, 9, 2473-6988, 3722, 10.3934/math.2024183
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2524) PDF downloads(108) Cited by(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog