In this paper, we study the boundedness and essential norm of Volterra integral operator Vg and integral operator Sg on Dirichlet type spaces DK,α.
Citation: Liu Yang, Ruishen Qian. Volterra integral operator and essential norm on Dirichlet type spaces[J]. AIMS Mathematics, 2021, 6(9): 10092-10104. doi: 10.3934/math.2021586
[1] | Lian Hu, Rong Yang, Songxiao Li . Embedding and Volterra integral operators on a class of Dirichlet-Morrey spaces. AIMS Mathematics, 2021, 6(7): 7782-7797. doi: 10.3934/math.2021453 |
[2] | Ruishen Qian, Xiangling Zhu . Embedding of Qp spaces into tent spaces and Volterra integral operator. AIMS Mathematics, 2021, 6(1): 698-711. doi: 10.3934/math.2021042 |
[3] | Stevo Stević . Norms of some operators between weighted-type spaces and weighted Lebesgue spaces. AIMS Mathematics, 2023, 8(2): 4022-4041. doi: 10.3934/math.2023201 |
[4] | Peiying Huang, Yiyuan Zhang . H-Toeplitz operators on the Dirichlet type space. AIMS Mathematics, 2024, 9(7): 17847-17870. doi: 10.3934/math.2024868 |
[5] | Cheng-shi Huang, Zhi-jie Jiang, Yan-fu Xue . Sum of some product-type operators from mixed-norm spaces to weighted-type spaces on the unit ball. AIMS Mathematics, 2022, 7(10): 18194-18217. doi: 10.3934/math.20221001 |
[6] | Ruishen Qian, Xiangling Zhu . Invertible weighted composition operators preserve frames on Dirichlet type spaces. AIMS Mathematics, 2020, 5(5): 4285-4296. doi: 10.3934/math.2020273 |
[7] | Zhitao Guo, Jianyong Mu . Generalized Stević-Sharma type operators from derivative Hardy spaces into Zygmund-type spaces. AIMS Mathematics, 2023, 8(2): 3920-3939. doi: 10.3934/math.2023196 |
[8] | Liu Yang, Ruishen Qian . Power bounded and power bounded below composition operators on Dirichlet Type spaces. AIMS Mathematics, 2021, 6(2): 2018-2030. doi: 10.3934/math.2021123 |
[9] | Songxiao Li, Jizhen Zhou . Essential norm of generalized Hilbert matrix from Bloch type spaces to BMOA and Bloch space. AIMS Mathematics, 2021, 6(4): 3305-3318. doi: 10.3934/math.2021198 |
[10] | Ling Peng, Qiong Liu . The construction conditions of a Hilbert-type local fractional integral operator and the norm of the operator. AIMS Mathematics, 2025, 10(1): 1779-1791. doi: 10.3934/math.2025081 |
In this paper, we study the boundedness and essential norm of Volterra integral operator Vg and integral operator Sg on Dirichlet type spaces DK,α.
First, let us introduce some necessary notation. Let D be the unit disk in the complex plane C, H(D) be the class of functions analytic in D and H∞ be the class of bounded analytic functions on D. The Bloch space B ([34]) is the class of all f∈H(D) for which
‖f‖B:=|f(0)|+supz∈D(1−|z|2)|f′(z)|<∞. |
The little Bloch space B0, consists of all f∈H(D) such that
lim|z|→1−(1−|z|2)|f′(z)|=0. |
The Hardy space Hp(D) (0<p<∞) ([8,10]) is the set of f∈H(D) with
‖f‖pHp=sup0<r<112π∫2π0|f(reiθ)|pdθ<∞. |
Suppose that 0<p<∞, α>−1 and dAα(z)=(1−|z|2)αdA(z)=1π(1−|z|2)αdxdy. The weighted Bergman space Apα(D) ([34]) is the set of f∈H(D) with
‖f‖pApα=∫D|f(z)|pdAα(z)<∞. |
Let α≥0. The Dirichlet type space Dα is the set of f∈H(D) with
‖f‖2Dα=|f(0)|2+‖f′‖2A2α<∞. |
If α=0, it gives classic Dirichlet space D. When α=1, it is Hardy space H2. When α>1, it turns into weighted Bergman spaces A2α−2. Thus, the interesting scope is α∈(0,1). For more information relating to Dα, we refer to [23,25,26].
In this paper, we use the weighted function in [9,30]. We always suppose that K:[0,∞)→[0,∞) is a right-continuous and nondecreasing function. The weighted function K also satisfies
∫10φK(s)sds<∞ | (A) |
and
∫∞1φK(s)s2ds<∞, | (B) |
where
φK(s)=sup0≤t≤1K(st)/K(t),0<s<∞. |
Let α≥0 and Dirichlet type space DK,α denotes the spaces of function f∈H(D) satisfying
‖f‖2DK,α=|f(0)|2+∫D|f′(z)|2(1−|z|2)K(1−|z|2)dAα(z)<∞. |
When α>0, if the weighted function K satisfies (A) and (B), we easily to see that Dα⊆DK,α⊆A2α−1. By [9], there exist a small c>0, such that C1t1−c≤K(t)≤C2tc, where 0<t<1, C1>0 and C2>0. Thus, when α≥1, we easily to see that A2α−2+c⊆DK,α⊆A2α−1−c. Moreover, using high order characterization, it is not hard to check that DK,α turns into a Bergman type space, when α≥1. Thus, the interesting scope is α∈[0,1). For more results of DK,α spaces, we refer to [3,4,5,11,15,19,20].
Let I be an arc of ∂D and |I| be the normalized Lebesgue arc length of I. The Carleson square based on I, denoted by S(I), is defined by
S(I):={z=reiθ∈D:1−|I|≤r<1,eiθ∈I}. |
Let μ be a positive Borel measure on D. For 0<s<∞, μ is called an s-Carleson measure if
supI⊂∂Dμ(S(I))|I|s<∞. |
We say that a function f∈H2(D) belongs to Morrey type space H2K if
‖f‖2H2K=|f(0)|2+supI⊆∂D1K(|I|)∫I|f(ζ)−fI|2dζ2π<∞, |
where
fI=1|I|∫If(ζ)dζ2π, I⊆∂D. |
This space was introduced by H. Wulan and J. Zhou in [29]. When K(t)=t, it gives the BMOA space, the space of those analytic functions f in the Hardy space Hp whose boundary functions having bounded mean oscillation on ∂D. In the case K(t)=tλ, 0<λ<1, the space H2K gives classical Morrey space L2,λ. Morrey spaces L2,λ were introduced by Morrey in [16]. From [29], we know that f∈H2K if and only if
supa∈D1−|a|2K(1−|a|2)∫D|f′(z)|2(1−|φa(z)|2)dA(z)<∞, |
where φa(z)=a−z1−¯az.
Let α≥0 and we say that a function f∈H(D) belongs to Morrey type space H2K,α if
‖f‖2H2K,α=|f(0)|2+supa∈D1−|a|2K(1−|a|2)∫D|f′(z)|2(1−|φa(z)|2)dAα(z)<∞. |
It is easy to verify H2K,α is a Banach space under the above norm.
Let f,g∈H(D). The Volterra integral operator Vg and the integral operator Sg are defined by
Vgf(z):=∫z0g′(w)f(w)dw,Sgf(z):=∫z0g(w)f′(w)dw,z∈D, |
respectively. For g∈H(D), the multiplication operator Mg is defined by Mgf(z)=f(z)g(z). It is easy to see that Mg is related with Sg and Vg by
Mgf(z)=f(0)g(0)+Sgf(z)+Vgf(z). |
It it well known that Vg is bounded on the Hardy space Hp (Bergman space Ap) if and only if g∈BMOA (g∈B). Vg is bounded on BMOA if and only if g∈BMOAlog (see [24]). For more information relating to Volterra integral operator Vg, we refer to [1,2,7,12,13,14,17,21,22,28,31,33].
In this note, we study Volterra integral operator Vg acting from DK,α to H2K,α, that is, we prove that Vg:DK,α→H2K,α is bounded if and only if g∈B, when 0<α<1. Meanwhile, the boundedness of Sg and the essential norm of Vg and Sg from DK,α to H2K,α are also studied.
In this paper, the symbol f≈g means that f≲. We say that f\lesssim g if there exists a constant C such that f\leq Cg .
In this section, we are going to give some auxiliary results.
Lemma 1. Let (A) and (B) hold for K . Suppose that \alpha > 0 and f\in {\mathcal{D}_{K, \alpha}} , then
|f(z)|\lesssim\|f\|_{{\mathcal{D}_{K, \alpha}}}\sqrt{\frac{K(1-|z|^2)}{(1-|z|^2)^{1+\alpha}}}, \ \ \ z\in{\mathbb{D}}. |
Proof. The proof is similar to [33], thus we omit it here. The proof is completed.
Lemma 2. Let (B) hold for K . Suppose that \alpha > 0 . Then
f_{a}(z) = \frac{(1-|a|^2)\sqrt{K(1-|a|^2)}}{(1-\overline{a}z)^{\frac{3+\alpha}{2}}}\in {\mathcal{D}_{K, \alpha}} |
and
F_{a}(z) = \frac{(1-|a|^2)\sqrt{K(1-|a|^2)}}{\overline{a}(1-\overline{a}z)^{\frac{3+\alpha}{2}}}\in {\mathcal{D}_{K, \alpha}}, |
where z, \ a\in{\mathbb{D}}.
Proof. Since (B) holds, then from [9], there is some c\in (0, 1) , such that
\varphi_{K}(t)\lesssim t^{1-c}, \ t\geq1. | (1) |
Combining with K which is nondecreasing and Lemma 3.10 of [34], we obtain
\begin{equation} \nonumber \begin{split} &\int_{{\mathbb{D}}}|f_{a}'(z)|^2\frac{1-|z|^2}{K(1-|z|^2)}dA_{\alpha}(z) = (1-|a|^2)^2\int_{{\mathbb{D}}}\left(\frac{(1-|z|^2)K(1-|a|^2)}{|1-\overline{a}z|^{5+\alpha}K(1-|z|^2)}\right)dA_{\alpha}(z) \\\lesssim&(1-|a|^2)^2\int_{{\mathbb{D}}}\left(\frac{(1-|z|^2)K(1-|a|)}{|1-\overline{a}z|^{5+\alpha}K(1-|z|)}\right)dA_{\alpha}(z) \\\lesssim&(1-|a|^2)^2\int_{{\mathbb{D}}}\left(\frac{(1-|z|^2)K(|1-\overline{a}z|)}{|1-\overline{a}z|^{5+\alpha}K(1-|z|)}\right)dA_{\alpha}(z) \\\lesssim&(1-|a|^2)^2\int_{{\mathbb{D}}}\left(\frac{(1-|z|^2)}{|1-\overline{a}z|^{5+\alpha}}\right)\varphi_{K}\left(\frac{|1-\overline{a}z|}{1-|z|}\right)dA_{\alpha}(z) \\\lesssim&(1-|a|^2)^2\int_{{\mathbb{D}}}\left(\frac{(1-|z|^2)^{1+\alpha}(|1-\overline{a}z|)^{1-c}}{|1-\overline{a}z|^{5+\alpha}(1-|z|)^{1-c}}\right)dA(z)\lesssim1. \end{split} \end{equation} |
where the third inequality is deduced by 1-|a|\leq |1-\overline{a}z| and K is nondecreasing, the last second inequality is deduced by 1-|z|\leq |1-\overline{a}z| and (1) . Thus, f_a\in {\mathcal{D}_{K, \alpha}} . Similar proof can be applied to F_a , thus we omit here. The proof is completed.
Lemma 3. ([34]) Suppose that \alpha > -1 and \mu is a non-negative measure on {\mathbb{D}} . Then \mu is a (2+\alpha) -Carleson measure if and only if the following inequality
\int_{{\mathbb{D}}}|f(z)|^2d\mu\lesssim\|f\|_{A_{\alpha}^2}^2 |
holds for all f\in A_{\alpha}^2 .
Lemma 4. ([32]) Let p > 1 and f\in H({\mathbb{D}}) . Then f\in {\mathcal{B}} if and only if the measure d\mu_f = |f'(z)|^2(1-|z|^2)^pdA(z) is a p -Carleson measure.
Lemma 5. ([6]) Suppose that 1 < p < \infty , \alpha > -1 , \beta\geq 0 with \beta < 2+\alpha . Let f\in H({\mathbb{D}}) and z, w\in{\mathbb{D}} . Then
\int_{{\mathbb{D}}}|f(z)-f(0)|^p\frac{(1-|z|^2)^\alpha}{|1-\overline{w}z|^\beta}dA(z)\lesssim\int_{{\mathbb{D}}}|f'(z)|^p\frac{(1-|z|^2)^{p+\alpha}}{|1-\overline{w}z|^\beta}dA(z). |
Lemma 6. Let (A) and (B) hold for K . Suppose that 0 < \alpha < 1 . Then f\in{\mathcal{H}_{K, \alpha}^2} if and only if
\sup\limits_{I\subseteq{\partial {\mathbb{D}}}}\frac{1}{K(|I|)}\int_{S(I)}|f'(z)|^2(1-|z|^2)^{1+\alpha}dA(z) < \infty. | (2) |
Proof. The proof is similar to Lemma 2.1 of [18]. Thus we omit here. The proof is complete.
Theorem 1. Let (A) and (B) hold for K . Suppose that g\in H({\mathbb{D}}) and 0 < \alpha < 1 . Then V_g is bounded from {\mathcal{D}_{K, \alpha}} to {\mathcal{H}_{K, \alpha}^2} if and only if g\in {\mathcal{B}} . Moreover, the operator norm satisfies \|V_g\|\approx\|g\|_{{\mathcal{B}}} .
Proof. For any I\in{\partial {\mathbb{D}}} , let a = (1-|I|)\zeta\in{\mathbb{D}} , where \zeta is the center of I . Then
(1-|a|^2)\approx|1-\overline{a}z|, \ \ |K(1-|a|^2)\approx K(|I|), \ \ z\in S(I). | (3) |
Let f_a be defined as in Lemma 2. Then
|f_a(z)|^{2}\approx \frac{K(|I|)}{|I|^{1+\alpha}}, \ z\in S(I). |
Suppose that V_g is bounded from {\mathcal{D}_{K, \alpha}} to {\mathcal{H}_{K, \alpha}^2} . By Lemmas 4 and 6, we have
\begin{equation} \nonumber \begin{split} &\frac{1}{|I|^{\alpha+1}}\int_{S(I)}|g'(z)|^2(1-|z|^2)^{\alpha+1}dA(z) \\\lesssim&\frac{1}{K(|I|)}\int_{S(I)}|f_a(z)|^2|g'(z)|^2(1-|z|^2)^{\alpha+1}dA(z) \\\lesssim&\frac{1}{K(|I|)}\int_{S(I)}|(V_gf_a)'(z)|^2(1-|z|^2)^{\alpha+1}dA(z) \\\lesssim&\|V_gf_a\|_{{\mathcal{H}_{K, \alpha}^2}}^2 < \infty. \end{split} \end{equation} |
Thus, g\in {\mathcal{B}} .
On the other hand, suppose that g\in {\mathcal{B}} , by Lemma 4, we have d\mu_g = |g'(z)|^2(1-|z|^2)^{\alpha+1}dA(z) is a (\alpha+1) -Carleson measure. Let f\in {\mathcal{D}_{K, \alpha}} . From Lemma 6, we only need to prove that
L = :\frac{1}{K(|I|)}\int_{S(I)}|(V_gf)'(z)|^{2}(1-|z|^2)^{1+\alpha}dA(z) < \infty. |
Since
\begin{align*} L& = \frac{1}{K(|I|)}\int_{S(I)}|f(z)|^2|g'(z)|^{2}(1-|z|^2)^{1+\alpha}dA(z)\\ &\lesssim \frac{1}{K(|I|)}\int_{S(I)}|f(a)|^{2}|g'(z)|^{2}(1-|z|^2)^{1+\alpha}dA(z)\\ & \ \ \ \ \ \ \ +\frac{1}{K(|I|)}\int_{S(I)}|f(z)-f(a)|^{2}|g'(z)|^{2}(1-|z|^2)^{1+\alpha}dA(z)\\ & = M+N. \end{align*} |
Using Lemma 1 and (3) , we see that
\begin{align*} M&\lesssim \|g\|_{{\mathcal{B}}}^2\|f\|^{2}_{{\mathcal{D}_{K, \alpha}}}. \end{align*} |
By Lemma 3, we have A_{\alpha-1}^2\subseteq L^2(d\mu_g) . Note that
\|f\|_{A_{\alpha-1}^2}^2\approx\int_{{\mathbb{D}}}|f'(z)|^2(1-|z|^2)^{\alpha+1}dA(z)\leq\|f\|_{{\mathcal{D}_{K, \alpha}}}^2. |
Thus, {\mathcal{D}_{K, \alpha}}\subseteq A_{\alpha-1}^2 . Bearing in mind these facts, we are going to estimate N . Let z = \varphi_a(w) . Since |\varphi_a'(w)|(1-|w|^2) = 1-|\varphi_a(w)|^2, using Lemmas 3, 4, 5, we obtain
\begin{align*} &N\approx \frac{(1-|a|^2)^{4}}{K(1-|a|^2)}\int_{S(I)}\left|\frac{f(z)-f(a)}{(1-\overline{a}z)^{2}}\right|^2d\mu_g(z)\\ &\leq \frac{(1-|a|^2)^{4}}{K(1-|a|^2)}\int_{{\mathbb{D}}}\left|\frac{f(z)-f(a)}{(1-\overline{a}z)^{2}}\right|^2d\mu_g(z)\\ &\lesssim\frac{(1-|a|^2)^{2+2}}{K(1-|a|^2)}\int_{{\mathbb{D}}}\left|\frac{f(z)-f(a)}{(1-\overline{a}z)^{2}}\right|^2(1-|z|^2)^{\alpha-1}dA(z)\\ &\leq\frac{(1-|a|^2)^{2}}{K(1-|a|^2)}\int_{{\mathbb{D}}}\frac{|f(z)-f(a)|^2(1-|a|^2)^{2}}{|1-\overline{a}z|^4}(1-|z|^2)^{\alpha-1}dA(z)\\ &\lesssim\frac{(1-|a|^2)^{2}}{K(1-|a|^2)}\int_{{\mathbb{D}}}|(f\circ\varphi_a)(w)-(f\circ\varphi_a)(0)|^2(1-|\varphi_a(w)|^2)^{\alpha-1}dA(w)\\ &\leq\frac{(1-|a|^2)^{1+\alpha}}{K(1-|a|^2)}\int_{{\mathbb{D}}}|(f\circ\varphi_a)(w)-(f\circ\varphi_a)(0)|^2(1-|w|^2)^{\alpha-1}dA(w)\\ &\leq\frac{(1-|a|^2)^{1+\alpha}}{K(1-|a|^2)}\int_{{\mathbb{D}}}|(f\circ\varphi_a)'(w)|^2(1-|w|^2)^{\alpha+1}dA(w)\\ &\leq\frac{(1-|a|^2)^{1+\alpha}}{K(1-|a|^2)}\int_{{\mathbb{D}}}|f'(\varphi_a(w)|^2(1-|\varphi_a(w)|^2)^2(1-|w|^2)^{\alpha-1}dA(w)\\ &\leq\frac{(1-|a|^2)^{1+\alpha}}{K(1-|a|^2)}\int_{{\mathbb{D}}}|f'(z)|^2(1-|z|^2)^2(1-|\varphi_a(z)|^2)^{\alpha-1}\frac{(1-|a|^2)^2}{|1-\overline{a}z|^4}dA(w)\\ & = \int_{{\mathbb{D}}}|f'(z)|^2\frac{(1-|z|^2)^{\alpha+1}}{K(1-|z|^2)}\frac{K(1-|z|^2)}{K(1-|a|^2)}\frac{(1-|a|^2)^{2(1+\alpha)}}{|1-\overline{a}z|^{2+2\alpha}}dA(w)\\ &\lesssim\int_{{\mathbb{D}}}|f'(z)|^2\frac{(1-|z|^2)^{\alpha+1}}{K(1-|z|^2)}\left(\frac{K(|1-\overline{a}z|)}{K(1-|a|)}\right)\frac{(1-|a|^2)^{2(1+\alpha)}}{|1-\overline{a}z|^{2+2\alpha}}dA(z)\\ &\lesssim\int_{{\mathbb{D}}}|f'(z)|^2\frac{(1-|z|^2)^{\alpha+1}}{K(1-|z|^2)}\varphi_K\left(\frac{|1-\overline{a}z|}{1-|a|}\right)\frac{(1-|a|^2)^{2(1+\alpha)}}{|1-\overline{a}z|^{2+2\alpha}}dA(z)\\ &\lesssim\int_{{\mathbb{D}}}|f'(z)|^2\frac{(1-|z|^2)^{\alpha+1}}{K(1-|z|^2)}\frac{(|1-\overline{a}z|)^{1-c}}{(1-|a|^2)^{1-c}}\frac{(1-|a|^2)^{2(1+\alpha)}}{|1-\overline{a}z|^{2+2\alpha}}dA(z)\lesssim\|f\|_{{\mathcal{D}_{K, \alpha}}}^2, \\ \end{align*} |
where the last second inequality is deduced by (1) . Combining the estimates M and N, we conclude that V_g:{\mathcal{D}_{K, \alpha}}\to {\mathcal{H}_{K, \alpha}^2} is bounded.
Theorem 2. Let (A) and (B) hold for K . Suppose that g\in H({\mathbb{D}}) and 0 < \alpha < 1 . Then S_g is bounded from {\mathcal{D}_{K, \alpha}} to {\mathcal{H}_{K, \alpha}^2} if and only if g\in H^{\infty} . Moreover, the operator norm satisfies \|S_g\|\approx\sup_{z\in{\mathbb{D}}}|g(z)| .
Proof. Suppose that S_g is bounded from {\mathcal{D}_{K, \alpha}} to {\mathcal{H}_{K, \alpha}^2} . Let a\in{\mathbb{D}} and
F_a(z) = \frac{(1-|a|^2)\sqrt{K(1-|a|^2)}}{\overline{a}(1-\overline{a}z)^{\frac{3+\alpha}{2}}}. |
By Lemma 2, we have F_a\in{\mathcal{D}_{K, \alpha}} and \|F_a\|_{{\mathcal{D}_{K, \alpha}}}\lesssim 1 . For a\in {\mathbb{D}} and r > 0 , let D(a, r) denote the Bergman metric disk centered at a with radius r . From [34] we see that
\frac{(1-|a|^2)^2}{|1-\overline{a} z|^4}\approx \frac{1}{(1-|z|^2)^2} \approx \frac{1}{(1-|a|^2)^2} |
when z\in D(a, r) . Using subharmonic property of |g|^2 , we have
\begin{equation} \nonumber \begin{split} \infty > &\|S_gF_a\|_{{\mathcal{H}_{K, \alpha}^2}}^2 \\\gtrsim&\sup\limits_{b\in{\mathbb{D}}}\frac{1-|b|^2}{K(1-|b|^2)}\int_{{\mathbb{D}}}|F_{a}'(z)|^2|g(z)|^2\left(1-|\varphi_b(z)|^2\right)dA_{\alpha}(z) \\\gtrsim&\frac{1-|a|^2}{K(1-|a|^2)}\int_{{\mathbb{D}}}|F_{a}'(z)|^2|g(z)|^2\left(1-|\varphi_a(z)|^2\right)dA_{\alpha}(z) \\\gtrsim&\frac{1-|a|^2}{K(1-|a|^2)}\int_{D(a, r)}|F_{a}'(z)|^2|g(z)|^2\left(1-|\varphi_a(z)|^2\right)dA_{\alpha}(z) \\ = &\frac{1}{(1-|a|^2)^2}\int_{D(a, r)}|g(z)|^2dA(z)\gtrsim |g(a)|^2. \end{split} \end{equation} |
That is,
\|S_g\|^2\gtrsim\|S_g\|^2\|F_a\|_{{\mathcal{D}_{K, \alpha}}}^2\gtrsim\|S_gF_a\|_{{\mathcal{H}_{K, \alpha}^2}}^2\gtrsim |g(a)|^2. |
Since a\in{\mathbb{D}} is arbitrary, we have
\|g\|_{H^{\infty}}^2\lesssim\|S_g\|^2 < \infty. |
On the other hand. Let g\in H^{\infty} . Using (1), we can deduce that for f\in{\mathcal{D}_{K, \alpha}} ,
\begin{equation} \nonumber \begin{split} &\frac{1-|a|^2}{K(1-|a|^2)}\int_{{\mathbb{D}}}|f'(z)|^2|g(z)|^2\left(1-|\varphi_a(z)|^2\right)dA_{\alpha}(z) \\\lesssim&\|g\|_{H^{\infty}}^2\int_{{\mathbb{D}}}|f'(z)|^2\frac{(1-|a|^2)^2K(1-|z|^2)}{|1-\overline{a}z|^2K(1-|a|^2)}\frac{(1-|z|^2)}{K(1-|z|^2)}dA_{\alpha}(z) \\\lesssim&\|g\|_{H^{\infty}}^2\int_{{\mathbb{D}}}|f'(z)|^2\frac{(1-|a|^2)^2K(|1-\overline{a}z|)}{|1-\overline{a}z|^2K(1-|a|)}\frac{(1-|z|^2)}{K(1-|z|^2)}dA_{\alpha}(z) \\\lesssim&\|g\|_{H^{\infty}}^2\int_{{\mathbb{D}}}|f'(z)|^2\frac{(1-|a|^2)^2\varphi_K\left(\frac{|1-\overline{a}z|}{1-|a|}\right)}{|1-\overline{a}z|^2}\frac{(1-|z|^2)}{K(1-|z|^2)}dA_{\alpha}(z) \\\lesssim&\|g\|_{H^{\infty}}^2\int_{{\mathbb{D}}}|f'(z)|^2\frac{(1-|a|^2)^2(|1-\overline{a}z|)^{1-c}}{|1-\overline{a}z|^2(1-|a|^2)^{1-c}}\frac{(1-|z|^2)}{K(1-|z|^2)}dA_{\alpha}(z) \\\lesssim&\|g\|_{H^{\infty}}^2\|f\|_{{\mathcal{D}_{K, \alpha}}}^2. \end{split} \end{equation} |
The proof is completed.
Remark. Note that
M_gf(z) = f(0)g(0)+S_gf(z)+V_gf(z). |
Hence, if (A) and (B) hold for K , then M_g is bounded from {\mathcal{D}_{K, \alpha}} to {\mathcal{H}_{K, \alpha}^2} if and only if g\in H^{\infty} .
Let us recall the definition of essential norm. Suppose that X be a Banach space and T is a bounded linear operator on X . The essential norm of T is the distance of T to the closed ideals of compact operators, that is
\|T\|_{e} = inf\{\|T-S\|:S \ is\ a \ compact \ operator\ on \ X\}. |
Note that T is compact if and only if \|T\|_{e} = 0 .
Lemma 7. Suppose that 0 < \alpha < 1 and K satisfies the conditions (A) and (B). Let g\in {\mathcal{B}} . Then V_{g_r}:{\mathcal{D}_{K, \alpha}}\rightarrow {\mathcal{H}_{K, \alpha}^2} is compact. Here g_r(z) = g(rz), 0 < r < 1, z\in{\mathbb{D}}.
Proof. Let \{f_n\} be any function sequence such that \|f_n\|_{{\mathcal{D}_{K, \alpha}}}\lesssim1 and f_n\rightarrow0 uniformly on compact subsets of {\mathbb{D}} as n\rightarrow \infty . We need only to show that
\lim\limits_{n\rightarrow \infty}\|T_{g_r}f_n\|_{{\mathcal{H}_{K, \alpha}^2}} = 0. |
Since
|g'_r(z)|\lesssim\frac{\|g\|_{{\mathcal{B}}}}{1-r^2}, \ z\in{\mathbb{D}}. |
Combining with (1), we have
\begin{equation} \nonumber \begin{split} &\sup\limits_{a\in{\mathbb{D}}}\frac{1-|a|^2}{K(1-|a|^2)}\int_{{\mathbb{D}}}|f_{n}(z)|^2|g_r'(z)|^2\left(1-|\varphi_a(z)|^2\right)dA_{\alpha}(z) \\\lesssim&\frac{\|g\|_{{\mathcal{B}}}^2}{(1-r^2)^2}\sup\limits_{a\in{\mathbb{D}}}\frac{1-|a|^2}{K(1-|a|^2)}\int_{{\mathbb{D}}}|f_n(z)|^2\left(1-|\varphi_{a}(z)|^2\right)dA_{\alpha}(z) \\\lesssim&\frac{\|g\|_{{\mathcal{B}}}^2}{(1-r^2)^2}\int_{{\mathbb{D}}}|f_n(z)|^2\frac{1-|z|^2}{K(1-|z|^2)}\left(\frac{(1-|a|^2)^2K(1-|z|)}{K(1-|a|)|1-\overline{a}z|^2}\right)dA_{\alpha}(z) \\\lesssim&\frac{\|g\|_{{\mathcal{B}}}^2}{(1-r^2)^2}\int_{{\mathbb{D}}}|f_n(z)|^2\frac{1-|z|^2}{K(1-|z|^2)}\left(\frac{(1-|a|)^2\frac{K(|1-\overline{a}z|)}{K(1-|a|)}}{|1-\overline{a}z|^2}\right)dA_{\alpha}(z) \\\lesssim&\frac{\|g\|_{{\mathcal{B}}}^2}{(1-r^2)^2}\int_{{\mathbb{D}}}|f_n(z)|^2\frac{1-|z|^2}{K(1-|z|^2)}\left(\frac{(1-|a|)^2\varphi_K\left(\frac{|1-\overline{a}z|}{1-|a|}\right)}{|1-\overline{a}z|^2}\right)dA_{\alpha}(z) \\\lesssim&\frac{\|g\|_{{\mathcal{B}}}^2}{(1-r^2)^2}\int_{{\mathbb{D}}}|f_n(z)|^2\frac{1-|z|^2}{K(1-|z|^2)}\left(\frac{(1-|a|)^2\frac{|1-\overline{a}z|^{1-c}}{(1-|a|)^{1-c}}}{|1-\overline{a}z|^2}\right)dA_{\alpha}(z) \\\lesssim&\frac{\|g\|_{{\mathcal{B}}}^2}{(1-r^2)^2}\int_{{\mathbb{D}}}|f_n(z)|^2\frac{1-|z|^2}{K(1-|z|^2)}\left(\frac{(1-|a|)^{1+c}}{|1-\overline{a}z|^{1+c}}\right)dA_{\alpha}(z) \\\lesssim&\frac{\|g\|_{{\mathcal{B}}}^2}{(1-r^2)^2}\int_{{\mathbb{D}}}|f_n(z)|^2\frac{1-|z|^2}{K(1-|z|^2)}dA_{\alpha}(z). \end{split} \end{equation} |
Note that \|f_n\|_{{\mathcal{D}_{K, \alpha}}}\lesssim1 and Lemma 1, the argument is then finished by the Dominated Convergence Theorem.
Let X and Y be two Banach spaces with X\subset Y . If f\in Y , then the distance from f to X is defined as
dist_Y(f, X) = \inf\limits_{g\in X}\|f-g\|_Y. |
We also need the following lemma.
Lemma 8. ([27]) If f\in{\mathcal{B}}, then
\begin{align*} \limsup\limits_{|z|\to1^-}(1-|z|^2)|f'(z)|\approx {\rm dist}_{{\mathcal{B}}}(f, {\mathcal{B}}_0)\approx\limsup\limits_{r\to 1^-}\|f-f_r\|_{{\mathcal{B}}}. \end{align*} |
Theorem 3. Suppose 0 < \alpha < 1 , g\in{\mathcal{B}} and K satisfy the conditions (A) and (B). Then V_g : {\mathcal{D}_{K, \alpha}}\rightarrow {\mathcal{H}_{K, \alpha}^2} satisfies
\|V_g\|_{e} \approx dist(g, {\mathcal{B}}_0)\approx\limsup\limits_{|z|\to1^-}(1-|z|^2)|g'(z)|. |
Proof. Let \{I_n\} be the subarc sequence of {\partial {\mathbb{D}}} , such that |I_n|\rightarrow0 as n\rightarrow \infty , w_n = (1-|I_n|)\zeta_n\in{\mathbb{D}} , where \zeta_n is the center of I_n . n = 1, 2, .... Then
1-|w_n|\approx |1-\overline{w_n}z|\approx |I_n|, \ \ z\in S(I_n). |
Thus, by [9], we know that
K(1-|w_n|)\approx K(|I_n|), \ \ z\in S(I_n). |
Take
f_n(z) = \frac{(1-|a_n|^2)\sqrt{K(1-|a_n|^2)}}{(1-\overline{a_n}z)^{\frac{3+\alpha}{2}}}. |
Then f_{n}\rightarrow0 uniformly on the compact subsets of {\mathbb{D}} as n\rightarrow \infty and \|f_{n}\|_{{\mathcal{D}_{K, \alpha}}}\lesssim1 . Thus, for any compact operator S from {\mathcal{D}_{K, \alpha}} to {\mathcal{H}_{K, \alpha}^2} , we have
\lim\limits_{n\rightarrow \infty}\|Sf_{n}\|_{{\mathcal{H}_{K, \alpha}^2}}\rightarrow0. |
Therefore
\begin{equation} \nonumber \begin{split} \|V_g-S\|\gtrsim&\lim\limits_{n\rightarrow \infty}\sup \left(\|V_gf_{n}\|_{{\mathcal{H}_{K, \alpha}^2}}-\|Sf_{n}\|_{{\mathcal{H}_{K, \alpha}^2}}\right) \\ = &\limsup\limits_{n\rightarrow \infty}\|V_gf_{n}\|_{{\mathcal{H}_{K, \alpha}^2}} \\\approx&\limsup\limits_{n\rightarrow \infty}\left(\frac{1}{K(|I_n|)}\int_{S(I_n)}|(V_gf_n)'(z)|^2(1-|z|^2)^{1+\alpha}dA(z)\right)^{\frac{1}{2}} \\ = &\limsup\limits_{n\rightarrow \infty}\left(\frac{1}{K(|I_n|)}\int_{S(I_n)}|f_n(z)|^2|g'(z)|^2(1-|z|^2)^{1+\alpha}dA(z)\right)^{\frac{1}{2}} \\\approx&\limsup\limits_{n\rightarrow \infty}\left(\frac{1}{|I_n|^{1+\alpha}}\int_{S(I_n)}|g'(z)|^2(1-|z|^2)^{1+\alpha}dA(z)\right)^{\frac{1}{2}} \\\gtrsim&\limsup\limits_{n\rightarrow \infty}(1-|w_n|^2)|g'(w_n)|. \end{split} \end{equation} |
On the other hand, by Lemma 7, V_{g_r}: {\mathcal{D}_{K, \alpha}}\rightarrow {\mathcal{H}_{K, \alpha}^2} is compact operator. Combining this with Theorem 1 and the linearity of V_g respect to g implies
\|V_g\|_{e}\leq\|V_g-V_{g_r}\| = \|V_{g-g_r}\|\approx\|g-g_r\|_{{\mathcal{B}}}. |
Together with Lemma 8, we have
\|V_g\|_{e}\lesssim \limsup\limits_{|z|\to1^-}(1-|z|^2)|g'(z)|\approx dist(g, {\mathcal{B}}_0). |
The proof is completed.
Corollary 1. Suppose 0 < \alpha < 1 and K satisfies the conditions (A) and (B). If g\in H({\mathbb{D}}), then V_g:{\mathcal{D}_{K, \alpha}}\to{\mathcal{H}_{K, \alpha}^2} is compact if and only if g\in{\mathcal{B}}_0.
Theorem 4. Suppose 0 < \alpha < 1 and K satisfies the conditions (A) and (B). If g\in H({\mathbb{D}}) and S_g is bounded from {\mathcal{D}_{K, \alpha}} to {\mathcal{H}_{K, \alpha}^2} , then
\|S_g\|_{e}\approx\sup\limits_{z\in{\mathbb{D}}}|g(z)|. |
Proof. For compact operators S , it follows that
\|S_g\|_{e} = \inf\limits_{S}\|S_g-S\|\leq\|S_g\|\lesssim\sup\limits_{z\in{\mathbb{D}}}|g(z)|. |
On the other hand, we choose the sequence \{a_n\}\subset {\mathbb{D}} such that |a_n|\rightarrow 1 . We define
f_{n}(z): = \frac{(1-|a_n|^2)\sqrt{K(1-|a_n|^2)}}{(1-\overline{a_n}z)^{\frac{3+\alpha}{2}}}, \; \; z\in{\mathbb{D}}. |
It follows from the proof of Lemma 2 that \|f_{n}\|_{{\mathcal{D}_{K, \alpha}}}\lesssim1 . It is easy to check that f_{n} converges to zero uniformly on any compact subsets of {\mathbb{D}} . Then \|Sf_{n}\|_{{\mathcal{H}_{K, \alpha}^2}}\rightarrow0 as n\rightarrow \infty for any compact operator S from {\mathcal{D}_{K, \alpha}} to {\mathcal{H}_{K, \alpha}^2} . So
\begin{equation} \nonumber \begin{split} \|S_g-S\|\gtrsim&\limsup\limits_{n\rightarrow \infty}\|(S_g-S)f_{n}\|_{{\mathcal{H}_{K, \alpha}^2}} \\\geq&\limsup\limits_{n\rightarrow \infty}(\|S_gf_{n}\|_{{\mathcal{H}_{K, \alpha}^2}}-\|Sf_{n}\|_{{\mathcal{H}_{K, \alpha}^2}}) \\ = &\limsup\limits_{n\rightarrow \infty}\|S_gf_{n}\|_{{\mathcal{H}_{K, \alpha}^2}}. \end{split} \end{equation} |
From the proof of Theorem 2, we have
\begin{equation} \nonumber \begin{split} \|S_gf_{n}\|_{{\mathcal{H}_{K, \alpha}^2}}\gtrsim&|g(a_n)|. \end{split} \end{equation} |
Since \{a_n\}\subseteq{\mathbb{D}} is arbitrary, we have
\|S_g\|_{e} \gtrsim\sup\limits_{z\in {\mathbb{D}}} |g(z)|. |
The proof is completed.
Corollary 2. Suppose 0 < \alpha < 1 and K satisfy the conditions (A) and (B). If g\in H({\mathbb{D}}), then S_g:{\mathcal{D}_{K, \alpha}}\to{\mathcal{H}_{K, \alpha}^2} is compact if and only if g = 0.
In this paper, we give some equivalent characterizations of Volterra integral operator and essential norm from Dirichlet type spaces {\mathcal{D}_{K, \alpha}} to Morrey type spaces {\mathcal{H}_{K, \alpha}^2} .
The authors thank the referee for useful remarks and comments that led to the improvement of this paper. This work was supported by NNSF of China (No. 11801250, No.11871257), Overseas Scholarship Program for Elite Young and Middle-aged Teachers of Lingnan Normal University, Yanling Youqing Program of Lingnan Normal University (No. YL20200202), the Key Program of Lingnan Normal University (No. LZ1905), The Innovation and developing School Project of Guangdong Province (No. 2019KZDXM032) and Education Department of Shaanxi Provincial Government (No.19JK0213).
We declare that we have no conflict of interest.
[1] | A. Aleman, A. Siskakis, An integral operator on H^p, Complex Var. Elliptic, 28 (1955), 149-158. |
[2] | A. Aleman, A. Siskakis, Integration operators on Bergman spaces, Indiana Univ. Math. J., 46 (1997), 337-356. |
[3] |
A. Aleman, Hilbert spaces of analytic functions between the Hardy space and the Dirichlet space, Proc. Amer. Math. Soc., 115 (1992), 97-104. doi: 10.1090/S0002-9939-1992-1079693-X
![]() |
[4] | N. Arcozzi, R. Rochberg, E. Sawyer, Carleson measures for analytic Besov spaces, Rev. Mat. Iberoam., 18 (2002), 443-510. |
[5] |
G. Bao, Z. Lou, R. Qian, H. Wulan, On multipliers of Dirichlet type spaces, Complex Anal. Oper. Theory, 9 (2015), 1701-1732. doi: 10.1007/s11785-015-0444-0
![]() |
[6] | D. Blasi, J. Pau, A characterization of Besov type spaces and applications to Hankel type operators, Michigan Math. J., 56 (2008), 401-417. |
[7] |
O. Constantin, A Volterra-type integration operator on Fock spaces, Pro. Amer. Math. Soc., 140 (2012), 4247-4257. doi: 10.1090/S0002-9939-2012-11541-2
![]() |
[8] | P. Duren, Theory of H^p Spaces, Academic Press, New York, 1970. |
[9] |
M. Essen, H. Wulan, J. Xiao, Several function-theoretic characterizations of Möbius invariant {\mathcal{Q}}_K spaces, J. Funct. Anal., 230 (2006), 78-115. doi: 10.1016/j.jfa.2005.07.004
![]() |
[10] | J. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981. |
[11] |
R. Kerman, E. Sawyer, Carleson measures and multipliers of Dirichlet-type spaces, Trans. Amer. Math. Soc., 309 (1988), 87-98. doi: 10.1090/S0002-9947-1988-0957062-1
![]() |
[12] |
J. Laitila S. Miihkinen, J. Nieminen, Essential norms and weak compactness of integration operators, Arch. Math., 97 (2011), 39-48. doi: 10.1007/s00013-011-0272-z
![]() |
[13] |
S. Li, J. Liu, C. Yuan, Embedding theorems for Dirichlet type spaces, Canad. Math. Bull., 63 (2020), 106-117. doi: 10.4153/S0008439519000201
![]() |
[14] |
P. Li, J. Liu, Z. Lou, Integral operators on analytic Morrey spaces, Sci. China Math., 57 (2014), 1961-1974. doi: 10.1007/s11425-014-4811-5
![]() |
[15] | Z. Lou, R. Qian, Small Hankel operator on Dirichlet-type spaces and applications, Math. Inequal. Appl., 19 (2016), 209-220. |
[16] |
C. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 43 (1938), 126-166. doi: 10.1090/S0002-9947-1938-1501936-8
![]() |
[17] |
J. Pau, R. Zhao, Carleson measures, Riemann-Stieltjes and multiplication operators on a general family of function spaces, Integr. Equ. Oper. Theory, 78 (2014), 483-514. doi: 10.1007/s00020-014-2124-2
![]() |
[18] |
R. Qian, S. Li, Carleson measure and Volterra type operators on weighted BMOA spaces, Georgian Math. J., 27 (2020), 413-424. doi: 10.1515/gmj-2018-0040
![]() |
[19] |
R. Qian, Y. Shi, Inner function in Dirichlet type spaces, J. Math. Anal. Appl., 421 (2015), 1844-1854. doi: 10.1016/j.jmaa.2014.08.011
![]() |
[20] |
R. Qian, Y. Shi, Univalent functions in Dirichlet-type spaces, Filomat, 30 (2016), 1213-1218. doi: 10.2298/FIL1605213Q
![]() |
[21] | R. Qian, X. Zhu, Embedding of Dirichlet type spaces into tent spaces and Volterra operators, Canad. Math. Bull., (2020), 1-12. |
[22] |
R. Qian, X. Zhu, Embedding of Q_p spaces into tent spaces and Volterra integral operator, AIMS Math., 6 (2021), 698-711. doi: 10.3934/math.2021042
![]() |
[23] | R. Rochberg, Z. Wu, A new characterization of Dirichlet type spaces and applications, Illinois J. Math., 37 (1993), 101-122. |
[24] |
A. Siskakis, R. Zhao, A Volterra type operator on spaces of analytic function, Contemp. Math., 232 (1999), 299-312. doi: 10.1090/conm/232/03406
![]() |
[25] | D. Stegenga, Multipliers of the Dirichlet space, Illinois J. Math., 24 (1980), 113-139. |
[26] | G. Taylor, Multipliers on D_{\alpha}, Trans. Amer. Math. Soc., 123 (1966), 229-240. |
[27] |
M. Tjani, Distance of a Bloch function to the little Bloch space, Bull. Austral. Math. Soc., 74 (2006), 101-119. doi: 10.1017/S0004972700047493
![]() |
[28] |
J. Wang, The Carleson measure problem between analytic Morrey spaces, Canad. Math. Bull., 59 (2016), 878-890. doi: 10.4153/CMB-2016-013-9
![]() |
[29] |
H. Wulan, J. Zhou, {\mathcal{Q}_K} and Morrey type spaces, Ann. Acad. Sci. Fenn. Math., 38 (2013), 193-207. doi: 10.5186/aasfm.2013.3801
![]() |
[30] | H. Wulan, K. Zhu, Möbius invariant {\mathcal{Q}_K} spaces, Springer, Cham, 2017. |
[31] |
J. Xiao, The Q_p Carleson measure problem, Adv. Math., 217 (2008), 2075-2088. doi: 10.1016/j.aim.2007.08.015
![]() |
[32] | J. Xiao, Holomorphic {\mathcal{Q}} Classes, Springer, LNM 1767, Berlin, 2001. |
[33] |
L. Yang, Integral operator acting on weighted Dirichlet spaces to Morrey Type spaces, Filomat, 33 (2019), 3723-3736. doi: 10.2298/FIL1912723Y
![]() |
[34] | K. Zhu, Operator Theory in Function Spaces, American Mathematical Society, Providence, RI, 2007. |