In this paper, we first give an alternative proof for a result of Mao in [Linear Algebra Appl., 589 (2020) 96–102], then we present some results involving multiple positive definite matrices and multiple sector matrices.
Citation: Sheng Dong, Qingwen Wang, Ming Zhao, Zhiqiang Li. Some results involving multiple matrices[J]. AIMS Mathematics, 2021, 6(11): 12104-12113. doi: 10.3934/math.2021702
[1] | Pattrawut Chansangiam, Arnon Ploymukda . Riccati equation and metric geometric means of positive semidefinite matrices involving semi-tensor products. AIMS Mathematics, 2023, 8(10): 23519-23533. doi: 10.3934/math.20231195 |
[2] | Arnon Ploymukda, Kanjanaporn Tansri, Pattrawut Chansangiam . Weighted spectral geometric means and matrix equations of positive definite matrices involving semi-tensor products. AIMS Mathematics, 2024, 9(5): 11452-11467. doi: 10.3934/math.2024562 |
[3] | Xiaoyan Xiao, Feng Zhang, Yuxin Cao, Chunwen Zhang . Some matrix inequalities related to norm and singular values. AIMS Mathematics, 2024, 9(2): 4205-4210. doi: 10.3934/math.2024207 |
[4] | Pablo Díaz, Esmeralda Mainar, Beatriz Rubio . Total positivity, Gramian matrices, and Schur polynomials. AIMS Mathematics, 2025, 10(2): 2375-2391. doi: 10.3934/math.2025110 |
[5] | Fatih Yılmaz, Aybüke Ertaş, Samet Arpacı . Some results on circulant matrices involving Fibonacci polynomials. AIMS Mathematics, 2025, 10(4): 9256-9273. doi: 10.3934/math.2025425 |
[6] | Xiaodong Wang, Feng Wang . Infinity norm upper bounds for the inverse of $ {SDD_k} $ matrices. AIMS Mathematics, 2023, 8(10): 24999-25016. doi: 10.3934/math.20231276 |
[7] | Xiaoyong Chen, Yating Li, Liang Liu, Yaqiang Wang . Infinity norm upper bounds for the inverse of $ SDD_1 $ matrices. AIMS Mathematics, 2022, 7(5): 8847-8860. doi: 10.3934/math.2022493 |
[8] | Chaojun Yang . Some operator mean inequalities for sector matrices. AIMS Mathematics, 2022, 7(6): 10778-10789. doi: 10.3934/math.2022602 |
[9] | Qin Zhong, Chunyan Zhao . Extended Perron complements of M-matrices. AIMS Mathematics, 2023, 8(11): 26372-26383. doi: 10.3934/math.20231346 |
[10] | Zhirong Guo, Qianglian Huang . Some new characterizations of the normality for group invertible matrices. AIMS Mathematics, 2025, 10(5): 12135-12148. doi: 10.3934/math.2025550 |
In this paper, we first give an alternative proof for a result of Mao in [Linear Algebra Appl., 589 (2020) 96–102], then we present some results involving multiple positive definite matrices and multiple sector matrices.
Let Mn be the set of n×n complex matrices. We denote by A(k),k=1,…,n−1, the k-th leading principal submatrices of A∈Mn.
Let A,B∈Mn be positive definite. It is well known that
det(A+B)≥detA+detB. | (1.1) |
In [4], Haynsworth proved the following refinement of (1.1),
det(A+B)≥(1+n−1∑k=1detB(k)detA(k))detA+(1+n−1∑k=1detA(k)detB(k))detB. | (1.2) |
Later, Hartfiel [5] obtained an improvement of (1.2) as follows,
det(A+B)≥(1+n−1∑k=1detB(k)detA(k))detA+(1+n−1∑k=1detA(k)detB(k))detB+(2n−2n)√detAB. | (1.3) |
And the author also gave an interesting result,
det(A+B)≥detA+detB+(2n−2)√detAB. | (1.4) |
Extending results from two matrices case to multiple matrices case is a natural thought. Recently, by making use a result of Lin [11], Hou and Dong [7] gave the following extensions of Hartfiel's results (1.3) and (1.4) to the case of three matrices.
Theorem 1. Let A,B,C∈Mn be positive definite matrices. Then
det(A+B+C)≥(1+n−1∑k=1detB(k)+detC(k)detA(k))detA+(1+n−1∑k=1detA(k)+detC(k)detB(k))detB+(1+n−1∑k=1detA(k)+detB(k)detC(k))detC+(2n−2n)(√detAB+√detAC+√detBC). | (1.5) |
Theorem 2. Let A,B,C∈Mn be positive definite matrices. Then
det(A+B+C)≥detA+detB+detC+(2n−2)(√detAB+√detAC+√detBC). | (1.6) |
Very recently, Li et al. [9] extended Haynsworth's result (1.2) to multiple matrices by induction. At the same time, by making use of [1, Corollary 4.4], Mao [16] gave the following extension of Hartfiel's inequality (1.3) for multiple matrices.
Theorem 3. Suppose Ai∈Mn,i=1,…,m, are positive definite. Then
det(m∑i=1Ai)≥m∑i=1(1+n−1∑k=1∑mj=1,j≠idetA(k)jdetA(k)i)detAi+(2n−2n)∑1≤i<j≤m√detAiAj. | (1.7) |
For any A∈Mn, W(A)={x∗Ax|x∈Cn,x∗x=1} is defined as the numerical range of A. For θ∈[0,π2), the sector in the complex plane is given by Sθ={z∈C|Rz>0,|Sz|≤(Rz)tan(θ)}. A matrix A is called a sector matrix if W(A)⊂Sθ. This class of matrices, as a natural generalization of positive definite matrix, has been extensively investigated; see [3,12,13,14,17] and reference therein.
In 2015, Lin [14] first extended (1.3) to sector matrix, his result was improved by Zheng et al. [17], Dong and Wang [2] at the same time. And their improvements are the special case of the following inequality [7], which is the generalization of Theorem 1 for sector matrices.
Theorem 4. Let A,B,C∈Mn, W(A),W(B),W(C)⊂Sθ. Then
secn(θ)|det(A+B+C)|≥(1+n−1∑k=1cosk(θ)|detB(k)|+|detC(k)||detA(k)|)|detA|+(1+n−1∑k=1cosk(θ)|detA(k)|+|detC(k)||detB(k)|)|detB|+(1+n−1∑k=1cosk(θ)|detA(k)|+|detB(k)||detC(k)|)|detC|+(2n−2n)(√|detAB|+√|detAC|+√|detBC|). |
In [17], Zheng et al. gave the following complement of Theorem 4.
Theorem 5. Let A,B,C∈Mn, W(A),W(B),W(C)⊂Sθ. Then
|det(A+B+C)|≥m∏k=1(|detA(k)||detA(k−1)|+|detB(k)||detB(k−1)|)cosk(θ)+m∏k=1(|detA(k)||detA(k−1)|+|detC(k)||detC(k−1)|)cosk(θ)+m∏k=1(|detB(k)||detB(k−1)|+|detC(k)||detC(k−1)|)cosk(θ)−(|detA|+|detB|+|detC|). |
The extension of Theorem 4 for multiple matrices is proved by Mao [16] as follows, which is the generation of Theorem 3 for sector matrices.
Theorem 6. Suppose Ai∈Mn, W(Ai)⊂Sθ,i=1,…,m. Then
secn(θ)|det(m∑i=1Ai)|≥m∑i=1(1+n−1∑k=1cosk(θ)∑mj=1,j≠i|detA(k)j||detA(k)i|)|detAi|+(2n−2n)∑1≤i<j≤m√|detAiAj|. | (1.8) |
In this paper, we first give an alternative proof of Mao' result (1.7), then we present some interesting results for multiple positive definite matrices, this is done in section 2. In section 3, we show some generations of the results previously proved for sector matrices, and give an complement of Theorem 6 by extending Theorem 5 to multiple sector matrices.
In [16], the way that Mao proved Theorem 3 is original. Considering that alternative proof may provide new perspectives to the elegant result, we take the chance to do it here.
The following lemma is useful for our new proof.
Lemma 1. [9, Lemma 6] Suppose Ai∈Mn,i=1,…,m, are positive definite. Let A(k)i,k=1,…,n−1, denote the k-th leading principal submatrices of Ai. Then
det((m∑i=1Ai)/(m∑i=1A(k)i))≥m∑i=1detAidetA(k)i. |
Proof of Theorem 3. We prove the theorem by induction on n.
For n=2, we get
det(m∑i=1Ai)=det(m∑i=1A(1)i)⋅det((m∑i=1Ai)/(m∑i=1A(1)i))≥det(m∑i=1A(1)i)⋅m∑i=1detAidetA(1)i≥(m∑i=1detA(1)i)⋅m∑i=1detAidetA(1)i=m∑i=1(1+∑mj=1,j≠idetA(1)jdetA(1)i)detAi, |
where the first inequality is by Lemma 1. This proves (1.7) for n=2.
Suppose the inequality (1.7) holds for all Ai of order less than or equal to n−1. If Ai,i=1,…,m, are of order n, by Lemma 1, we have
det(m∑i=1Ai)=det(m∑i=1A(n−1)i)⋅det((m∑i=1Ai)/(m∑i=1A(n−1)i))≥det(m∑i=1A(n−1)i)⋅m∑i=1detAidetA(n−1)i. |
By the induction hypothesis
det(m∑i=1A(n−1)i)≥m∑i=1(1+n−2∑k=1∑mj=1,j≠idetA(k)jdetA(k)i)detA(n−1)i+(2n−1−2(n−1))∑1≤i<j≤m√detA(n−1)idetA(n−1)j, |
we get
det(m∑i=1Ai)≥m∑i=1(1+n−2∑k=1∑mj=1,j≠idetA(k)jdetA(k)i)detA(n−1)i⋅m∑h=1detAhdetA(n−1)h+(2n−1−2(n−1))∑1≤i<j≤m√detA(n−1)idetA(n−1)j⋅m∑h=1detAhdetA(n−1)h=m∑i=1,h=1,i=h(1+n−2∑k=1∑mj=1,j≠idetA(k)jdetA(k)i)detA(n−1)i⋅detAhdetA(n−1)h+m∑i=1,h=1,i≠h(1+n−2∑k=1∑mj=1,j≠idetA(k)jdetA(k)i)detA(n−1)i⋅detAhdetA(n−1)h+(2n−1−2n+2)∑1≤i<j≤m√detA(n−1)idetA(n−1)j⋅m∑h=1detAhdetA(n−1)h≥m∑i=1(1+n−2∑k=1∑mj=1,j≠idetA(k)jdetA(k)i)⋅detAi+m∑i=1,h=1,i≠hdetA(n−1)i⋅detAhdetA(n−1)h+m∑i=1,h=1,i≠hn−2∑k=1detA(k)hdetA(k)idetA(n−1)i⋅detAhdetA(n−1)h+(2n−1−2n+2)∑1≤i<j≤m√detA(n−1)idetA(n−1)j⋅(detAidetA(n−1)i+detAjdetA(n−1)j)≥m∑i=1(1+n−1∑k=1∑mj=1,j≠idetA(k)jdetA(k)i)⋅detAi+2(n−2)∑1≤i<h≤m√detAidetAh+(2n−4n+4)∑1≤i<j≤m√detAidetAj=m∑i=1(1+n−1∑k=1∑mj=1,j≠idetA(k)jdetA(k)i)detAi+(2n−2n)∑1≤i<j≤m√detAidetAj. |
This completes the proof.
The next theorem is an interesting result for multiple positive definite matrices. Clearly, when m = 2, (2.1) becomes (1.4); when m = 3, (2.1) reduces to (1.6).
Theorem 7. Let Ai∈Mn,i=1,…,m, be positive definite. Then
det(m∑i=1Ai)≥m∑i=1detAi+(2n−2)∑1≤i<j≤m√detAiAj. | (2.1) |
Proof. By (1.7), we get
det(m∑i=1Ai)≥m∑i=1(1+n−1∑k=1∑mj=1,j≠idetA(k)jdetA(k)i)detAi+(2n−2n)∑1≤i<j≤m√detAiAj=m∑i=1detAi+m∑i=1(n−1∑k=1∑mj=1,j≠idetA(k)jdetA(k)i⋅detAi)+(2n−2n)∑1≤i<j≤m√detAiAj=m∑i=1detAi+n−1∑k=1(m∑i=1∑mj=1,j≠idetA(k)jdetA(k)i⋅detAi)+(2n−2n)∑1≤i<j≤m√detAiAj=m∑i=1detAi+n−1∑k=1(m∑i,j=1,i≠j(detA(k)jdetA(k)i⋅detAi+detA(k)idetA(k)j⋅detAj))+(2n−2n)∑1≤i<j≤m√detAiAj≥m∑i=1detAi+n−1∑k=1m∑i,j=1,i≠j2√detAiAj+(2n−2n)∑1≤i<j≤m√detAiAj=m∑i=1detAi+(2n−2)∑1≤i<j≤m√detAiAj, |
the proof is completed.
Remark 1. We mention that Theorem 7 can be obtained by inequality (1.4) and the following inequality, which is a special case of [1, Corollary 4.4].
det(m∑i=1Ai)+(m−2)m∑i=1detAi≥∑1≤i<j≤mdet(Ai+Aj). | (2.2) |
The following is equivalent to Theorem 7.
Corollary 1. Let Ai∈Mn,i=1,…,m, be positive definite. Then
det(m∑i=1Ai)≥(m∑i=1√detAi)2+(2n−4)∑1≤i<j≤m√detAiAj. |
Proof. Note that
(∑mi=1√detAi)2=∑mi=1detAi+2∑1≤i<j≤m√detAiAj. |
By Theorem 7, the desired result follows.
The next result can be derived from Theorem 7.
Corollary 2. Let Ai∈Mn,i=1,…,m, be positive definite. Then
det(m∑i=1Ai)≥m∑i=1detAi+m(m−1)(2n−1−1)(m∏i=1detAi)1m. |
Proof. By the arithmetic-geometric inequality, we get
∑1≤i<j≤m√detAiAj≥m(m−1)2((m∏i=1√detAi)m−1)1m(m−1)/2=m(m−1)2(m∏i=1detAi)1m. |
The desired result follows by Theorem 7 and the inequality above.
We present two lemmas which are going to be needed in our proofs. The first lemma is known as the Ostrowski-Taussky inequality.
Lemma 2. [6, Theorem 7.8.19] Let A∈Mn. If R(A) is positive definite, then
det(RA)≤|detA|. |
The next lemma is a reverse of the Ostrowski-Taussky inequality proved by Lin [14].
Lemma 3. [14, Lemma 2.6] Let A∈Mn with W(A)⊂Sθ. Then
secn(θ)det(RA)≥|detA|. |
Now, we give the following generation of Theorem 7 for sector matrices.
Theorem 8. Let Ai∈Mn,W(Ai)⊂Sθ,i=1,…,m. Then
|det(m∑i=1Ai)|≥cosn(θ)m∑i=1|detAi|+(2n−2)cosn(θ)m∑1≤i<j≤m√|detAiAj|. |
Proof. Compute
|det(m∑i=1Ai)|≥det(R(m∑i=1Ai))=det(m∑i=1RAi)≥m∑i=1detRAi+(2n−2)m∑1≤i<j≤m√detRAidetRAj≥cosn(θ)m∑i=1|detAi|+(2n−2)cosn(θ)m∑1≤i<j≤m√|detAiAj|, |
where the first inequality above is by Lemma 2; the second is due to Theorem 7 and the last inequality holds by Lemma 3. ◻
Similarly to Theorem 8, the generations of Corollary 1 and Corollary 2 for sector matrices are as follows.
Corollary 3. Let Ai∈Mn,W(Ai)⊂Sθ,i=1,…,m. Then
|det(m∑i=1Ai)|≥cosn(θ)(m∑i=1√|detAi|)2+(2n−4)cosn(θ)∑1≤i<j≤m√|detAiAj|. |
Corollary 4. Let Ai∈Mn,W(Ai)⊂Sθ,i=1,…,m. Then
|det(m∑i=1Ai)|≥cosn(θ)m∑i=1|detAi|+m(m−1)(2n−1−1)cosn(θ)|m∏i=1detAi|1m. |
For A∈Mn, recall the Cartesian decomposition (see, e.g., [6, p.7]) A=RA+iSA, where RA=12(A+A∗),SA=12i(A−A∗). If RA and SA are positive definie, We say A is accretive-dissipative. For more details about this class of matrices, we refer to [8,10,15]. Note that if A is accretive-dissipative, then W(e−iπ/4A)⊂Sπ/4. Thus, we have the following corollaries.
Corollary 5. Let Ai∈Mn,i=1,…,m, be accretive-dissipative. Then
|det(m∑i=1Ai)|≥2−n2m∑i=1|detAi|+(2n2−21−n2)∑1≤i<j≤m√|detAiAj|. |
Corollary 6. Let Ai∈Mn,i=1,…,m, be accretive-dissipative. Then
|det(m∑i=1Ai)|≥2−n2(m∑i=1√|detAi|)2+(2n2−22−n2)∑1≤i<j≤m√|detAiAj|. |
Corollary 7. Let Ai∈Mn,i=1,…,m, be accretive-dissipative. Then
|det(m∑i=1Ai)|≥2−n2m∑i=1|detAi|+m(m−1)(2n2−1−2−n2)|m∏i=1detAi|1m. |
Next, We give the following complement of Theorem 6. Clearly, when m = 3, Theorem 9 becomes Theorem 5.
Theorem 9. Let Ai∈Mn,W(Ai)⊂Sθ,i=1,…,m. Then
|det(m∑i=1Ai)|≥∑1≤i<j≤mm∏k=1(|detA(k)i||detA(k−1)i|+|detA(k)j||detA(k−1)j|)cosk(θ)−(m−2)m∑i=1|detAi|. |
Proof. Let B,C∈Mn be positive definite. Haynsworth [4] proved
det(B(k)+C(k))det(B(k−1)+C(k−1))≥detB(k)detB(k−1)+detC(k)detC(k−1). |
Taking products for k from 1 to n yields
det(B+C)≥m∏k=1(detB(k)detB(k−1)+detC(k)detC(k−1)). | (3.1) |
Then, we have
|det(m∑i=1Ai)|≥det(R(m∑i=1Ai))=det(m∑i=1RAi)≥∑1≤i<j≤mdet(RAi+RAj)−(m−2)m∑i=1detRAi≥∑1≤i<j≤mm∏k=1(detRA(k)idetRA(k−1)i+detRA(k)jdetRA(k−1)j)−(m−2)m∑i=1detRAi≥∑1≤i<j≤mm∏k=1(detRA(k)i|detA(k−1)i|+detRA(k)j|detA(k−1)j|)−(m−2)m∑i=1|detAi|≥∑1≤i<j≤mm∏k=1(|detA(k)i||detA(k−1)i|+|detA(k)j||detA(k−1)j|)cosk(θ)−(m−2)m∑i=1|detAi|, |
where the first inequality is by Lemma 2; the second is by (2.2); the third is by (3.1); the fourth is by Lemma 2 and the last inequality is due to Lemma 3.
The work was supported by National Natural Science Foundation of China (NNSFC) [grant number 11971294], the Key Research Project of Henan Higher Education Institutions under Grant 20A120003 and the Young Talents Fund of HUEL under Grant hncjzfdxqnbjrc201607.
We declare no conflict of interest.
[1] |
W. Berndt, S. Sra, Hlawka-Popoviciu inequalities on positive definite tensors, Linear Algebra Appl., 486 (2015), 317–327. doi: 10.1016/j.laa.2015.08.028
![]() |
[2] |
S. Dong, Q. Wang, More generalizations of Hartfiel's inequality and the Brunn-Minkowski inequality, B. Iran. Math. Soc., 47 (2021), 21–29. doi: 10.1007/s41980-020-00363-z
![]() |
[3] |
X. Fu, Y. Liu, Rotfel'd inequality for partitioned matrices with numerical ranges in a sector, Linear Multilinear Algebra, 64 (2016), 105–109. doi: 10.1080/03081087.2015.1080212
![]() |
[4] |
E. V. Haynsworth, Applications of an inequality for the Schur complement, P. Am. Math. Soc., 24 (1970), 512–516. doi: 10.1090/S0002-9939-1970-0255580-7
![]() |
[5] | D. J. Hartfiel, An extension of Haynsworth's determinant inequality, P. Am. Math. Soc., 41 (1973), 463–465. |
[6] | R. A. Horn, C. R. Johnson, Matrix analysis, 2 Eds., Cambridge: Cambridge University Press, 2013. |
[7] | L. Hou, S. Dong, An Extension of Hartfiel's determinant inequality, Math. Inequal. Appl., 21 (2018), 1105–1110. |
[8] |
A. George, Kh. D. Ikramov, On the properties of Accretive-Dissipative Matrices, Math. Notes, 77 (2005), 767–776. doi: 10.1007/s11006-005-0077-0
![]() |
[9] | Q. Li, Q. Wang, S. Dong, Extending a result of Haynsworth, J. Math. Inequal., 14 (2020), 845–852. |
[10] |
M. Lin, Fischer type determinantal inequalities for accretive-dissipative matrices, Linear Algebra Appl., 438 (2013), 2808–2812. doi: 10.1016/j.laa.2012.11.016
![]() |
[11] | M. Lin, A determinantal inequality for positive definite matrices, Electron J. Linear Algebra, 27 (2014), 821–826. |
[12] | M. Lin, Some inequalities for sector matrices, Oper. Matrices, 10 (2016), 915–921. |
[13] | S. Drury, M. Lin, Singular value inequalities for matrices with numerical ranges in a sector, Oper. Matrices, 8 (2014), 1143–1148. |
[14] | M. Lin, Extension of a result of Hanynsworth and Hartfiel, Arch. Math., 1 (2015), 93–100. |
[15] |
M. Lin, D. Zhou, Norm inequalities for accretive-dissipative operator matrices, J. Math. Anal. Appl., 407 (2013), 436–442. doi: 10.1016/j.jmaa.2013.05.042
![]() |
[16] |
Y. Mao, Extensions of Hartfiel's inequality to multiple matrices, Linear Algebra Appl., 589 (2020), 96–102. doi: 10.1016/j.laa.2019.12.019
![]() |
[17] | Y. Zheng, X. Jiang, X. Chen, F. Alsaadi, More extensions of a determinant inequality of Hartfiel, Appl. Math. Comput., 369 (2020), 124827. |