Research article Special Issues

Weighted spectral geometric means and matrix equations of positive definite matrices involving semi-tensor products

  • Received: 22 January 2024 Revised: 04 March 2024 Accepted: 07 March 2024 Published: 25 March 2024
  • MSC : 15A24, 15A69

  • We characterized weighted spectral geometric means (SGM) of positive definite matrices in terms of certain matrix equations involving metric geometric means (MGM) $ \sharp $ and semi-tensor products $ \ltimes $. Indeed, for each real number $ t $ and two positive definite matrices $ A $ and $ B $ of arbitrary sizes, the $ t $-weighted SGM $ A \, \diamondsuit_t \, B $ of $ A $ and $ B $ is a unique positive solution $ X $ of the equation

    $ A^{-1}\,\sharp\, X \; = \; (A^{-1}\,\sharp\, B)^t. $

    We then established fundamental properties of the weighted SGMs based on MGMs. In addition, $ (A \, \diamondsuit_{1/2} \, B)^2 $ is positively similar to $ A \ltimes B $ and, thus, they have the same spectrum. Furthermore, we showed that certain equations concerning weighted SGMs and MGMs of positive definite matrices have a unique solution in terms of weighted SGMs. Our results included the classical weighted SGMs of matrices as a special case.

    Citation: Arnon Ploymukda, Kanjanaporn Tansri, Pattrawut Chansangiam. Weighted spectral geometric means and matrix equations of positive definite matrices involving semi-tensor products[J]. AIMS Mathematics, 2024, 9(5): 11452-11467. doi: 10.3934/math.2024562

    Related Papers:

  • We characterized weighted spectral geometric means (SGM) of positive definite matrices in terms of certain matrix equations involving metric geometric means (MGM) $ \sharp $ and semi-tensor products $ \ltimes $. Indeed, for each real number $ t $ and two positive definite matrices $ A $ and $ B $ of arbitrary sizes, the $ t $-weighted SGM $ A \, \diamondsuit_t \, B $ of $ A $ and $ B $ is a unique positive solution $ X $ of the equation

    $ A^{-1}\,\sharp\, X \; = \; (A^{-1}\,\sharp\, B)^t. $

    We then established fundamental properties of the weighted SGMs based on MGMs. In addition, $ (A \, \diamondsuit_{1/2} \, B)^2 $ is positively similar to $ A \ltimes B $ and, thus, they have the same spectrum. Furthermore, we showed that certain equations concerning weighted SGMs and MGMs of positive definite matrices have a unique solution in terms of weighted SGMs. Our results included the classical weighted SGMs of matrices as a special case.



    加载中


    [1] W. Pusz, S. L. Woronowicz, Functional calculus for sesquilinear forms and the purification map, Rep. Math. Phys., 8 (1975), 159–170. https://doi.org/10.1016/0034-4877(75)90061-0 doi: 10.1016/0034-4877(75)90061-0
    [2] T. Ando, Concavity of certain maps on positive definite matrices and applications to Hadamard products, Linear Algebria Appl., 26 (1979), 203–241. https://doi.org/10.1016/0024-3795(79)90179-4 doi: 10.1016/0024-3795(79)90179-4
    [3] J. Lawson, Y. Lim, The geometric mean, matrices, metrics, and more, J. Amer. Math. Soc., 108 (2001), 797–812. https://doi.org/10.2307/2695553 doi: 10.2307/2695553
    [4] F. Kubo, T. Ando, Means of positive linear operators, Math. Ann., 246 (1980), 205–224. https://doi.org/10.1007/BF01371042 doi: 10.1007/BF01371042
    [5] F. Hiai, Matrix analysis: matrix monotone functions, matrix means, and majorization, Interdiscip. Inf. Sci., 16 (2010), 139–248. https://doi.org/10.4036/iis.2010.139 doi: 10.4036/iis.2010.139
    [6] R. Bhatia, Positive Definite Matrices, New Jersey: Princeton University Press, 2007.
    [7] M. Fiedler, V. Pták, A new positive definite geometric mean of two positive definite matrices, Linear Algebria Appl., 251 (1997), 1–20. https://doi.org/10.1016/0024-3795(95)00540-4 doi: 10.1016/0024-3795(95)00540-4
    [8] H. Lee, Y. Lim, Metric and spectral geometric means on symmetric cones, Kyungpook Math. J., 47 (2007), 133–150.
    [9] L. Gan, T. Y. Tam, Inequalities and limits of weighted spectral geometric mean, Linear Multilinear Algebra, 72 (2022), 261–282. https://doi.org/10.1080/03081087.2022.2158294 doi: 10.1080/03081087.2022.2158294
    [10] S. Kim, H. Lee, Relative operator entropy related with the spectral geometric mean, Anal. Math. Phys., 5 (2015), 233–240. https://doi.org/10.1007/s13324-015-0099-z doi: 10.1007/s13324-015-0099-z
    [11] L. Li, L. Molnár, L. Wang, On preservers related to the spectral geometric mean, Linear Algebria Appl., 610 (2021), 647–672. https://doi.org/10.1016/j.laa.2020.10.014 doi: 10.1016/j.laa.2020.10.014
    [12] Y. Lim, Factorizations and geometric means of positive definite matrices, Linear Algebria Appl., 437 (2012), 2159–2172. https://doi.org/10.1016/j.laa.2012.05.039 doi: 10.1016/j.laa.2012.05.039
    [13] Y. Lim, Geometric means on symmetric cones, Arch. Math., 75 (2000), 39–45. https://doi.org/10.1007/s000130050471 doi: 10.1007/s000130050471
    [14] J. Lawson, Y. Lim, Geometric means and reflection quasigroups, Quasigroups Related Syst., 14 (2006), 43–59.
    [15] L. Gan, S. Kim, Revisit on spectral geometric mean, Linear Multilinear Algebra, 2023. https://doi.org/10.1080/03081087.2023.2171353
    [16] A. Ploymukda, P. Chansangiam, Weighted Lim's geometric mean of positive invertible operators on a Hilbert space, J. Comput. Anal. Appl., 29 (2020), 390–400. https://doi.org/10.2306/scienceasia1513-1874.2019.45.194 doi: 10.2306/scienceasia1513-1874.2019.45.194
    [17] P. Chansangiam, Cancellability and regularity of operator connections with applications to nonlinear operator equations involving means, J. Inequal. Appl., 2015 (2015), 411. https://doi.org/10.1186/s13660-015-0934-7 doi: 10.1186/s13660-015-0934-7
    [18] P. Chansangiam, Weighted means and weighted mean equations in lineated symmetric spaces, Quasigroups Related Syst., 26 (2018), 197–210.
    [19] D. Cheng, Semi-tensor product of matrices and its application to Morgen's problem, Sci. China Ser. F, 44 (2001), 195–212. https://doi.org/10.1007/BF02714570 doi: 10.1007/BF02714570
    [20] D. Cheng, H. Qi, A. Xue, A survey on semi-tensor product of matrices, Jrl. Syst. Sci. Complex., 20 (2007), 304–322. https://doi.org/10.1007/s11424-007-9027-0 doi: 10.1007/s11424-007-9027-0
    [21] Y. Yan, D. Cheng, J. E. Feng, H. Li, J. Yue, Survey on applications of algebraic state space theory of logical systems to finite state machines, Sci. China Inf. Sci., 66 (2023), 111201. https://doi.org/10.1007/s11432-022-3538-4 doi: 10.1007/s11432-022-3538-4
    [22] P. Chansangiam, A. Ploymukda, Riccati equation and metric geometric means of positive semidefinite matrices involving semi-tensor products, AIMS Math., 8 (2023), 23519–23533. https://doi.org/10.3934/math.20231195 doi: 10.3934/math.20231195
    [23] A. Ploymukda, P. Chansangiam, Metric geometric means with arbitrary weights of positive definite matrices involving semi-tensor products, AIMS Math., 8 (2023), 26153–26167. https://doi.org/10.3934/math.20231333 doi: 10.3934/math.20231333
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(323) PDF downloads(41) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog