
In this paper, the small initial data global well-posedness and time decay estimates of strong solutions to the Cauchy problem of 3D incompressible liquid crystal system with general Leslie stress tensor are studied. First, assuming that ‖u0‖˙H12+ε+‖d0−d∗‖˙H32+ε (ε>0) is sufficiently small, we obtain the global well-posedness of strong solutions. Moreover, the Lp–L2 (32≤p≤2) type optimal decay rates of the higher-order spatial derivatives of solutions are also obtained. The ˙H−s (0≤s<12) negative Sobolev norms are shown to be preserved along time evolution and enhance the decay rates.
Citation: Xiufang Zhao, Ning Duan. On global well-posedness and decay of 3D Ericksen-Leslie system[J]. AIMS Mathematics, 2021, 6(11): 12660-12679. doi: 10.3934/math.2021730
[1] | Dojin Kim, Patcharee Wongsason, Jongkyum Kwon . Type 2 degenerate modified poly-Bernoulli polynomials arising from the degenerate poly-exponential functions. AIMS Mathematics, 2022, 7(6): 9716-9730. doi: 10.3934/math.2022541 |
[2] | Taekyun Kim, Dae San Kim, Dmitry V. Dolgy, Hye Kyung Kim, Hyunseok Lee . A new approach to Bell and poly-Bell numbers and polynomials. AIMS Mathematics, 2022, 7(3): 4004-4016. doi: 10.3934/math.2022221 |
[3] | Jongkyum Kwon, Patcharee Wongsason, Yunjae Kim, Dojin Kim . Representations of modified type 2 degenerate poly-Bernoulli polynomials. AIMS Mathematics, 2022, 7(6): 11443-11463. doi: 10.3934/math.2022638 |
[4] | Sang Jo Yun, Jin-Woo Park . On a generation of degenerate Daehee polynomials. AIMS Mathematics, 2025, 10(5): 12286-12298. doi: 10.3934/math.2025556 |
[5] | Taekyun Kim, Hye Kyung Kim, Dae San Kim . Some identities on degenerate hyperbolic functions arising from p-adic integrals on Zp. AIMS Mathematics, 2023, 8(11): 25443-25453. doi: 10.3934/math.20231298 |
[6] | Taekyun Kim, Dae San Kim, Hye Kyung Kim . Some identities involving degenerate Stirling numbers arising from normal ordering. AIMS Mathematics, 2022, 7(9): 17357-17368. doi: 10.3934/math.2022956 |
[7] | Taekyun Kim, Dae San Kim, Hyunseok Lee, Lee-Chae Jang . A note on degenerate derangement polynomials and numbers. AIMS Mathematics, 2021, 6(6): 6469-6481. doi: 10.3934/math.2021380 |
[8] | Hye Kyung Kim, Dmitry V. Dolgy . Degenerate Catalan-Daehee numbers and polynomials of order r arising from degenerate umbral calculus. AIMS Mathematics, 2022, 7(3): 3845-3865. doi: 10.3934/math.2022213 |
[9] | Taekyun Kim, Dae San Kim, Jin-Woo Park . Degenerate r-truncated Stirling numbers. AIMS Mathematics, 2023, 8(11): 25957-25965. doi: 10.3934/math.20231322 |
[10] | Jung Yoog Kang, Cheon Seoung Ryoo . The forms of (q,h)-difference equation and the roots structure of their solutions with degenerate quantum Genocchi polynomials. AIMS Mathematics, 2024, 9(11): 29645-29661. doi: 10.3934/math.20241436 |
In this paper, the small initial data global well-posedness and time decay estimates of strong solutions to the Cauchy problem of 3D incompressible liquid crystal system with general Leslie stress tensor are studied. First, assuming that ‖u0‖˙H12+ε+‖d0−d∗‖˙H32+ε (ε>0) is sufficiently small, we obtain the global well-posedness of strong solutions. Moreover, the Lp–L2 (32≤p≤2) type optimal decay rates of the higher-order spatial derivatives of solutions are also obtained. The ˙H−s (0≤s<12) negative Sobolev norms are shown to be preserved along time evolution and enhance the decay rates.
In [1,2], Carlitz initiated study of the degenerate Bernoulli and Euler polynomials and obtained some arithmetic and combinatorial results on them. In recent years, many mathematicians have drawn their attention to various degenerate versions of some old and new polynomials and numbers, namely some degenerate versions of Bernoulli numbers and polynomials of the second kind, Changhee numbers of the second kind, Daehee numbers of the second kind, Bernstein polynomials, central Bell numbers and polynomials, central factorial numbers of the second kind, Cauchy numbers, Eulerian numbers and polynomials, Fubini polynomials, Stirling numbers of the first kind, Stirling polynomials of the second kind, central complete Bell polynomials, Bell numbers and polynomials, type 2 Bernoulli numbers and polynomials, type 2 Bernoulli polynomials of the second kind, poly-Bernoulli numbers and polynomials, poly-Cauchy polynomials, and of Frobenius-Euler polynomials, to name a few [3,14,16,17,18] and the references therein. They have studied those polynomials and numbers with their interest not only in combinatorial and arithmetic properties but also in differential equations and certain symmetric identities [4,5] and references therein, and found many interesting results related to them [12,19,20,21,22,23,24,25,26,27,28]. It is remarkable that studying degenerate versions is not only limited to polynomials but also extended to transcendental functions.
The Bernoulli polynomials of the second are defined by as follows (see [9,13])
zlog(1+z)(1+z)x=∞∑q=0bq(x)zqq!. | (1.1) |
When x=0, bq(0)=bq are called the Bernoulli numbers of the second kind.
The degenerate exponential function exλ(z) is defined by (see [6,7,8,9,10,11,12,13,14,15,16,17,18,19])
exλ(z)=(1+λz)xλ,eλ(z)=(1+λz)1λ,λ∈C∖{0}. | (1.2) |
We note that
exλ(z)=∞∑q=0(x)q,λzqq!,(see[4,21]), | (1.3) |
where (x)q,λ=x(x−λ)⋯(x−(q−1)λ),(q≥1), (x)0,λ=1.
Note that
limλ→0exλ(z)=∞∑q=0xqzqq!=exz. |
The degenerate Bernoulli polynomials which are defined by Carlitz's as follows (see [1,2])
zeλ(z)−1exλ(z)=z(1+λz)1λ−1(1+λz)xλ=∞∑q=0βq(x;λ)zqq!. | (1.4) |
At the point x=0, βq(λ)=βq(0;λ) are called the degenerate Bernoulli numbers.
Note that
limλ⟶0βq(x;λ)=Bq(x). |
The polylogarithm function is defined by
Lik(x)=∞∑q=1xqqk(k∈Z,∣x∣<1),(see[7]). | (1.5) |
Note that
Li1(x)=∞∑q=1xqq=−log(1−x). | (1.6) |
The poly-Bernoulli polynomials of the second are defined by (see [13])
Lik(1−e−z)log(1+z)(1+z)x=∞∑q=0b(k)q(x)zqq!. | (1.7) |
In the case when x=0, b(k)q=b(k)q(0) are called the poly-Bernoulli numbers of the second kind.
The modified degenerate polyexponential function is defined by (see [14])
Eik,λ(x)=∞∑q=1(1)q,λ(q−1)!qkxq. | (1.8) |
It is noteworthy to mention that
Ei1,λ(x)=∞∑q=1(1)q,λq!xq=eλ(x)−1. |
The degenerate poly-Genocchi polynomials which are defined by Kim et al. as follows (see [14])
2Eik,λ(logλ(1+z))eλ(z)+1exλ(z)=∞∑q=0G(k)q,λ(x)zqq!(k∈Z). | (1.9) |
When x=0, G(k)q,λ=G(k)q,λ(0) are called the degenerate poly-Genocchi numbers.
For λ∈R, Kim-Kim defined the degenerate version of the logarithm function, denoted by logλ(1+t) as follows (see [11])
logλ(1+z)=∞∑q=1λλ−1(1)q,1/λzqq!, | (1.10) |
being the inverse of the degenerate version of the exponential function eλ(z) as has been shown below
eλ(logλ(z))=logλ(eλ(z))=z. |
It is noteworthy to mention that
limλ→0logλ(1+z)=∞∑q=1(−1)q−1zqq!=log(1+z). |
The degenerate Daehee polynomials are defined by (see [15])
logλ(1+z)z(1+z)x=∞∑q=0Dq,λ(x)zqq!. | (1.11) |
In the case when x=0, Dq,λ=Dq,λ(0) denotes the degenerate Daehee numbers.
The degenerate Bernoulli polynomials of the second kind which are defined by Kim et al. as follows (see [9])
zlogλ(1+z)(1+z)x=∞∑q=0bq,λ(x)zqq!. | (1.12) |
When x=0, bq,λ=bq,λ(0) are called the degenerate Bernoulli numbers of the second kind.
Note here that limλ→0bq,λ(x)=bq(x),(q≥0).
The degenerate Stirling numbers of the first kind are defined by
1k!(logλ(1+z))k=∞∑q=kS1,λ(q,k)zqq!(k≥0),(see[11,12]). | (1.13) |
It is noticed that
limλ→0S1,λ(q,k)=S1(q,k), |
are the Stirling numbers of the first kind presented by
1k!(log(1+z))k=∞∑q=kS1(q,k)zqq!(k≥0),(see[7,17]). |
The degenerate Stirling numbers of the second kind are defined by (see [8])
1k!(eλ(z)−1)k=∞∑q=kS2,λ(q,k)zqq!(k≥0). | (1.14) |
It is clear that
limλ→0S2,λ(q,k)=S2(q,k), |
are the Stirling numbers of the second kind specified by
1k!(ez−1)k=∞∑q=kS2(q,k)zqq!(k≥0),(see[1−28]). |
Motivated by the works of Kim et al. [11,14], in this paper, we study the type 2 degenerate poly-Bernoulli polynomials of the second kind arising from modified degenerate polyexponential function and obtain some related identities and explicit expressions. Also, we establish the type 2 degenerate unipoly-Bernoulli polynomials of the second kind attached to an arithmetic function by using modified degenerate polyexponential function and discuss some properties of them.
Here, the type 2 degenerate poly-Bernoulli polynomials of the second kind are defined by using the modified degenerate polyexponential function which is called the degenerate poly-Bernoulli polynomials of the second kind as
Eik,λ(logλ(1+z))logλ(1+z)(1+z)x=∞∑j=0Pb(k)j,λ(x)zjj!,(k∈Z). | (2.1) |
When x=0, Pb(k)j,λ=Pb(k)j,λ(0) are called the type 2 degenerate poly-Bernoulli numbers of the second kind.
Note that
limλ→0Eik,λ(logλ(1+z))logλ(1+z)(1+z)x=∞∑j=0limλ→0Pb(k)j,λ(x)zjj! |
=Eik(log(1+z))log(1+z)(1+z)x=∞∑j=0Pb(k)j(x)zjj!,(k∈Z), | (2.2) |
where Pb(k)j(x) are called the type 2 poly-Bernoulli polynomials of the second kind (see [9]).
First, we note that
Eik,λ(logλ(1+z))=∞∑q=1(1)q,λ(logλ(1+z))q(q−1)!qk |
=∞∑q=0(1)q+1,λ(logλ(1+z))q+1(q+1)kq! |
=∞∑q=0(1)q+1,λ(q+1)k−11(q+1)!(logλ(1+z))q+1 |
=∞∑q=0(1)q+1,λ(q+1)k−1∞∑r=q+1S1,λ(r,q+1)zrr!. | (2.3) |
By making use of (2.1) and (2.3), we see that
zlogλ(1+z)(1+z)xEik,λ(logλ(1+z)) |
=zlogλ(1+z)(1+z)x∞∑q=0(1)q+1,λ(q+1)k−1∞∑r=qS1,λ(r+1,q+1)r+1zrr! |
=∞∑j=0bj,λ(x)zjj!∞∑q=0(1)q+1,λ(q+1)k−1∞∑r=qS1,λ(r+1,q+1)r+1zrr! |
=∞∑j=0(j∑r=0(jr)r∑q=0(1)q+1,λ(q+1)k−1S1,λ(r+1,q+1)r+1bj−r,λ(x))zjj!. | (2.4) |
Therefore, by (2.3) and (2.4), we obtain the following theorem.
Theorem 2.1. For k∈Z and j≥0, we have
Pb(k)j,λ(x)=j∑r=0(jr)r∑q=0(1)q+1,λ(q+1)k−1S1,λ(r+1,q+1)r+1bj−r,λ(x). |
Corollary 2.1. Putting k=1 in Theorem 2.1 yields
Pbj,λ(x)=j∑r=0(jr)r∑q=0(1)q+1,λS1,λ(r+1,q+1)r+1bj−r,λ(x). |
Let 1≤k∈Z. For s∈C, the function χk,λ(s) is given as
χk,λ(s)=1Γ(s)∫∞0zs−1logλ(1+z)Eik,λ(logλ(1+z))dz. | (2.5) |
From Eq (2.5), we have
χk,λ(s)=1Γ(s)∫∞0zs−1logλ(1+z)Eik,λ(logλ(1+z))dz |
=1Γ(s)∫10zs−1logλ(1+z)Eik,λ(logλ(1+z))dz |
+1Γ(s)∫∞1zs−1logλ(1+z)Eik,λ(logλ(1+z))dz. | (2.6) |
For any s∈C, the second integral is absolutely convergent and thus, the second term on the r.h.s. vanishes at non-positive integers. That is,
lims→−m|1Γ(s)∫∞1zs−1logλ(1+z)Eik,λ(logλ(1+z))dz|≤1Γ(−m)M=0. | (2.7) |
On the other hand, the first integral in Eq (2.7), for ℜ(s)>0 can be written as
1Γ(s)∞∑r=0Pb(k)r,λr!1s+r, |
which defines an entire function of s. Thus, we may include that χk,λ(s) can be continued to an entire function of s.
Further, from (2.6) and (2.7), we obtain
χk,λ(−m)=lims→−m1Γ(s)∫10zs−1logλ(1+z)Eik,λ(logλ(1+z))dz |
=lims→−m1Γ(s)∫10zs−1∞∑r=0Pb(k)r,λzrr!dz=lims→−m1Γ(s)∞∑r=0Pb(k)r,λs+r1r! |
=⋯+0+⋯+0+lims→−m1Γ(s)1s+mPb(k)m,λm!+0+0+⋯ | (2.8) |
=lims→−m(Γ(1−s)sinπsπ)s+mPb(k)m,λm!=Γ(1+m)cos(πm)Pb(k)m,λm! |
=(−1)mPb(k)m,λ. |
In view of (2.8), we obtain the following theorem.
Theorem 2.2. Let k≥1 and m∈N⋃{0}, s∈C, we have
χk,λ(−m)=(−1)mPb(k)m,λ. |
Using (1.8), we observe that
ddxEik,λ(logλ(1+x))=ddx∞∑j=1(1)j,λ(logλ(1+x))jjk(j−1)! |
=(1+x)λ−1logλ(1+x)∞∑j=1(1)j,λ(logλ(1+x))jjk−1(j−1)!=(1+x)λ−1logλ(1+x)Eik−1,λ(logλ(1+x)). | (2.9) |
Thus, by (2.9), for k≥2, we get
Eik,λ(logλ(1+x))=∫x0(1+z)λ−1log(1+z)Eik−1,λ(logλ(1+z))dz |
=∫x0(1+z)λ−1logλ(1+z)∫z0⋯(1+z)λ−1logλ(1+z)∫z0(1+z)λ−1logλ(1+z)⏟(k−2)−timesdz⋯dz |
×Ei1,λ(logλ(1+z))dz⋯dz |
=∫x0(1+z)λ−1logλ(1+z)∫z0⋯(1+z)λ−1logλ(1+z)∫z0(1+z)λ−1logλ(1+z)⏟(k−2)−timeszdz⋯dz. | (2.10) |
From (2.1) and (2.10), we get
∞∑j=0Pb(k)j,λxjj!=Eik,λ(logλ(1+x))logλ(1+x)=1logλ(1+x) |
×∫x0(1+z)λ−1logλ(1+z)∫z0(1+z)λ−1logλ(1+z)⋯∫z0⏟(k−2)−times(1+z)λ−1logλ(1+z)zdz⋯dz. | (2.11) |
=xlogλ(1+x)∞∑q=0∑q1+⋯+qk−1=q(qq1,⋯,qk−1) |
×bq1,λ(λ−1)q1+1bq2,λ(λ−1)q1+q2+1⋯bqk−1,λ(λ−1)q1+⋯+qk−1+1xqq! |
=∞∑j=0j∑q=0(jq)∑q1+⋯+qk−1=q(qq1,⋯,qk−1)bj−q,λ |
×bq1,λ(λ−1)q1+1bq2,λ(λ−1)q1+q2+1⋯bqk−1,λ(λ−1)q1+⋯+qk−1+1xjj!. | (2.12) |
Therefore, by (2.12), we obtain the following theorem.
Theorem 2.3. For j∈N and k∈Z, we have
Pb(k)j,λ=j∑q=0(jq)∑q1+⋯+qk−1=q(qq1,⋯,qk−1)bj−q,λ |
×bq1,λ(λ−1)q1+1bq2,λ(λ−1)q1+q2+1⋯bqk−1,λ(λ−1)q1+⋯+qk−1+1. |
Corollary 2.2. Taking k=2 in Theorem 2.3 yields
Pb(2)j,λ=j∑q=0(jq)bq,λ(λ−1)q+1bj−q,λ. |
Replacing z by eλ(z)−1 in (2.1), we get
∞∑q=0Pb(k)q,λ(x)(eλ(z)−1)qq!=Eik,λ(z)zexλ(z) |
=∞∑j=0(x)j,λzjj!∞∑r=0(1)r+1,λzr(r+1)kr!=∞∑j=0(j∑r=0(jr)(1)r+1,λ(x)j−r,λ(r+1)k)zjj!. | (2.13) |
On the other hand,
∞∑q=0Pb(k)q,λ(x)(eλ(z)−1)qq!=∞∑q=0Pb(k)q,λ(x)∞∑j=qS2,λ(j,q)zjj! |
=∞∑j=0(j∑q=0Pb(k)q,λ(x)S2,λ(j,q))zjj!. | (2.14) |
In view of (2.13) and (2.14), we get the following theorem.
Theorem 2.4. For k∈Z and j≥0, we have
j∑q=0Pb(k)q,λ(x)S2,λ(j,q)=j∑r=0(jr)(1)r+1,λ(x)j−r,λ(r+1)k. |
By using (2.1), we get
∞∑j=1[Pb(k)j,λ(x+1)−Pb(k)j,λ(x)]zjj!=Eik,λ(logλ(1+z))logλ(1+z)(1+z)x+1−Eik,λ(logλ(1+z))logλ(1+z)(1+z)x |
=zEik,λ(logλ(1+z))logλ(1+z)(1+z)x=(zlogλ(1+z)(1+z)x)(Eik,λ(logλ(1+z))) |
=(∞∑j=0bj,λ(x)zjj!)(∞∑q=1(1)q,λ(logλ(1+z))q(q−1)!qk) |
=(∞∑j=0bj,λ(x)zjj!)(∞∑q=1(1)q,λ(logλ(1+z))q(q−1)!qk) |
=(∞∑j=1bj,λ(x)zjj!)(∞∑r=1r∑q=1(1)q,λqk−1S1,λ(r,q)zrr!) |
=∞∑j=1(j∑r=1(jr)r∑q=1(1)q,λqk−1S1,λ(r,q)bj−r,λ(x))zjj!. | (2.15) |
Therefore, by comparing the coefficients on both sides of (2.15), we obtain the following theorem.
Theorem 2.5. For j≥0, we have
Pb(k)j,λ(x+1)−Pb(k)j,λ(x)=j∑r=1(jr)r∑q=1(1)q,λqk−1S1,λ(r,q)bj−r,λ(x). |
By making use of (1.3) and (2.1), we have
∞∑j=0Pb(k)j,λ(x+η)zjj!=Eik,λ(logλ(1+z))logλ(1+z)(1+z)x+η |
=Eik,λ(logλ(1+z))logλ(1+z)(1+z)x(1+z)η=(∞∑j=0Pb(k)j,λ(x)zjj!)(∞∑q=0(η)qzqq!) |
=∞∑j=0(j∑q=0(jq)Pb(k)j−q,λ(x)(η)q)zjj!. | (2.16) |
Therefore, by Eq (2.16), we obtain the following theorem.
Theorem 2.6. For j≥0, we have
Pb(k)j,λ(x+η)=j∑q=0(jq)Pb(k)j−q,λ(x)(η)q. |
By using (2.1), we have
Eik,λ(logλ(1+z))logλ(1+z)=∞∑j=0Pb(k)j,λzjj! |
Eik,λ(logλ(1+z))=logλ(1+z)∞∑j=0Pb(k)j,λzjj! |
Eik,λ(logλ(1+z))z=logλ(1+z)z∞∑j=0Pb(k)j,λzjj! |
=(∞∑q=0Dq,λtqq!)(∞∑j=0Pb(k)j,λzjj!) |
=∞∑j=0(j∑q=0(jq)Pb(k)j−q,λDq,λ)zjj!. | (2.17) |
On the other hand,
Eik,λ(logλ(1+z))z=1z∞∑q=1(1)q,λ(logλ(1+z))q(q−1)!qk |
=1z∞∑q=0(1)q+1,λ(logλ(1+z))q+1qk!(q+1) |
=1z∞∑q=0(1)q+1,λ(q+1)k−11(q+1)!(logλ(1+z))q+1 |
=∞∑j=0(j∑q=0(1)q+1,λ(q+1)k−1S1,λ(j+1,q+1)j+1)zjj!. | (2.18) |
Thus, by equations (2.17) and (2.18), we get the following theorem.
Theorem 2.7. For j≥0, we have
j∑q=0(jq)Pb(k)j−q,λDq,λ=j∑q=0(1)q+1,λ(q+1)k−1S1,λ(j+1,q+1)j+1. |
From (2.1), we have
∞∑n=0Pb(k)j,λ(x)zjj!=Eik,λ(logλ(1+z))logλ(1+z)(1+z)x |
=Eik,λ(logλ(1+z))logλ(1+z)exλ(logλ(1+z)) |
=∞∑j=0Pb(k)j,λ(x)zjj!∞∑q=0(x)q,λ∞∑r=qS1,λ(r,q)zrr! |
=∞∑j=0Pb(k)j,λ(x)zjj!∞∑r=0r∑q=0(x)q,λS1,λ(r,q)zrr! |
=∞∑j=0(j∑r=0(jr)Pb(k)j−r,λ(x)q,λS1,λ(r,q))zjj!. | (2.19) |
Therefore, by comparing the coefficients on both sides of (2.19), we obtain the following theorem.
Theorem 2.8. For j≥0, we have
Pb(k)j,λ(x)=j∑r=0(jr)Pb(k)j−r,λ(x)q,λS1,λ(r,q). |
Let p be any arithmetic real or complex valued function defined on N. Kim-Kim [7] presented the unipoly function attached to polynomials p(x) as
uk(x|p)=∞∑j=1p(j)jkxn,(k∈Z). | (3.1) |
Moreover,
uk(x|1)=∞∑j=1xjjk=Lik(x),(see[10,14]), | (3.2) |
represent the known ordinary polylogarithm function.
Dolgy and Khan [3] introduced the degenerate unipoly function attached to polynomials p(x) are considered as follows
uk,λ(x|p)=∞∑j=1p(j)(1)j,λxjjk. | (3.3) |
We see that
uk,λ(x|1Γ)=Eik,λ(x),(see[14]) | (3.4) |
is the modified degenerate polyexponential function.
Now, we introduce the degenerate unipoly-Bernoulli polynomials of the second kind attached to polynomials p(x) as
uk,λ(logλ(1+z)|p)logλ(1+z)(1+z)x=∞∑j=0Pb(k)j,λ,p(x)zjj!. | (3.5) |
When x=0, Pb(k)j,λ,p=Pb(k)j,λ,p(0) are called the degenerate unipoly-Bernoulli numbers of the second kind attached to p.
If we take p(j)=1Γ(j). Then, we have
∞∑j=0Pb(k)j,λ,1Γ(x)zjj!=1logλ(1+z)(1+z)xuk,λ(logλ(1+z)|1Γ) |
=1logλ(1+z)(1+z)x∞∑q=1(1)q,λ(logλ(1+z))qqk(q−1)!. | (3.6) |
For k=1, we have
∞∑j=0Pb(1)j,λ,1Γ(x)zjj!=1logλ(1+z)(1+z)x∞∑q=1(1)q,λ(logλ(1+z))qq!=zlogλ(1+z)(1+z)x. | (3.7) |
Thus, we have
Pb(1)j,λ,1Γ(x)=bj,λ(x),(j≥0). | (3.8) |
By making use of (1.12) and (3.3), we note that
uk,λ(logλ(1+z)|p)=∞∑q=1p(q)(1)q,λ(logλ(1+z))qqk |
=∞∑q=1p(q)(1)q,λ(logλ(1+z))qqkq!q! |
=∞∑q=1p(q)(1)q,λq!qk(logλ(1+z))qq! |
=∞∑q=1p(q)(1)q,λq!qk∞∑r=qS1,λ(r,q)zrr! |
=∞∑r=1(r∑q=1p(q)(1)q,λq!qkS1,λ(r,q))zrr!. |
Thus, we have the required result.
Lemma 3.1. For k∈Z, we have
uk,λ(logλ(1+z)|p)=∞∑r=1(r∑q=1p(q)(1)q,λq!qkS1,λ(r,q))zrr!. |
Recalling from (3.5), we have
∞∑j=0Pb(k)j,λ,p(x)zjj!=1logλ(1+z)(1+z)xuk,λ(logλ(1+z)|p) |
=1logλ(1+z)(1+z)x∞∑q=1(1)q,λp(q)qk(logλ(1+z))q |
=1logλ(1+z)(1+z)x∞∑q=0(1)q+1,λp(q+1)(q+1)k(logλ(1+z))q+1 |
=1logλ(1+z)(1+z)x∞∑q=0(1)q+1,λp(q+1)(q+1)!(q+1)k∞∑r=q+1Sr,λ(r,q+1)zrr! |
=zlogλ(1+z)(1+z)x∞∑q=0(1)q+1,λp(q+1)(q+1)!(q+1)k∞∑r=qS1,λ(r+1,q+1)r+1zrr! |
=∞∑j=0bj,λ(x)zjj!∞∑r=0(r∑q=0(1)q+1,λp(q+1)(q+1)!(q+1)kS1,λ(r+1,q+1)r+1)zrr! |
=∞∑j=0(j∑r=0r∑q=0(jr)(1)q+1,λp(q+1)(q+1)!(q+1)kS1,λ(r+1,q+1)r+1bj−r,λ(x))zjj!. | (3.9) |
Therefore, by comparing the coefficients on both sides of (3.9), we obtain the following theorem.
Theorem 3.1. For j≥0 and k∈Z. Then
Pb(k)j,λ,p(x)=j∑r=0r∑q=0(jr)(1)q+1,λp(q+1)(q+1)!(q+1)kS1,λ(r+1,q+1)r+1bj−r,λ(x). |
Moreover,
Pb(k)j,λ,1Γ(x)=j∑r=0r∑q=0(jr)bj−r,λ(x)(q+1)k−1S1,λ(r+1,q+1)r+1. |
Using (3.5), we have
∞∑j=0Pb(k)j,λ,p(x)zjj!=1logλ(1+z)uk,λ(logλ(1+z)|p)(1+z)x |
=uk,λ(logλ(1+z)|p)logλ(1+z)∞∑j=0(x)jzjj! |
=∞∑i=0Pb(k)i,λ,pzii!∞∑j=0(x)jzjj! |
=∞∑j=0(j∑i=0(ji)Pb(k)i,λ,p(x)j−i)zjj!. | (3.10) |
Upon comparing the coefficients on both sides of Eq (3.10), we get the following theorem.
Theorem 3.2. For j≥0 and k∈Z. Then
Pb(k)j,λ,p(x)=j∑i=0(ji)Pb(k)i,λ,p(x)j−i. |
By making use of (1.11), (1.12) and (3.5), we have
∞∑j=0Pb(k)j,λ,pzjj!=1logλ(1+z)uk(logλ(1+z)|p) |
=1logλ(1+z)∞∑q=1(1)q,λp(q)qk(logλ(1+z))q |
=∞∑q=0(1)q,λp(q+1)(q+1)k(logλ(1+z))q+1 |
=zlogλ(1+z)logλ(1+z)z∞∑q=0(1)q+1,λp(q+1)q!(q+1)k(logλ(1+z))qq! |
=∞∑j=0Dj,λzjj!∞∑i=0bi,λzii!∞∑q=0(1)q+1,λp(q+1)q!(q+1)k∞∑r=qS1,λ(r,q)zrr! |
=∞∑j=0Dj,λzjj!∞∑i=0bi,λzii!∞∑r=0r∑q=0(1)q+1,λp(q+1)q!(q+1)kS1,λ(r,q)zrr! |
=∞∑j=0j∑i=0(ji)Dj−i,λbi,λzjj!∞∑r=0r∑q=0(1)q+1,λp(q+1)q!(q+1)kS1,λ(r,q)zrr! |
=∞∑j=0(j∑r=0r∑q=0j−r∑i=0(j−ri)(jr)Dj−i−r,λbi,λ(1)q+1,λp(q+1)q!(q+1)kS1,λ(r,q))zjj!. | (3.11) |
Thus, by comparing the coefficients on both sides of (3.11), we obtain the following theorem.
Theorem 3.3. For j\geq 0 and k\in\mathbb Z . Then
Pb_{j, \lambda, p}^{(k)} = \sum\limits_{r = 0}^{j} \sum\limits_{q = 0}^{r}\sum\limits_{i = 0}^{j-r}\binom{j-r}{i}\binom{j}{r}D_{j-i-r, \lambda}b_{i, \lambda}\frac{(1)_{q+1, \lambda}p(q+1)q!}{(q+1)^k}S_{1, \lambda}(r, q). |
In this section, certain numerical computations are done to calculate certain zeros of the degenerate poly-Bernoulli polynomials of the second kind and show some graphical representations. The first five members of Pb_{j, \lambda}^{(k)}(x) are calculated and given as:
\begin{align*} &Pb_{0, \lambda}^{(k)}(x) = 1, \\&Pb_{1, \lambda}^{(k)}(x) = \frac{1}{2}+x-\frac{1}{8 \log 3}-\frac{\log 81}{8 \log 3}, \\&Pb_{2, \lambda}^{(k)}(x) = \frac{1}{2}+x^2+\frac{10}{81 (\log 3)^2}+\frac{1}{8 \log 3}-\frac{x}{4 \log 3}-\frac{\log 81}{8 \log 3}-\frac{x \log 81}{4 \log 3}, \\&Pb_{3, \lambda}^{(k)}(x) = -\frac{1}{4}+2 x-\frac{3 x^2}{2}+x^3-\frac{5}{16 (\log 3)^3}-\frac{10}{27 (\log 3)^2}+\frac{10 x}{27 (\log 3)^2}\\& \quad -\frac{1}{4 \log 3}+\frac{3 x}{4 \log 3}-\frac{3 x^2}{8 \log 3}+\frac{\log 81}{16 \log 3}-\frac{3 x^2 \log 81}{8 \log 3}, \\&Pb_{4, \lambda}^{(k)}(x) = \frac{1}{2}-6 x+8 x^2-4 x^3+x^4+\frac{176}{125 (\log 3)^4}+\frac{15}{8 (\log 3)^3}-\frac{5 x}{4 (\log 3)^3}\\& \quad +\frac{110}{81 (\log 3)^2}-\frac{20 x}{9 (\log 3)^2}+\frac{20 x^2}{27 (\log 3)^2}+\frac{3}{4 \log 3}-\frac{11 x}{4 \log 3}\\& \quad +\frac{9 x^2}{4 \log 3}-\frac{x^3}{2 \log 3}-\frac{\log 81}{8 \log 3}+\frac{3 x^2 \log 81}{4 \log 3}-\frac{x^3 \log 81}{2 \log 3}. \end{align*} |
To show the behavior of Pb_{j, \lambda}^{(k)}(x) , we display the graph Pb_{j, \lambda}^{(k)}(x) for k = 4 and \lambda = 3 , this graph is presented in Figure 1.
Next, the approximate solutions of Pb_{j, \lambda}^{(k)}(x) = 0 when k = 4 and \lambda = 3 , are calculated and listed in Table 1.
j | Real zeros | Complex zeros |
1 | 0.11378 | - |
2 | 0.212959, \; 1.0146 | - |
3 | 0.468628, \; 0.788431, \; 2.08428 | - |
4 | 2.27482, \; 3.00114 | 0.589582 - 0.515659\; i, 0.589582 + 0.515659\; i |
5 | 4.09322 | 0.470967 - 0.872952\; i, \; 0.470967 + 0.872952\; i, |
2.76687 - 0.464588\; i, \; 2.76687 + 0.464588\; i | ||
6 | 4.47754, \; 4.94352 | 0.270509 - 1.2071\; i, \; 0.270509 + 1.2071\; i |
2.8603 - 1.06554\; i, \; 2.8603 + 1.06554\; i | ||
7 | 6.12953 | -0.00407237 - 1.52417\; i, \; -0.00407237 + 1.52417\; i, |
2.8544 - 1.67974\; i, \; 2.8544 +1.67974\; i | ||
4.98314 - 0.749479\; i, \; 4.98314 + 0.749479\; i | ||
8 | - | -0.344872 - 1.82511 \; i, \; -0.344872 + 1.82511 \; i, |
2.7537 - 2.30093\; i, \; 2.7537 + 2.30093\; i, | ||
5.21262 - 1.46596 \; i, \; 5.21262 + 1.46596 \; i, | ||
6.83367 - 0.248836 \; i, \; 6.83367 + 0.248836 \; i |
The zeros of Pb_{j, \lambda}^{(k)}(x) for \lambda \in \mathbb{C}, j = 12 are plotted in Figure 2.
The stacking structure of approximate zeros of Pb_{j, \lambda}^{(k)}(x) = 0 for \lambda = 4, j = 1, 2, ..., 12 is given in Figure 3.
In this article, we introduced the type 2 degenerate poly-Bernoulli polynomials of the second kind and derived many related interesting properties. Furthermore, we defined the degenerate unipoly Bernoulli polynomials of the second kind and established some considerable results. Finally, certain related beautiful zeros and graphs are shown.
The authors would like to express the gratitude to Deanship of Scientific Research at King Khalid University, Saudi Arabia for providing funding research group under the research grant number R G P.1/162/42.
The authors declare no conflict of interest.
[1] | P. G. de Gennes, The physics of liquid crystals, London: Oxford University Press, 1974. |
[2] |
L. Brandolese, Characterization of solutions to dissipative systems with sharp algebraic decay, SIAM J. Math. Anal., 48 (2016), 1616–1633. doi: 10.1137/15M1040475
![]() |
[3] |
C. Cavaterra, E. Rocca, H. Wu, Global weak soltuin and blow-up criterion of the general Erick-Leslie system for nematic liquid crystal flows, J. Differ. Equations, 255 (2013), 24–57. doi: 10.1016/j.jde.2013.03.009
![]() |
[4] |
D. Chae, M. Schonbek, On the temporal decay for the Hall-magnetohydrodynamic equations, J. Differ. Equations, 255 (2013), 3971–3982. doi: 10.1016/j.jde.2013.07.059
![]() |
[5] | S. Chandrasekhar, Liquid crystals, Cambridge: Cambridge University Press, 1977. |
[6] |
G. Q. Chen, A. Majumdar, D. Wang, R. Zhang, Global weak solutions for the compressible active liquid crystal system, SIAM J. Math. Anal., 50 (2018), 3632–3675. doi: 10.1137/17M1156897
![]() |
[7] |
Y. Chen, S. Ding, W. Wang, Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations, Discrete Cont. Dyn. Syst., 36 (2016), 5287–5307. doi: 10.3934/dcds.2016032
![]() |
[8] |
M. Dai, M. Schonbek, Asymptotic behavior of solutions to the liquid crystal system in H^m(\mathbb{R}^3), SIAM J. Math. Anal., 46 (2014), 3131–3150. doi: 10.1137/120895342
![]() |
[9] |
J. Ericksen, Liquid crystals with variable degree of orientation, Arch. Ration. Mech. Anal., 113 (1991), 97–120. doi: 10.1007/BF00380413
![]() |
[10] | J. Fan, J. Li, Regularity criteria for the strong solutions to the Ericksen-Leslie system in \mathbb{R}^3, J. Math. Anal. Appl., 425 (2015), 95–703. |
[11] |
E. Feireisl, E. Rocca, G. Schimperna, A. Zarnescu, On a hyperbolic system arising in liquid crystals modeling, J. Hyperbolic Differ. Equ., 15 (2018), 15–35. doi: 10.1142/S0219891618500029
![]() |
[12] | A. Friedman, Partial differential equations, Holt, Reinhart and Winston, New York, 1969. |
[13] |
J. Gao, Q. Tao, Z. Yao, Strong solutions to the densi-dependent incompressible nematic liquid crystal flows, J. Differ. Equations, 260 (2016), 3691–3748. doi: 10.1016/j.jde.2015.10.047
![]() |
[14] |
J. Gao, Q. Tao, Z. Yao, Long-time behavior of solution for the compressible nematic liquid crystal flows in \mathbb{R}^3, J. Differ. Equations, 261 (2016), 2334–2383. doi: 10.1016/j.jde.2016.04.033
![]() |
[15] |
H. Gong, J. Li, C. Xu, Local well-posedness to inhomogeneous Ericksen-Leslie system with general Leslie stress tensor, Z. Angew. Math. Phys., 68 (2017), 17. doi: 10.1007/s00033-016-0759-3
![]() |
[16] | L. Grafakos, Classical and modern fourier analysis, London: Prentice-Hall, 2004. |
[17] |
Y. Guo, Y. Wang, Decay of dissipative equations and negative Sobolev spaces, Commun. Part. Diff. Eq., 37 (2012), 2165–2208. doi: 10.1080/03605302.2012.696296
![]() |
[18] |
M. Heber, J. Pruss, Dynamics of the Ericksen-Leslie equations with general Leslie stress II: The compressible isotropic case, Arch. Ration. Mech. Anal., 233 (2019), 1441–1468. doi: 10.1007/s00205-019-01382-9
![]() |
[19] |
T. Huang, C. Wang, Blow up criterion for nematic liquid crystal flows, Commun. Part. Diff. Eq., 37 (2012), 875–884. doi: 10.1080/03605302.2012.659366
![]() |
[20] |
T. Kato, G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Commun. Pure Appl. Math., 41 (1988), 891–907. doi: 10.1002/cpa.3160410704
![]() |
[21] |
F. M. Leslie, Some constitutive equations for liquid crystals, Arch. Ration. Mech. Anal., 28 (1968), 265–283. doi: 10.1007/BF00251810
![]() |
[22] |
B. Li, H. Zhu, C. Zhao, Time decay rate of solutions to the hyperbolic MHD equations in \mathbb{R}^3, Acta Math. Sci., 36 (2016), 1369–1382. doi: 10.1016/S0252-9602(16)30075-3
![]() |
[23] |
F. Lin, C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Commun. Pure Appl. Math., 48 (1995), 501–537. doi: 10.1002/cpa.3160480503
![]() |
[24] |
F. Lin, C. Liu, Existence of solutions for the Ericksen-Leslie system, Arch. Ration. Mech. Anal., 154 (2000), 135–156. doi: 10.1007/s002050000102
![]() |
[25] |
F. Lin, C. Wang, Global existence of weak solutions of the nematic liquid crystal flow in dimension three, Commun. Pure Appl. Math., 69 (2016), 1532–1571. doi: 10.1002/cpa.21583
![]() |
[26] |
C. Liu, J. Shen, On liquid crystal flows with free-slip boundary conditions, Distrete Cont. Dyn. Syst., 7 (2001), 307–318. doi: 10.3934/dcds.2001.7.307
![]() |
[27] |
S. Liu, J. Zhang, Global well-posedness for the two-dimensional equations of nonhomogeneous incompressible liquid crystal flows with nonnegative density, Discrete Cont. Dyn. Syst. Ser. B, 21 (2016), 2631–2648. doi: 10.3934/dcdsb.2016065
![]() |
[28] |
C. J. Niche, M. E. Schonbek, Decay characterization of solutions to dissipative equations, J. London Math. Soc., 91 (2015), 573–595. doi: 10.1112/jlms/jdu085
![]() |
[29] |
X. Pu, X. Xu, Decay rates of the magnetohydrodynamic model for quantum plasmas, Z. Angew. Math. Phys., 68 (2017), 18. doi: 10.1007/s00033-016-0762-8
![]() |
[30] |
M. E. Schonbek, L^2 decay for weak solutions of the Navier-Stokes equations, Arch. Ration. Mech. Anal., 88 (1985), 209–222. doi: 10.1007/BF00752111
![]() |
[31] |
M. E. Schonbek, Large time behaviour of solutions to the Navier-Stokes equations, Commun. Part. Diff. Eq., 11 (1986), 733–763. doi: 10.1080/03605308608820443
![]() |
[32] | E. M. Stein, Singular integrals and differentiability properties of functions, Princeton: Princeton Unversity Press, 1970. |
[33] | H. Sun, C. Liu, On energetic variational approaches in modeling the nematic liquid crystal flows, Discrete Contin. Dyn. Syst., 23 (2009), 455–475. |
[34] |
C. Wang, Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data, Arch. Ration. Mech. Anal., 200 (2011), 1–19. doi: 10.1007/s00205-010-0343-5
![]() |
[35] |
W. Wang, P. Zhang, Z. Zhang, Well-posedness of the Ericksen-Leslie system, Arch. Ration. Mech. Anal., 210 (2013), 837–855. doi: 10.1007/s00205-013-0659-z
![]() |
[36] |
Y. Wang, Decay of the Navier-Stokes-Poisson equations, J. Differ. Equations, 253 (2012), 273–297. doi: 10.1016/j.jde.2012.03.006
![]() |
[37] |
R. Wei, Y. Li, Z. Yao, Global well-posedness and decay rates for the three-dimensional compressible Phan-Thein-Tanner model, J. Math. Fluid Mech., 23 (2021), 1–13. doi: 10.1007/s00021-020-00542-2
![]() |
[38] |
X. Xu, Z. Zhang, Global regularity and uniqueness of weak solution for the 2-D liquid crystal flows, J. Differ. Equations, 252 (2012), 1169–1181. doi: 10.1016/j.jde.2011.08.028
![]() |
[39] |
Y. Yang, C. Dou, Q. Ju, Weak-stong uniqueness property for the compressible flow of liquid crystals, J. Differ. Equations, 255 (2013), 1233–1253. doi: 10.1016/j.jde.2013.05.011
![]() |
[40] | C. Zhao, B. Li, Time decay rate of weak solutions to the generalized MHD equations in \mathbb{R}^2, Appl. Math. Comput., 292 (2017), 1–8. |
[41] |
X. Zhao, Space-time decay estimates of solutions to liquid crystal system in \mathbb{R}^3, Commun. Pure Anal. Appl., 18 (2019), 1–13. doi: 10.3934/cpaa.2019001
![]() |
[42] |
X. Zhao, M. Zhu, Global well-posedness and asymptotic behavior of solutions for the three-dimensional MHD equations with Hall and ion-slip effects, Z. Angew. Math. Phys., 69 (2018), 1–13. doi: 10.1007/s00033-017-0895-4
![]() |
[43] |
X. Zhao, On the Cauchy problem of a sixth-order Cahn-Hilliard equation arising in oil-water-surfactant mixtures, Asymptotic Anal., 122 (2021), 201–224. doi: 10.3233/ASY-201616
![]() |
1. | Ghulam Muhiuddin, Waseem A. Khan, Deena Al-Kadi, Some Identities of the Degenerate Poly-Cauchy and Unipoly Cauchy Polynomials of the Second Kind, 2022, 132, 1526-1506, 763, 10.32604/cmes.2022.017272 | |
2. | Dojin Kim, Patcharee Wongsason, Jongkyum Kwon, Type 2 degenerate modified poly-Bernoulli polynomials arising from the degenerate poly-exponential functions, 2022, 7, 2473-6988, 9716, 10.3934/math.2022541 | |
3. | Ghulam Muhiuddin, Waseem Ahmad Khan, Jihad Younis, Yuan Yi, Construction of Type 2 Poly-Changhee Polynomials and Its Applications, 2021, 2021, 2314-4785, 1, 10.1155/2021/7167633 | |
4. | Maryam Salem Alatawi, Waseem Ahmad Khan, New Type of Degenerate Changhee–Genocchi Polynomials, 2022, 11, 2075-1680, 355, 10.3390/axioms11080355 | |
5. | Waseem A. Khan, Jihad Younis, Mohd Nadeem, Construction of partially degenerate Laguerre–Bernoulli polynomials of the first kind, 2022, 30, 2769-0911, 362, 10.1080/27690911.2022.2079641 | |
6. | Shahid Ahmad Wani, Ibtehal Alazman, Badr Saad T. Alkahtani, Certain Properties and Applications of Convoluted Δh Multi-Variate Hermite and Appell Sequences, 2023, 15, 2073-8994, 828, 10.3390/sym15040828 | |
7. | Ibtehal Alazman, Badr Saad T. Alkahtani, Shahid Ahmad Wani, Certain Properties of Δh Multi-Variate Hermite Polynomials, 2023, 15, 2073-8994, 839, 10.3390/sym15040839 | |
8. | Azhar Iqbal, Waseem A. Khan, Mohd Nadeem, 2023, Chapter 34, 978-981-19-9857-7, 411, 10.1007/978-981-19-9858-4_34 | |
9. | Waseem Ahmad Khan, Ugur Duran, Jihad Younis, Cheon Seoung Ryoo, On some extensions for degenerate Frobenius-Euler-Genocchi polynomials with applications in computer modeling, 2024, 32, 2769-0911, 10.1080/27690911.2023.2297072 | |
10. | Azhar Iqbal, Waseem A. Khan, 2023, Chapter 6, 978-981-19-9857-7, 59, 10.1007/978-981-19-9858-4_6 | |
11. | Mohra Zayed, Shahid Ahmad Wani, A Study on Generalized Degenerate Form of 2D Appell Polynomials via Fractional Operators, 2023, 7, 2504-3110, 723, 10.3390/fractalfract7100723 | |
12. | Mohra Zayed, Shahid Wani, Exploring the versatile properties and applications of multidimensional degenerate Hermite polynomials, 2023, 8, 2473-6988, 30813, 10.3934/math.20231575 | |
13. | Noor Alam, Waseem Ahmad Khan, Serkan Araci, Hasan Nihal Zaidi, Anas Al Taleb, Evaluation of the Poly-Jindalrae and Poly-Gaenari Polynomials in Terms of Degenerate Functions, 2023, 15, 2073-8994, 1587, 10.3390/sym15081587 | |
14. | Musawa Yahya Almusawa, Exploring the Characteristics of Δh Bivariate Appell Polynomials: An In-Depth Investigation and Extension through Fractional Operators, 2024, 8, 2504-3110, 67, 10.3390/fractalfract8010067 | |
15. | Lingling Luo, Yuankui Ma, Taekyun Kim, Hongze Li, Some identities on degenerate poly-Euler polynomials arising from degenerate polylogarithm functions, 2023, 31, 2769-0911, 10.1080/27690911.2023.2257369 | |
16. | Shahid Ahmad Wani, Two-iterated degenerate Appell polynomials: properties and applications, 2024, 31, 2576-5299, 83, 10.1080/25765299.2024.2302502 | |
17. | Waseem A. Khan, Azhar Iqbal, Mohd Nadeem, 2023, Chapter 50, 978-981-19-9857-7, 589, 10.1007/978-981-19-9858-4_50 | |
18. | Waseem Ahmad Khan, 2024, 2900, 0094-243X, 020001, 10.1063/5.0207187 | |
19. | Lingling Luo, Yuankui Ma, Taekyun Kim, Rongrong Xu, Series involving degenerate harmonic numbers and degenerate Stirling numbers, 2024, 32, 2769-0911, 10.1080/27690911.2023.2297045 | |
20. | Awatif Muflih Alqahtani, Saleem Yousuf, Shahid Ahmad Wani, Roberto S. Costas-Santos, Investigating Multidimensional Degenerate Hybrid Special Polynomials and Their Connection to Appell Sequences: Properties and Applications, 2024, 13, 2075-1680, 859, 10.3390/axioms13120859 | |
21. | Shahid Ahmad Wani, Tabinda Nahid, Ramírez William, Mdi Begum Jeelani, On a new family of degenerate-Sheffer polynomials and related hybrid forms via generating function, 2025, 74, 0009-725X, 10.1007/s12215-025-01228-2 |
j | Real zeros | Complex zeros |
1 | 0.11378 | - |
2 | 0.212959, \; 1.0146 | - |
3 | 0.468628, \; 0.788431, \; 2.08428 | - |
4 | 2.27482, \; 3.00114 | 0.589582 - 0.515659\; i, 0.589582 + 0.515659\; i |
5 | 4.09322 | 0.470967 - 0.872952\; i, \; 0.470967 + 0.872952\; i, |
2.76687 - 0.464588\; i, \; 2.76687 + 0.464588\; i | ||
6 | 4.47754, \; 4.94352 | 0.270509 - 1.2071\; i, \; 0.270509 + 1.2071\; i |
2.8603 - 1.06554\; i, \; 2.8603 + 1.06554\; i | ||
7 | 6.12953 | -0.00407237 - 1.52417\; i, \; -0.00407237 + 1.52417\; i, |
2.8544 - 1.67974\; i, \; 2.8544 +1.67974\; i | ||
4.98314 - 0.749479\; i, \; 4.98314 + 0.749479\; i | ||
8 | - | -0.344872 - 1.82511 \; i, \; -0.344872 + 1.82511 \; i, |
2.7537 - 2.30093\; i, \; 2.7537 + 2.30093\; i, | ||
5.21262 - 1.46596 \; i, \; 5.21262 + 1.46596 \; i, | ||
6.83367 - 0.248836 \; i, \; 6.83367 + 0.248836 \; i |
j | Real zeros | Complex zeros |
1 | 0.11378 | - |
2 | 0.212959, \; 1.0146 | - |
3 | 0.468628, \; 0.788431, \; 2.08428 | - |
4 | 2.27482, \; 3.00114 | 0.589582 - 0.515659\; i, 0.589582 + 0.515659\; i |
5 | 4.09322 | 0.470967 - 0.872952\; i, \; 0.470967 + 0.872952\; i, |
2.76687 - 0.464588\; i, \; 2.76687 + 0.464588\; i | ||
6 | 4.47754, \; 4.94352 | 0.270509 - 1.2071\; i, \; 0.270509 + 1.2071\; i |
2.8603 - 1.06554\; i, \; 2.8603 + 1.06554\; i | ||
7 | 6.12953 | -0.00407237 - 1.52417\; i, \; -0.00407237 + 1.52417\; i, |
2.8544 - 1.67974\; i, \; 2.8544 +1.67974\; i | ||
4.98314 - 0.749479\; i, \; 4.98314 + 0.749479\; i | ||
8 | - | -0.344872 - 1.82511 \; i, \; -0.344872 + 1.82511 \; i, |
2.7537 - 2.30093\; i, \; 2.7537 + 2.30093\; i, | ||
5.21262 - 1.46596 \; i, \; 5.21262 + 1.46596 \; i, | ||
6.83367 - 0.248836 \; i, \; 6.83367 + 0.248836 \; i |