Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

A new family of degenerate poly-Bernoulli polynomials of the second kind with its certain related properties

  • The main object of this article is to present type 2 degenerate poly-Bernoulli polynomials of the second kind and numbers by arising from modified degenerate polyexponential function and investigate some properties of them. Thereafter, we treat the type 2 degenerate unipoly-Bernoulli polynomials of the second kind via modified degenerate polyexponential function and derive several properties of these polynomials. Furthermore, some new identities and explicit expressions for degenerate unipoly polynomials related to special numbers and polynomials are obtained. In addition, certain related beautiful zeros and graphical representations are displayed with the help of Mathematica.

    Citation: Waseem A. Khan, Abdulghani Muhyi, Rifaqat Ali, Khaled Ahmad Hassan Alzobydi, Manoj Singh, Praveen Agarwal. A new family of degenerate poly-Bernoulli polynomials of the second kind with its certain related properties[J]. AIMS Mathematics, 2021, 6(11): 12680-12697. doi: 10.3934/math.2021731

    Related Papers:

    [1] Dojin Kim, Patcharee Wongsason, Jongkyum Kwon . Type 2 degenerate modified poly-Bernoulli polynomials arising from the degenerate poly-exponential functions. AIMS Mathematics, 2022, 7(6): 9716-9730. doi: 10.3934/math.2022541
    [2] Taekyun Kim, Dae San Kim, Dmitry V. Dolgy, Hye Kyung Kim, Hyunseok Lee . A new approach to Bell and poly-Bell numbers and polynomials. AIMS Mathematics, 2022, 7(3): 4004-4016. doi: 10.3934/math.2022221
    [3] Jongkyum Kwon, Patcharee Wongsason, Yunjae Kim, Dojin Kim . Representations of modified type 2 degenerate poly-Bernoulli polynomials. AIMS Mathematics, 2022, 7(6): 11443-11463. doi: 10.3934/math.2022638
    [4] Sang Jo Yun, Jin-Woo Park . On a generation of degenerate Daehee polynomials. AIMS Mathematics, 2025, 10(5): 12286-12298. doi: 10.3934/math.2025556
    [5] Taekyun Kim, Hye Kyung Kim, Dae San Kim . Some identities on degenerate hyperbolic functions arising from $ p $-adic integrals on $ \mathbb{Z}_p $. AIMS Mathematics, 2023, 8(11): 25443-25453. doi: 10.3934/math.20231298
    [6] Taekyun Kim, Dae San Kim, Hye Kyung Kim . Some identities involving degenerate Stirling numbers arising from normal ordering. AIMS Mathematics, 2022, 7(9): 17357-17368. doi: 10.3934/math.2022956
    [7] Taekyun Kim, Dae San Kim, Hyunseok Lee, Lee-Chae Jang . A note on degenerate derangement polynomials and numbers. AIMS Mathematics, 2021, 6(6): 6469-6481. doi: 10.3934/math.2021380
    [8] Hye Kyung Kim, Dmitry V. Dolgy . Degenerate Catalan-Daehee numbers and polynomials of order $ r $ arising from degenerate umbral calculus. AIMS Mathematics, 2022, 7(3): 3845-3865. doi: 10.3934/math.2022213
    [9] Taekyun Kim, Dae San Kim, Jin-Woo Park . Degenerate $ r $-truncated Stirling numbers. AIMS Mathematics, 2023, 8(11): 25957-25965. doi: 10.3934/math.20231322
    [10] Jung Yoog Kang, Cheon Seoung Ryoo . The forms of $ (q, h) $-difference equation and the roots structure of their solutions with degenerate quantum Genocchi polynomials. AIMS Mathematics, 2024, 9(11): 29645-29661. doi: 10.3934/math.20241436
  • The main object of this article is to present type 2 degenerate poly-Bernoulli polynomials of the second kind and numbers by arising from modified degenerate polyexponential function and investigate some properties of them. Thereafter, we treat the type 2 degenerate unipoly-Bernoulli polynomials of the second kind via modified degenerate polyexponential function and derive several properties of these polynomials. Furthermore, some new identities and explicit expressions for degenerate unipoly polynomials related to special numbers and polynomials are obtained. In addition, certain related beautiful zeros and graphical representations are displayed with the help of Mathematica.



    In [1,2], Carlitz initiated study of the degenerate Bernoulli and Euler polynomials and obtained some arithmetic and combinatorial results on them. In recent years, many mathematicians have drawn their attention to various degenerate versions of some old and new polynomials and numbers, namely some degenerate versions of Bernoulli numbers and polynomials of the second kind, Changhee numbers of the second kind, Daehee numbers of the second kind, Bernstein polynomials, central Bell numbers and polynomials, central factorial numbers of the second kind, Cauchy numbers, Eulerian numbers and polynomials, Fubini polynomials, Stirling numbers of the first kind, Stirling polynomials of the second kind, central complete Bell polynomials, Bell numbers and polynomials, type 2 Bernoulli numbers and polynomials, type 2 Bernoulli polynomials of the second kind, poly-Bernoulli numbers and polynomials, poly-Cauchy polynomials, and of Frobenius-Euler polynomials, to name a few [3,14,16,17,18] and the references therein. They have studied those polynomials and numbers with their interest not only in combinatorial and arithmetic properties but also in differential equations and certain symmetric identities [4,5] and references therein, and found many interesting results related to them [12,19,20,21,22,23,24,25,26,27,28]. It is remarkable that studying degenerate versions is not only limited to polynomials but also extended to transcendental functions.

    The Bernoulli polynomials of the second are defined by as follows (see [9,13])

    zlog(1+z)(1+z)x=q=0bq(x)zqq!. (1.1)

    When x=0, bq(0)=bq are called the Bernoulli numbers of the second kind.

    The degenerate exponential function exλ(z) is defined by (see [6,7,8,9,10,11,12,13,14,15,16,17,18,19])

    exλ(z)=(1+λz)xλ,eλ(z)=(1+λz)1λ,λC{0}. (1.2)

    We note that

    exλ(z)=q=0(x)q,λzqq!,(see[4,21]), (1.3)

    where (x)q,λ=x(xλ)(x(q1)λ),(q1), (x)0,λ=1.

    Note that

    limλ0exλ(z)=q=0xqzqq!=exz.

    The degenerate Bernoulli polynomials which are defined by Carlitz's as follows (see [1,2])

    zeλ(z)1exλ(z)=z(1+λz)1λ1(1+λz)xλ=q=0βq(x;λ)zqq!. (1.4)

    At the point x=0, βq(λ)=βq(0;λ) are called the degenerate Bernoulli numbers.

    Note that

    limλ0βq(x;λ)=Bq(x).

    The polylogarithm function is defined by

    Lik(x)=q=1xqqk(kZ,x∣<1),(see[7]). (1.5)

    Note that

    Li1(x)=q=1xqq=log(1x). (1.6)

    The poly-Bernoulli polynomials of the second are defined by (see [13])

    Lik(1ez)log(1+z)(1+z)x=q=0b(k)q(x)zqq!. (1.7)

    In the case when x=0, b(k)q=b(k)q(0) are called the poly-Bernoulli numbers of the second kind.

    The modified degenerate polyexponential function is defined by (see [14])

    Eik,λ(x)=q=1(1)q,λ(q1)!qkxq. (1.8)

    It is noteworthy to mention that

    Ei1,λ(x)=q=1(1)q,λq!xq=eλ(x)1.

    The degenerate poly-Genocchi polynomials which are defined by Kim et al. as follows (see [14])

    2Eik,λ(logλ(1+z))eλ(z)+1exλ(z)=q=0G(k)q,λ(x)zqq!(kZ). (1.9)

    When x=0, G(k)q,λ=G(k)q,λ(0) are called the degenerate poly-Genocchi numbers.

    For λR, Kim-Kim defined the degenerate version of the logarithm function, denoted by logλ(1+t) as follows (see [11])

    logλ(1+z)=q=1λλ1(1)q,1/λzqq!, (1.10)

    being the inverse of the degenerate version of the exponential function eλ(z) as has been shown below

    eλ(logλ(z))=logλ(eλ(z))=z.

    It is noteworthy to mention that

    limλ0logλ(1+z)=q=1(1)q1zqq!=log(1+z).

    The degenerate Daehee polynomials are defined by (see [15])

    logλ(1+z)z(1+z)x=q=0Dq,λ(x)zqq!. (1.11)

    In the case when x=0, Dq,λ=Dq,λ(0) denotes the degenerate Daehee numbers.

    The degenerate Bernoulli polynomials of the second kind which are defined by Kim et al. as follows (see [9])

    zlogλ(1+z)(1+z)x=q=0bq,λ(x)zqq!. (1.12)

    When x=0, bq,λ=bq,λ(0) are called the degenerate Bernoulli numbers of the second kind.

    Note here that limλ0bq,λ(x)=bq(x),(q0).

    The degenerate Stirling numbers of the first kind are defined by

    1k!(logλ(1+z))k=q=kS1,λ(q,k)zqq!(k0),(see[11,12]). (1.13)

    It is noticed that

    limλ0S1,λ(q,k)=S1(q,k),

    are the Stirling numbers of the first kind presented by

    1k!(log(1+z))k=q=kS1(q,k)zqq!(k0),(see[7,17]).

    The degenerate Stirling numbers of the second kind are defined by (see [8])

    1k!(eλ(z)1)k=q=kS2,λ(q,k)zqq!(k0). (1.14)

    It is clear that

    limλ0S2,λ(q,k)=S2(q,k),

    are the Stirling numbers of the second kind specified by

    1k!(ez1)k=q=kS2(q,k)zqq!(k0),(see[128]).

    Motivated by the works of Kim et al. [11,14], in this paper, we study the type 2 degenerate poly-Bernoulli polynomials of the second kind arising from modified degenerate polyexponential function and obtain some related identities and explicit expressions. Also, we establish the type 2 degenerate unipoly-Bernoulli polynomials of the second kind attached to an arithmetic function by using modified degenerate polyexponential function and discuss some properties of them.

    Here, the type 2 degenerate poly-Bernoulli polynomials of the second kind are defined by using the modified degenerate polyexponential function which is called the degenerate poly-Bernoulli polynomials of the second kind as

    Eik,λ(logλ(1+z))logλ(1+z)(1+z)x=j=0Pb(k)j,λ(x)zjj!,(kZ). (2.1)

    When x=0, Pb(k)j,λ=Pb(k)j,λ(0) are called the type 2 degenerate poly-Bernoulli numbers of the second kind.

    Note that

    limλ0Eik,λ(logλ(1+z))logλ(1+z)(1+z)x=j=0limλ0Pb(k)j,λ(x)zjj!
    =Eik(log(1+z))log(1+z)(1+z)x=j=0Pb(k)j(x)zjj!,(kZ), (2.2)

    where Pb(k)j(x) are called the type 2 poly-Bernoulli polynomials of the second kind (see [9]).

    First, we note that

    Eik,λ(logλ(1+z))=q=1(1)q,λ(logλ(1+z))q(q1)!qk
    =q=0(1)q+1,λ(logλ(1+z))q+1(q+1)kq!
    =q=0(1)q+1,λ(q+1)k11(q+1)!(logλ(1+z))q+1
    =q=0(1)q+1,λ(q+1)k1r=q+1S1,λ(r,q+1)zrr!. (2.3)

    By making use of (2.1) and (2.3), we see that

    zlogλ(1+z)(1+z)xEik,λ(logλ(1+z))
    =zlogλ(1+z)(1+z)xq=0(1)q+1,λ(q+1)k1r=qS1,λ(r+1,q+1)r+1zrr!
    =j=0bj,λ(x)zjj!q=0(1)q+1,λ(q+1)k1r=qS1,λ(r+1,q+1)r+1zrr!
    =j=0(jr=0(jr)rq=0(1)q+1,λ(q+1)k1S1,λ(r+1,q+1)r+1bjr,λ(x))zjj!. (2.4)

    Therefore, by (2.3) and (2.4), we obtain the following theorem.

    Theorem 2.1. For kZ and j0, we have

    Pb(k)j,λ(x)=jr=0(jr)rq=0(1)q+1,λ(q+1)k1S1,λ(r+1,q+1)r+1bjr,λ(x).

    Corollary 2.1. Putting k=1 in Theorem 2.1 yields

    Pbj,λ(x)=jr=0(jr)rq=0(1)q+1,λS1,λ(r+1,q+1)r+1bjr,λ(x).

    Let 1kZ. For sC, the function χk,λ(s) is given as

    χk,λ(s)=1Γ(s)0zs1logλ(1+z)Eik,λ(logλ(1+z))dz. (2.5)

    From Eq (2.5), we have

    χk,λ(s)=1Γ(s)0zs1logλ(1+z)Eik,λ(logλ(1+z))dz
    =1Γ(s)10zs1logλ(1+z)Eik,λ(logλ(1+z))dz
    +1Γ(s)1zs1logλ(1+z)Eik,λ(logλ(1+z))dz. (2.6)

    For any sC, the second integral is absolutely convergent and thus, the second term on the r.h.s. vanishes at non-positive integers. That is,

    limsm|1Γ(s)1zs1logλ(1+z)Eik,λ(logλ(1+z))dz|1Γ(m)M=0. (2.7)

    On the other hand, the first integral in Eq (2.7), for (s)>0 can be written as

    1Γ(s)r=0Pb(k)r,λr!1s+r,

    which defines an entire function of s. Thus, we may include that χk,λ(s) can be continued to an entire function of s.

    Further, from (2.6) and (2.7), we obtain

    χk,λ(m)=limsm1Γ(s)10zs1logλ(1+z)Eik,λ(logλ(1+z))dz
    =limsm1Γ(s)10zs1r=0Pb(k)r,λzrr!dz=limsm1Γ(s)r=0Pb(k)r,λs+r1r!
    =+0++0+limsm1Γ(s)1s+mPb(k)m,λm!+0+0+ (2.8)
    =limsm(Γ(1s)sinπsπ)s+mPb(k)m,λm!=Γ(1+m)cos(πm)Pb(k)m,λm!
    =(1)mPb(k)m,λ.

    In view of (2.8), we obtain the following theorem.

    Theorem 2.2. Let k1 and mN{0}, sC, we have

    χk,λ(m)=(1)mPb(k)m,λ.

    Using (1.8), we observe that

    ddxEik,λ(logλ(1+x))=ddxj=1(1)j,λ(logλ(1+x))jjk(j1)!
    =(1+x)λ1logλ(1+x)j=1(1)j,λ(logλ(1+x))jjk1(j1)!=(1+x)λ1logλ(1+x)Eik1,λ(logλ(1+x)). (2.9)

    Thus, by (2.9), for k2, we get

    Eik,λ(logλ(1+x))=x0(1+z)λ1log(1+z)Eik1,λ(logλ(1+z))dz
    =x0(1+z)λ1logλ(1+z)z0(1+z)λ1logλ(1+z)z0(1+z)λ1logλ(1+z)(k2)timesdzdz
    ×Ei1,λ(logλ(1+z))dzdz
    =x0(1+z)λ1logλ(1+z)z0(1+z)λ1logλ(1+z)z0(1+z)λ1logλ(1+z)(k2)timeszdzdz. (2.10)

    From (2.1) and (2.10), we get

    j=0Pb(k)j,λxjj!=Eik,λ(logλ(1+x))logλ(1+x)=1logλ(1+x)
    ×x0(1+z)λ1logλ(1+z)z0(1+z)λ1logλ(1+z)z0(k2)times(1+z)λ1logλ(1+z)zdzdz. (2.11)
    =xlogλ(1+x)q=0q1++qk1=q(qq1,,qk1)
    ×bq1,λ(λ1)q1+1bq2,λ(λ1)q1+q2+1bqk1,λ(λ1)q1++qk1+1xqq!
    =j=0jq=0(jq)q1++qk1=q(qq1,,qk1)bjq,λ
    ×bq1,λ(λ1)q1+1bq2,λ(λ1)q1+q2+1bqk1,λ(λ1)q1++qk1+1xjj!. (2.12)

    Therefore, by (2.12), we obtain the following theorem.

    Theorem 2.3. For jN and kZ, we have

    Pb(k)j,λ=jq=0(jq)q1++qk1=q(qq1,,qk1)bjq,λ
    ×bq1,λ(λ1)q1+1bq2,λ(λ1)q1+q2+1bqk1,λ(λ1)q1++qk1+1.

    Corollary 2.2. Taking k=2 in Theorem 2.3 yields

    Pb(2)j,λ=jq=0(jq)bq,λ(λ1)q+1bjq,λ.

    Replacing z by eλ(z)1 in (2.1), we get

    q=0Pb(k)q,λ(x)(eλ(z)1)qq!=Eik,λ(z)zexλ(z)
    =j=0(x)j,λzjj!r=0(1)r+1,λzr(r+1)kr!=j=0(jr=0(jr)(1)r+1,λ(x)jr,λ(r+1)k)zjj!. (2.13)

    On the other hand,

    q=0Pb(k)q,λ(x)(eλ(z)1)qq!=q=0Pb(k)q,λ(x)j=qS2,λ(j,q)zjj!
    =j=0(jq=0Pb(k)q,λ(x)S2,λ(j,q))zjj!. (2.14)

    In view of (2.13) and (2.14), we get the following theorem.

    Theorem 2.4. For kZ and j0, we have

    jq=0Pb(k)q,λ(x)S2,λ(j,q)=jr=0(jr)(1)r+1,λ(x)jr,λ(r+1)k.

    By using (2.1), we get

    j=1[Pb(k)j,λ(x+1)Pb(k)j,λ(x)]zjj!=Eik,λ(logλ(1+z))logλ(1+z)(1+z)x+1Eik,λ(logλ(1+z))logλ(1+z)(1+z)x
    =zEik,λ(logλ(1+z))logλ(1+z)(1+z)x=(zlogλ(1+z)(1+z)x)(Eik,λ(logλ(1+z)))
    =(j=0bj,λ(x)zjj!)(q=1(1)q,λ(logλ(1+z))q(q1)!qk)
    =(j=0bj,λ(x)zjj!)(q=1(1)q,λ(logλ(1+z))q(q1)!qk)
    =(j=1bj,λ(x)zjj!)(r=1rq=1(1)q,λqk1S1,λ(r,q)zrr!)
    =j=1(jr=1(jr)rq=1(1)q,λqk1S1,λ(r,q)bjr,λ(x))zjj!. (2.15)

    Therefore, by comparing the coefficients on both sides of (2.15), we obtain the following theorem.

    Theorem 2.5. For j0, we have

    Pb(k)j,λ(x+1)Pb(k)j,λ(x)=jr=1(jr)rq=1(1)q,λqk1S1,λ(r,q)bjr,λ(x).

    By making use of (1.3) and (2.1), we have

    j=0Pb(k)j,λ(x+η)zjj!=Eik,λ(logλ(1+z))logλ(1+z)(1+z)x+η
    =Eik,λ(logλ(1+z))logλ(1+z)(1+z)x(1+z)η=(j=0Pb(k)j,λ(x)zjj!)(q=0(η)qzqq!)
    =j=0(jq=0(jq)Pb(k)jq,λ(x)(η)q)zjj!. (2.16)

    Therefore, by Eq (2.16), we obtain the following theorem.

    Theorem 2.6. For j0, we have

    Pb(k)j,λ(x+η)=jq=0(jq)Pb(k)jq,λ(x)(η)q.

    By using (2.1), we have

    Eik,λ(logλ(1+z))logλ(1+z)=j=0Pb(k)j,λzjj!
    Eik,λ(logλ(1+z))=logλ(1+z)j=0Pb(k)j,λzjj!
    Eik,λ(logλ(1+z))z=logλ(1+z)zj=0Pb(k)j,λzjj!
    =(q=0Dq,λtqq!)(j=0Pb(k)j,λzjj!)
    =j=0(jq=0(jq)Pb(k)jq,λDq,λ)zjj!. (2.17)

    On the other hand,

    Eik,λ(logλ(1+z))z=1zq=1(1)q,λ(logλ(1+z))q(q1)!qk
    =1zq=0(1)q+1,λ(logλ(1+z))q+1qk!(q+1)
    =1zq=0(1)q+1,λ(q+1)k11(q+1)!(logλ(1+z))q+1
    =j=0(jq=0(1)q+1,λ(q+1)k1S1,λ(j+1,q+1)j+1)zjj!. (2.18)

    Thus, by equations (2.17) and (2.18), we get the following theorem.

    Theorem 2.7. For j0, we have

    jq=0(jq)Pb(k)jq,λDq,λ=jq=0(1)q+1,λ(q+1)k1S1,λ(j+1,q+1)j+1.

    From (2.1), we have

    n=0Pb(k)j,λ(x)zjj!=Eik,λ(logλ(1+z))logλ(1+z)(1+z)x
    =Eik,λ(logλ(1+z))logλ(1+z)exλ(logλ(1+z))
    =j=0Pb(k)j,λ(x)zjj!q=0(x)q,λr=qS1,λ(r,q)zrr!
    =j=0Pb(k)j,λ(x)zjj!r=0rq=0(x)q,λS1,λ(r,q)zrr!
    =j=0(jr=0(jr)Pb(k)jr,λ(x)q,λS1,λ(r,q))zjj!. (2.19)

    Therefore, by comparing the coefficients on both sides of (2.19), we obtain the following theorem.

    Theorem 2.8. For j0, we have

    Pb(k)j,λ(x)=jr=0(jr)Pb(k)jr,λ(x)q,λS1,λ(r,q).

    Let p be any arithmetic real or complex valued function defined on N. Kim-Kim [7] presented the unipoly function attached to polynomials p(x) as

    uk(x|p)=j=1p(j)jkxn,(kZ). (3.1)

    Moreover,

    uk(x|1)=j=1xjjk=Lik(x),(see[10,14]), (3.2)

    represent the known ordinary polylogarithm function.

    Dolgy and Khan [3] introduced the degenerate unipoly function attached to polynomials p(x) are considered as follows

    uk,λ(x|p)=j=1p(j)(1)j,λxjjk. (3.3)

    We see that

    uk,λ(x|1Γ)=Eik,λ(x),(see[14]) (3.4)

    is the modified degenerate polyexponential function.

    Now, we introduce the degenerate unipoly-Bernoulli polynomials of the second kind attached to polynomials p(x) as

    uk,λ(logλ(1+z)|p)logλ(1+z)(1+z)x=j=0Pb(k)j,λ,p(x)zjj!. (3.5)

    When x=0, Pb(k)j,λ,p=Pb(k)j,λ,p(0) are called the degenerate unipoly-Bernoulli numbers of the second kind attached to p.

    If we take p(j)=1Γ(j). Then, we have

    j=0Pb(k)j,λ,1Γ(x)zjj!=1logλ(1+z)(1+z)xuk,λ(logλ(1+z)|1Γ)
    =1logλ(1+z)(1+z)xq=1(1)q,λ(logλ(1+z))qqk(q1)!. (3.6)

    For k=1, we have

    j=0Pb(1)j,λ,1Γ(x)zjj!=1logλ(1+z)(1+z)xq=1(1)q,λ(logλ(1+z))qq!=zlogλ(1+z)(1+z)x. (3.7)

    Thus, we have

    Pb(1)j,λ,1Γ(x)=bj,λ(x),(j0). (3.8)

    By making use of (1.12) and (3.3), we note that

    uk,λ(logλ(1+z)|p)=q=1p(q)(1)q,λ(logλ(1+z))qqk
    =q=1p(q)(1)q,λ(logλ(1+z))qqkq!q!
    =q=1p(q)(1)q,λq!qk(logλ(1+z))qq!
    =q=1p(q)(1)q,λq!qkr=qS1,λ(r,q)zrr!
    =r=1(rq=1p(q)(1)q,λq!qkS1,λ(r,q))zrr!.

    Thus, we have the required result.

    Lemma 3.1. For kZ, we have

    uk,λ(logλ(1+z)|p)=r=1(rq=1p(q)(1)q,λq!qkS1,λ(r,q))zrr!.

    Recalling from (3.5), we have

    j=0Pb(k)j,λ,p(x)zjj!=1logλ(1+z)(1+z)xuk,λ(logλ(1+z)|p)
    =1logλ(1+z)(1+z)xq=1(1)q,λp(q)qk(logλ(1+z))q
    =1logλ(1+z)(1+z)xq=0(1)q+1,λp(q+1)(q+1)k(logλ(1+z))q+1
    =1logλ(1+z)(1+z)xq=0(1)q+1,λp(q+1)(q+1)!(q+1)kr=q+1Sr,λ(r,q+1)zrr!
    =zlogλ(1+z)(1+z)xq=0(1)q+1,λp(q+1)(q+1)!(q+1)kr=qS1,λ(r+1,q+1)r+1zrr!
    =j=0bj,λ(x)zjj!r=0(rq=0(1)q+1,λp(q+1)(q+1)!(q+1)kS1,λ(r+1,q+1)r+1)zrr!
    =j=0(jr=0rq=0(jr)(1)q+1,λp(q+1)(q+1)!(q+1)kS1,λ(r+1,q+1)r+1bjr,λ(x))zjj!. (3.9)

    Therefore, by comparing the coefficients on both sides of (3.9), we obtain the following theorem.

    Theorem 3.1. For j0 and kZ. Then

    Pb(k)j,λ,p(x)=jr=0rq=0(jr)(1)q+1,λp(q+1)(q+1)!(q+1)kS1,λ(r+1,q+1)r+1bjr,λ(x).

    Moreover,

    Pb(k)j,λ,1Γ(x)=jr=0rq=0(jr)bjr,λ(x)(q+1)k1S1,λ(r+1,q+1)r+1.

    Using (3.5), we have

    j=0Pb(k)j,λ,p(x)zjj!=1logλ(1+z)uk,λ(logλ(1+z)|p)(1+z)x
    =uk,λ(logλ(1+z)|p)logλ(1+z)j=0(x)jzjj!
    =i=0Pb(k)i,λ,pzii!j=0(x)jzjj!
    =j=0(ji=0(ji)Pb(k)i,λ,p(x)ji)zjj!. (3.10)

    Upon comparing the coefficients on both sides of Eq (3.10), we get the following theorem.

    Theorem 3.2. For j0 and kZ. Then

    Pb(k)j,λ,p(x)=ji=0(ji)Pb(k)i,λ,p(x)ji.

    By making use of (1.11), (1.12) and (3.5), we have

    j=0Pb(k)j,λ,pzjj!=1logλ(1+z)uk(logλ(1+z)|p)
    =1logλ(1+z)q=1(1)q,λp(q)qk(logλ(1+z))q
    =q=0(1)q,λp(q+1)(q+1)k(logλ(1+z))q+1
    =zlogλ(1+z)logλ(1+z)zq=0(1)q+1,λp(q+1)q!(q+1)k(logλ(1+z))qq!
    =j=0Dj,λzjj!i=0bi,λzii!q=0(1)q+1,λp(q+1)q!(q+1)kr=qS1,λ(r,q)zrr!
    =j=0Dj,λzjj!i=0bi,λzii!r=0rq=0(1)q+1,λp(q+1)q!(q+1)kS1,λ(r,q)zrr!
    =j=0ji=0(ji)Dji,λbi,λzjj!r=0rq=0(1)q+1,λp(q+1)q!(q+1)kS1,λ(r,q)zrr!
    =j=0(jr=0rq=0jri=0(jri)(jr)Djir,λbi,λ(1)q+1,λp(q+1)q!(q+1)kS1,λ(r,q))zjj!. (3.11)

    Thus, by comparing the coefficients on both sides of (3.11), we obtain the following theorem.

    Theorem 3.3. For j0 and kZ. Then

    Pb(k)j,λ,p=jr=0rq=0jri=0(jri)(jr)Djir,λbi,λ(1)q+1,λp(q+1)q!(q+1)kS1,λ(r,q).

    In this section, certain numerical computations are done to calculate certain zeros of the degenerate poly-Bernoulli polynomials of the second kind and show some graphical representations. The first five members of Pb(k)j,λ(x) are calculated and given as:

    Pb(k)0,λ(x)=1,Pb(k)1,λ(x)=12+x18log3log818log3,Pb(k)2,λ(x)=12+x2+1081(log3)2+18log3x4log3log818log3xlog814log3,Pb(k)3,λ(x)=14+2x3x22+x3516(log3)31027(log3)2+10x27(log3)214log3+3x4log33x28log3+log8116log33x2log818log3,Pb(k)4,λ(x)=126x+8x24x3+x4+176125(log3)4+158(log3)35x4(log3)3+11081(log3)220x9(log3)2+20x227(log3)2+34log311x4log3+9x24log3x32log3log818log3+3x2log814log3x3log812log3.

    To show the behavior of Pb(k)j,λ(x), we display the graph Pb(k)j,λ(x) for k=4 and λ=3, this graph is presented in Figure 1.

    Figure 1.  Graph of Pb(k)j,λ(x).

    Next, the approximate solutions of Pb(k)j,λ(x)=0 when k=4 and λ=3, are calculated and listed in Table 1.

    Table 1.  Approximate solutions of Pb(k)j,λ(x)=0.
    j Real zeros Complex zeros
    1 0.11378 -
    2 0.212959,1.0146 -
    3 0.468628,0.788431,2.08428 -
    4 2.27482,3.00114 0.5895820.515659i,0.589582+0.515659i
    5 4.09322 0.4709670.872952i,0.470967+0.872952i,
    2.766870.464588i,2.76687+0.464588i
    6 4.47754,4.94352 0.2705091.2071i,0.270509+1.2071i
    2.86031.06554i,2.8603+1.06554i
    7 6.12953 0.004072371.52417i,0.00407237+1.52417i,
    2.85441.67974i,2.8544+1.67974i
    4.983140.749479i,4.98314+0.749479i
    8 - 0.3448721.82511i,0.344872+1.82511i,
    2.75372.30093i,2.7537+2.30093i,
    5.212621.46596i,5.21262+1.46596i,
    6.833670.248836i,6.83367+0.248836i

     | Show Table
    DownLoad: CSV

    The zeros of Pb(k)j,λ(x) for λC,j=12 are plotted in Figure 2.

    Figure 2.  Zeros of Pb(k)12,λ(x).

    The stacking structure of approximate zeros of Pb(k)j,λ(x)=0 for λ=4,j=1,2,...,12 is given in Figure 3.

    Figure 3.  Stacking structure of zeros Pb(k)j,λ(x).

    In this article, we introduced the type 2 degenerate poly-Bernoulli polynomials of the second kind and derived many related interesting properties. Furthermore, we defined the degenerate unipoly Bernoulli polynomials of the second kind and established some considerable results. Finally, certain related beautiful zeros and graphs are shown.

    The authors would like to express the gratitude to Deanship of Scientific Research at King Khalid University, Saudi Arabia for providing funding research group under the research grant number R G P.1/162/42.

    The authors declare no conflict of interest.



    [1] L. Carlitz, Degenerate stirling, Bernoulli and Eulerian numbers, Utilitas Math., 15 (1979), 51–88.
    [2] L. Carlitz, A degenerate Staudt-Clausen theorem, Arch. Math., 7 (1956), 28–33. doi: 10.1007/BF01900520
    [3] D. V. Dolgy, W. A. Khan, A note on type two degenerate poly-Changhee polynomials of the second kind, Symmetry, 13 (2021), 579. doi: 10.3390/sym13040579
    [4] W.A. Khan, A new class of degenerate Frobenius-Euler-Hermite polynomials, Adv. Stud. Contemp. Math., 28 (2018), 567–576.
    [5] W. A. Khan, M. Acikgoz, U. Duran, Note on the type 2 degenerate multi-poly-Euler polynomials, Symmetry, 12 (2020), 1691. doi: 10.3390/sym12101691
    [6] W. A. Khan, R. Ali, K. A. H. Alzobydi, N. Ahmed, A new family of degenerate poly-Genocchi polynomials with its certain properties, J. Funct. Spaces, 2021 (2021), 6660517.
    [7] D. S. Kim, T. Kim, A note on polyexponential and unipoly functions, Russ. J. Math. Phys., 26 (2019), 40–49. doi: 10.1134/S1061920819010047
    [8] T. Kim, A note on degenerate Stirling polynomials of the second kind, Proc. Jangjeon Math. Soc., 20 (2017), 319–331.
    [9] T. Kim, L. C. Jang, D. S. Kim, H. Y. Kim, Some identities on type 2 degenerate Bernoulli polynomials of the second kind, Symmetry, 12 (2020), 510. doi: 10.3390/sym12040510
    [10] T. Kim, D. S. Kim, Degenerate polyexponential functions and degenerate Bell polynomials, J. Math. Anal. Appl., 487 (2020), 124017. doi: 10.1016/j.jmaa.2020.124017
    [11] D. S. Kim, T. Kim, A note on a new type of degenerate Bernoulli numbers, Russ. J. Math. Phys. 27 (2020), 227–235.
    [12] T. Kim, D. S. Kim, Degenerate Laplace transform and degenerate gamma function, Russ. J. Math. Phys., 24 (2017), 241–248. doi: 10.1134/S1061920817020091
    [13] T. Kim, H. I. Kwon, S. H. Lee, J. J. Seo, A note on poly-Bernoulli polynomials of the second kind, Adv. Differ. Equ., 2014 (2014), 119. doi: 10.1186/1687-1847-2014-119
    [14] T. Kim, D. S. Kim, J. Kwon, H. Y. Kim, A note on degenerate Genocchi and poly-Genocchi numbers and polynomials, J. Inequal. Appl., 2020 (2020), 110. doi: 10.1186/s13660-020-02378-w
    [15] T. Kim, D. S. Kim, H. Y. Kim, J. Kwon, Some results on degenerate Daehee and Bernoulli numbers and polynomials, Adv. Diff. Equ. 2020 (2020), 311.
    [16] T. Kim, D. S. Kim, D. V. Dolgy, S. H. Lee, J. Kwon, Some identities of the higher-order type 2 Bernoulli numbers and polynomials of the second kind, CMES, 2021, DOI: 10.32604/cmes.2021.016532.
    [17] T. Kim, D. S. Kim, Degenerate zero-truncated poisson random variables, Russ. J. Math. Phys., 28 (2021), 66–72. doi: 10.1134/S1061920821010076
    [18] T. Kim, D. S. Kim, J. Kwon, H. Lee, Representations of degenerate poly-Bernoulli polynomials, J. Inequal. Appl., 2021 (2021), 58. doi: 10.1186/s13660-021-02592-0
    [19] T. Kim, D. S. Kim, L. C. Jang, H. Lee, H. Kim, Generalized degenerate Bernoulli numbers and polynomials arising from Gauss hypergeometric function, Adv. Difference Equ., 2021 (2021), 175. doi: 10.1186/s13662-021-03337-5
    [20] Y. K. Ma, D. S. Kim, H. Lee, H. Kim, T. Kim, Reciprocity of poly-Dedkind-type DC sums involving poly-Euler functions, Adv. Differ. Equ., 2021 (2021), 30. doi: 10.1186/s13662-020-03194-8
    [21] T. Komatsu, Hypergeometric degenerate Bernoulli polynomials and numbers, Ars Math. Contemp., 18 (2020), 163–177. doi: 10.26493/1855-3974.1907.3c2
    [22] G. Muhiuddin, W. A. Khan, U. Duran, Two variable type 2 Fubini polynomials, Mathematics, 9 (2021), 281. doi: 10.3390/math9030281
    [23] G. Muhiuddin, W. A. Khan, U. Duran, D. Al-Kadi, Some identities of the multi-poly-Bernoulli polynomials of complex variable, J. Funct. Spaces, 9 (2021), 7172054.
    [24] G. Muhiuddin, W. A. Khan, A. Muhyi, D. Al-Kadi, Some results on type 2 degenerate poly-Fubini polynomials and numbers, CMES, 2021, DOI: 10.32604/cmes.2021.016546.
    [25] C. S. Ryoo, W. A. Khan, On two bivariate kinds of poly-Bernoulli and poly-Genocchi polynomials, Mathematics, 8 (2020), 417. doi: 10.3390/math8030417
    [26] S. K. Sharma, W. A. Khan, C. S. Ryoo, A parametric kind of the degenerate Fubini numbers and polynomials, Mathematics, 8 (2020), 405. doi: 10.3390/math8030405
    [27] S. K. Sharma, W. A. Khan, S. Araci, S. S. Ahmed, New type of degenerate Daehee polynomials of the second kind, Adv. Differ. Equ., 2020 (2020), 428. doi: 10.1186/s13662-020-02891-8
    [28] S. K. Sharma, W. A. Khan, S. Araci, S. S. Ahmed, New construction of type 2 degenerate central Fubini polynomials with their certain properties, Adv. Differ. Equ., 2020 (2020), 587. doi: 10.1186/s13662-020-03055-4
  • This article has been cited by:

    1. Ghulam Muhiuddin, Waseem A. Khan, Deena Al-Kadi, Some Identities of the Degenerate Poly-Cauchy and Unipoly Cauchy Polynomials of the Second Kind, 2022, 132, 1526-1506, 763, 10.32604/cmes.2022.017272
    2. Dojin Kim, Patcharee Wongsason, Jongkyum Kwon, Type 2 degenerate modified poly-Bernoulli polynomials arising from the degenerate poly-exponential functions, 2022, 7, 2473-6988, 9716, 10.3934/math.2022541
    3. Ghulam Muhiuddin, Waseem Ahmad Khan, Jihad Younis, Yuan Yi, Construction of Type 2 Poly-Changhee Polynomials and Its Applications, 2021, 2021, 2314-4785, 1, 10.1155/2021/7167633
    4. Maryam Salem Alatawi, Waseem Ahmad Khan, New Type of Degenerate Changhee–Genocchi Polynomials, 2022, 11, 2075-1680, 355, 10.3390/axioms11080355
    5. Waseem A. Khan, Jihad Younis, Mohd Nadeem, Construction of partially degenerate Laguerre–Bernoulli polynomials of the first kind, 2022, 30, 2769-0911, 362, 10.1080/27690911.2022.2079641
    6. Shahid Ahmad Wani, Ibtehal Alazman, Badr Saad T. Alkahtani, Certain Properties and Applications of Convoluted Δh Multi-Variate Hermite and Appell Sequences, 2023, 15, 2073-8994, 828, 10.3390/sym15040828
    7. Ibtehal Alazman, Badr Saad T. Alkahtani, Shahid Ahmad Wani, Certain Properties of Δh Multi-Variate Hermite Polynomials, 2023, 15, 2073-8994, 839, 10.3390/sym15040839
    8. Azhar Iqbal, Waseem A. Khan, Mohd Nadeem, 2023, Chapter 34, 978-981-19-9857-7, 411, 10.1007/978-981-19-9858-4_34
    9. Waseem Ahmad Khan, Ugur Duran, Jihad Younis, Cheon Seoung Ryoo, On some extensions for degenerate Frobenius-Euler-Genocchi polynomials with applications in computer modeling, 2024, 32, 2769-0911, 10.1080/27690911.2023.2297072
    10. Azhar Iqbal, Waseem A. Khan, 2023, Chapter 6, 978-981-19-9857-7, 59, 10.1007/978-981-19-9858-4_6
    11. Mohra Zayed, Shahid Ahmad Wani, A Study on Generalized Degenerate Form of 2D Appell Polynomials via Fractional Operators, 2023, 7, 2504-3110, 723, 10.3390/fractalfract7100723
    12. Mohra Zayed, Shahid Wani, Exploring the versatile properties and applications of multidimensional degenerate Hermite polynomials, 2023, 8, 2473-6988, 30813, 10.3934/math.20231575
    13. Noor Alam, Waseem Ahmad Khan, Serkan Araci, Hasan Nihal Zaidi, Anas Al Taleb, Evaluation of the Poly-Jindalrae and Poly-Gaenari Polynomials in Terms of Degenerate Functions, 2023, 15, 2073-8994, 1587, 10.3390/sym15081587
    14. Musawa Yahya Almusawa, Exploring the Characteristics of Δh Bivariate Appell Polynomials: An In-Depth Investigation and Extension through Fractional Operators, 2024, 8, 2504-3110, 67, 10.3390/fractalfract8010067
    15. Lingling Luo, Yuankui Ma, Taekyun Kim, Hongze Li, Some identities on degenerate poly-Euler polynomials arising from degenerate polylogarithm functions, 2023, 31, 2769-0911, 10.1080/27690911.2023.2257369
    16. Shahid Ahmad Wani, Two-iterated degenerate Appell polynomials: properties and applications, 2024, 31, 2576-5299, 83, 10.1080/25765299.2024.2302502
    17. Waseem A. Khan, Azhar Iqbal, Mohd Nadeem, 2023, Chapter 50, 978-981-19-9857-7, 589, 10.1007/978-981-19-9858-4_50
    18. Waseem Ahmad Khan, 2024, 2900, 0094-243X, 020001, 10.1063/5.0207187
    19. Lingling Luo, Yuankui Ma, Taekyun Kim, Rongrong Xu, Series involving degenerate harmonic numbers and degenerate Stirling numbers, 2024, 32, 2769-0911, 10.1080/27690911.2023.2297045
    20. Awatif Muflih Alqahtani, Saleem Yousuf, Shahid Ahmad Wani, Roberto S. Costas-Santos, Investigating Multidimensional Degenerate Hybrid Special Polynomials and Their Connection to Appell Sequences: Properties and Applications, 2024, 13, 2075-1680, 859, 10.3390/axioms13120859
    21. Shahid Ahmad Wani, Tabinda Nahid, Ramírez William, Mdi Begum Jeelani, On a new family of degenerate-Sheffer polynomials and related hybrid forms via generating function, 2025, 74, 0009-725X, 10.1007/s12215-025-01228-2
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3014) PDF downloads(75) Cited by(21)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog