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1. Introduction

First, let us introduce some necessary notation. Let D be the unit disk in the complex plane C, H(DD)
be the class of functions analytic in D and H™ be the class of bounded analytic functions on D. The
Bloch space B ( [34]) is the class of all f € H(D) for which

I£lls := 1) + sup(l — z*)|f'(2)] < o.

zeD

The little Bloch space By, consists of all f € H (D) such that
‘leiﬁnglf(l — P)If (@) = 0.

The Hardy space H”(D) (0 < p < o) ( [8,10]) is the set of f € H(D) with

27

1 .
I, = 0sup1 > |f(re®)|Pd < oco.
<r< 0

Suppose that 0 < p < oo, @ > —1 and dA,(z) = (1 — |z7]*)?dA(z) = %(1 — |z*)%dxdy. The weighted
Bergman space AL(D) ( [34]) is the set of f € H(D) with

11y = [ 1A <o,
“ D
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Let @ > 0. The Dirichlet type space D, is the set of f € H(D) with
11D, = 1FOF +I1£15, < oo

If @ = 0, it gives classic Dirichlet space . When @ = 1, it is Hardy space H?. When a > 1, it turns
into weighted Bergman spaces A2 ,. Thus, the interesting scope is @ € (0, 1). For more information
relating to D,,, we refer to [23,25,26].

In this paper, we use the weighted function in [9,30]. We always suppose that K : [0, c0) — [0, c0)
is a right-continuous and nondecreasing function. The weighted function K also satisfies

1
fo ‘OKS(S)ds < oo (A)

fl i ‘p’igs)ds < o, (B)

¢x(s) = sup K(stH)/K(t), 0<s < co.

0<r<l1

and

where

Let @ > 0 and Dirichlet type space Dk, denotes the spaces of function f € H(D) satisfying

1/ 15, = LFOP + f If'(z)l2ﬂdf\a(z) < 0o,
o 50 KA 1P)

When a > 0, if the weighted function K satisfies (A) and (B), we easily to see that D, € Dk, C Aa 1
By [9], there exist a small ¢ > 0, such that C#!™¢ < K(t) < Cyt°, where 0 < ¢t < 1, C; > 0 and
C, > 0. Thus, when a > 1, we easily to see that Aa e © Dra C A .- Moreover, using high order
characterization, it is not hard to check that D, turns into a Bergman type space, when @ > 1. Thus,
the interesting scope is @ € [0, 1). For more results of Dk, spaces, we refer to [3-5,11, 15,19,20].

Let I be an arc of dD and |/| be the normalized Lebesgue arc length of /. The Carleson square based
on /, denoted by S (1), is defined by

S(I) ::{z:reiHED:1—|I|£r<1,ei961}.

Let u be a positive Borel measure on D. For 0 < s < oo, i 1s called an s-Carleson measure if

usw) _

oo I

We say that a function f € H*(D) belongs to Morrey type space Hz if

£ o,
IIfIIﬂz = |fO)* + ICaD XD flf(é) filf =2 <
where

I

i ff(f)— I ¢ oD.
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This space was introduced by H. Wulan and J. Zhou in [29]. When K(¢) = ¢, it gives the BMOA
space, the space of those analytic functions f in the Hardy space H” whose boundary functions having
bounded mean oscillation on dD. In the case K(f) = t*, 0 < A < 1, the space Hz gives classical Morrey
space £>. Morrey spaces £*>! were introduced by Morrey in [16]. From [29], we know that f € H3
if and only if

1 —laf
sup
€

- / 2 1 — o, 2 dA o,
aeD K(1—|a|2)fD|f @F(1 = lea(2))dA) <

a—=z

where @,(z) = =
Let @ > 0 and we say that a function f € H(D) belongs to Morrey type space ?{,2(’0 if

1 —laP
IIfII(ZHIz( = |f(O)P + sup

- / 21_ ’ szd co.
et K(1— lal) fD | @P(1 = lpa(2)P)dAL(2) <

It is easy to verify 7-{,2(0 is a Banach space under the above norm.
Let f, g € H(D). The Volterra integral operator V, and the integral operator S, are defined by

V() = fo SN fdw, S (@)= fo o) (Wydw, z€D,

respectively. For g € H(D), the multiplication operator M, is defined by M, f(z) = f(2)g(z). It is easy
to see that M, is related with §, and V, by

M, f(z) = f(0)g(0) + S o f(2) + V, f(2).

It it well known that V, is bounded on the Hardy space H” (Bergman space A”) if and only if g € BMOA
(g € B). V, is bounded on BMOA if and only if g € BMOA,,, (see [24]). For more information relating
to Volterra integral operator V,, we refer to [1,2,7,12-14,17,21,22,28,31,33].

In this note, we study Volterra integral operator V, acting from Dk, to 7—11%’(2, that is, we prove that
Vo : Dgo — 7—(,2(,0! is bounded if and only if g € B, when 0 < @ < 1. Meanwhile, the boundedness of
S ; and the essential norm of V, and S, from Dk, to 7{12(’“ are also studied.

In this paper, the symbol f ~ g means that f < g < f. We say that f < g if there exists a constant
C such that f < Cg.

2. Auxiliary results

In this section, we are going to give some auxiliary results.
Lemma 1. Let (A) and (B) hold for K. Suppose that a > 0 and f € Dk, then

/ K(1 —z1*)
f @I < 1flloga a e’ zeD.

Proof. The proof is similar to [33], thus we omit it here. The proof is completed. O
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Lemma 2. Let (B) hold for K. Suppose that « > 0. Then

— /2 — A2
£0) = (1 —lal*) K(31M lal®) € Dy,
(1 —az)™>

and
(1 —la®) VK - |aP?)

a(l _az)iﬂx

Fa(Z) = € Z)K,afa

where z, a € D.

Proof. Since (B) holds, then from [9], there is some ¢ € (0, 1), such that

ex(M) st 1> 1 (1)

Combining with K which is nondecreasing and Lemma 3.10 of [34], we obtain

, 1l f(1—|z| )K(1 — laP)
f £ K(l K= gy Ae@ = (1~ laPy? ( az|s+a1<(1-||2))dA“(Z)

N (1 - 1zHK( - |a)) )
<1 =lal”) fn =K - ) dA,(2)

e (1—|z|2)1<<|1—az|))
st -1 | ([ pbegcr o) 440

_1aly m) (ll-ﬁzl)
(1= laP) fD ] (2w LX)

1512\ 1+ = —c
S(l _ |a|2)2f (1 |Z_|) (ll aZDl )dA(Z) S 1
D

1= azFe(l =)™

where the third inequality 1s deduced by 1 — |a| < |1 — az| and K is nondecreasing, the last second
inequality is deduced by 1 — |z] < |1 —@az| and (1). Thus, f, € Dg,. Similar proof can be applied to F,
thus we omit here. The proof is completed. O

Lemma 3. ( [34]) Suppose that « > —1 and u is a non-negative measure on D. Then u is a (2 + @)-
Carleson measure if and only if the following inequality

f fPdu < 12,
D

holds for all f € A2.

Lemma 4. ([32]) Let p > 1 and f € HD). Then f € B if and only if the measure du; = |f'(2)I*(1 -
121>)?dA(z) is a p-Carleson measure.

Lemma 5. ( [6]) Suppose that 1 < p < oo, @ > —-1,>20with <2+ a. Let f € HD) and z,w € D.
Then

(1 IZIZ)“

(1 =Py

TR dA(2).

f 1@ - FOP T A < f FOP
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Lemma 6. Let (A) and (B) hold for K. Suppose that 0 < « < 1. Then f € 7-{,2(,(1 if and only if

o ’ 2 1= 2 1+adA 00. 2
SUP D s I @I =1z (2) < 2)

Proof. The proof is similar to Lemma 2.1 of [18]. Thus we omit here. The proof is complete. O
3. Boundedness of V, and S, operators

Theorem 1. Let (A) and (B) hold for K. Suppose that g € H(D) and 0 < @ < 1. Then V, is bounded
from Dk, to 7{12(@ if and only if g € B. Moreover, the operator norm satisfies ||V,|| = ||gl|s.

Proof. For any I € 9D, let a = (1 — |I|){ € D, where  is the center of /. Then
(1—lal) ~ 1 —azl, K1 —laP) = K(I), z€SU). 3)
Let f, be defined as in Lemma 2. Then

K(|1])
|I|1+a’

[fu@)P? = zeS).

Suppose that V, is bounded from Dk, to H , . By Lemmas 4 and 6, we have

f ) g’ @1 = 2" dA(z)

|I|(1+1 S
1 f 2157 (N2 2\a+1

s—— | 1£@Plg @1 -1z dAz)
() Jsg, 1118
S f (Vo £ @ (1 = 12 dA(z)
KA Jgop o H
SWVefallzy < oo.

Thus, g € B.

On the other hand, suppose that g € B, by Lemma 4, we have du, = |g'(2)]*(1 — |z*)**'dA(z) is a
(a + 1)-Carleson measure. Let f € Dg,. From Lemma 6, we only need to prove that

1
L= —— V. Y (P = |z dA 00,
i fs ) (Vo) @P(1 = 12%) *dA(z) <
Since
1
L — 21 .7 2 1 _ 2 1+(ldA
Xl fS ) 1f@Plg @R = 2 dA(z)

1 21 .7 2 2\ 1+a
R 1 - dA
S % fS ) If(@Plg’ @P(1 = 12)*dA(z)
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+—— | 1f(@ - f@P1g' @FA - |27 dA(2)
KA1 Jy,, 1 N
=M+ N.
Using Lemma 1 and (3), we see that

2 2
M < |lgllgllfllp,., -

By Lemma 3, we have A2 | C L*(du,). Note that

115 f’vflf'(z)lz(l—Izlz)(’“dA(Z)SIIfII%Kﬂ-
a-1 D

Thus, Dk, C A% |. Bearing in mind these facts, we are going to estimate N. Let z = ¢,(w). Since
lp? (WI(1 = W[*) = 1 = |p,(w)|?, using Lemmas 3, 4, 5, we obtain

(1 =laP)* f@ - f@)
N~y ———— J d
K1 —laP) Jsqy | (1 —az)? He(2)
(1 = la)* 2
S KA —1a) bl T =ap | 4
(1 _ |a|2)2+2 2 o
S KA—lapy Jo| (e | T AAR
)’ [ 1f@ = f@PA~1aPy b
Ka—w%j\ Mo O )TdAR
S ol f I(f 0 @)W) = (f 0 @ )O)(1 = |, (W)H* ' dA(W)
K(1 —lal)
1 1+a
% f I(f © @a)W) = (f © @)O)F(1 = wW*)* ' dA(w)
(1 |Cl| )l+a 4 a+1
= mfl(fosoa) WP = WP dA(w)
1 1+a
% f [ (@a)P(L = lpa)P)*(1 = [w)*~ dA(w)
1 1+a 1 2
%flf( P =121 = lpa(2))*” 1(|1 i I‘)‘ dA(w)
2(1 Izl 2+t K(1 = [z2) (1 = |af?)2+
f lf' @) — 1P KA =P 11 =z dA(w)

1 _ a+1 K(1 - 1 - 2\2(1+a)
flf()l( Izl) ( (] azl))( Ia_l) dA(2)

122 \ K1 —la) | |1 —az+2
2(1 - |Z| 2ya+l 11 —azl\ (1 = |a?)2+o
flf( ) -z |2) ( 1 —lal ) T dA(2)

“—VU“WH azl)! = (1 — [g?)21+
flf( )|2 yp |2) (1- |a|2)1—c 11— |2+2& dA(Z) < ”f”DK ,
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where the last second inequality is deduced by (1). Combining the estimates M and N, we conclude
that V, : Dy, — Hy, is bounded. O

Theorem 2. Let (A) and (B) hold for K. Suppose that g € H(D) and 0 < a < 1. Then S, is bounded
from Dk, to 7112(’0 if and only if g € H*. Moreover, the operator norm satisfies ||S 4|l = sup,cp, 1g(2)]-

Proof. Suppose that S, is bounded from Dk, to 7—(2 . Leta € D and

(1-laP) VK(Q - Ial2

3+a

a(l —az)>
By Lemma 2, we have F, € Dk, and ||Fllp,, < 1. Fora € D and r > 0, let D(a, r) denote the
Bergman metric disk centered at a with radius r. From [34] we see that
A-laP? 1 1
-zt~ (A =1zP? (- laPy?
when z € D(a, r). Using subharmonic property of |g|>, we have
00 >||SgFa||3ﬂ

Fu(2) =

b?
Z8up 1y ||]|9|2) f IFLP18@F (1 = les(@)F) dAu(2)
ol f IF, (P12 (1= lpa()’) dAa(2)
TR —laP) S ‘ ’
I~ laP

- ’ 2 2 _ 2
2RI Sy, PP (1= leu@P) dAa )

1 5 )
= dAG) 2 (@)
(1 . |a|2)2 f[;(a’r) |g(Z)| (Z) 2 |g(a)|

That is,
IS II* > ”Sg”Z”Fa”%)Kﬂ 2 ”SgFa”;(lz( 2 lg(@)l.

Since a € D is arbitrary, we have
gl < IS l* < e0.
On the other hand. Let g € H*. Using (1), we can deduce that for f € Dk,

1=la 2
% f F @FPl8@F (1 = lpa(@F) dAa()

s (i 2<1—|a| 2PK(1 =[P (1= 12P)
<l f O e R — i K= A

2<1 - |a|2>21<<|1 —az) (1-1zP)
<lgllZe f Ok — K= 1@

e () a-i»
2 ’ 2 lal <
<llgli f P o A

2<1 lof P01~ (1 - I<P)
<lglie f ey i e R (NG

SNl -
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The proof is completed. O

Remark. Note that
M, f(z) = f(0)8(0) + S, f(2) + Vo f(2).
Hence, if (A) and (B) hold for K, then M, is bounded from Dk, to 7-(,2(,& ifand only if g € H™.

4. Essential norm

Let us recall the definition of essential norm. Suppose that X be a Banach space and 7 is a bounded
linear operator on X. The essential norm of 7 is the distance of T to the closed ideals of compact
operators, that is

Tl = inf{||T —S||:S is acompact operator on X}.

Note that T is compact if and only if ||T||, = O.
Lemma 7. Suppose that 0 < a < 1 and K satisfies the conditions (A) and (B). Let g € B. Then
Ve, : Dxo — Hp, is compact. Here g,(z) = g(rz),0 <r < 1,z € D.

Proof. Let {f,} be any function sequence such that ||f,llp,, < 1 and f, — 0 uniformly on compact
subsets of D as n — co. We need only to show that

lim 17, fullye =0
n—oo «

Since
||g||3

lg ()|< eD.

Combining with (1), we have
— |af?

21 7 2 2
sup s [ @I (1 - e du(a)

gl 1 —l|af? ) ,
N(l _ ,,-2)2 iglg K(l _ |a|2) fD|fn(Z)| (1 - |Q0a(Z)| )dAa(Z)

gl o 1=z (A =laP)’K{ =)
S(1 - r?)? Llﬁ(z)l K(1 =12\ K(1 - laD|l —az? )dAa(Z)

) (1-|a |)2K(|1 azl)
||g||$;)2 fl o 1 R0 ] ho

—lP | I1-az?
2 (1 =lalPex (55
"g"i)2 [ erg 'Z|' > |1—aK|(21 ")]dAa(z)
||g||2 ) |Z|2 (1 - la)* 2=
T LA e e TNC

IIgIIB — 12> (1 = a])'*e
T f P ||2)(|1_5Z|1+c)dAa(z)

|| 2 2
d =5 f £z >|2 — K A A
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Note that ||f,llp,, < 1 and Lemma 1, the argument is then finished by the Dominated Convergence
Theorem. o

Let X and Y be two Banach spaces with X c Y. If f € Y, then the distance from f to X is defined as
disty(f.X) = inf If ~ gly.

We also need the following lemma.
Lemma 8. ( [27)) If f € B, then

limsup(1 — [zP)|f"(2)] » dists(f, Bo) ~ limsup [|f — f,lIs.

lz| =1~ r—1

Theorem 3. Suppose 0 < « < 1, g € B and K satisfy the conditions (A) and (B). Then V, : Dk, —
7-(,%’& satisfies
IVelle = dist(g, Bo) ~ limsup(l — |z]*)|g’(2)!.

|zl—1-
Proof. Let {1,} be the subarc sequence of dD, such that |[,| = 0asn — oo, w, = (1 —|[,,|){, € D, where
£, is the center of ,,. n = 1,2, .... Then
L={wul = [1 =wyzl = |L|, z€SI).

Thus, by [9], we know that
K(1 = |wu|) = K(L]), z€S,).

Take

(1 = a,?) VK(1 = |a,?)
(@) = — .
(1-a,2)™
Then f, — 0 uniformly on the compact subsets of D as n — oo and || f,l|p,, < 1. Thus, for any compact
operator S from Dk, to Hy, ,, we have

lim IS fyllye = 0.
Therefore
IV = S11 2 Jim sup (Ve fulls, = IS Fulls; )

=lim sup IIngnllﬂlz(n
n—o0 ’
1

1 1 ’ 2 _ 2\ 1+a ?

~lim sup | s fs VY @FA =) a’A(z))
. 1 ’ +a %

=lim sup |z fs N 1£@PIE @R = 2! dA(z))

1

. 1 , a :
~ lim sup Wf g’ @) = zH™ dA(z))
n S()

n—oo

> limsup(1 — [w,P)lg’ W)l

n—oo
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On the other hand, by Lemma 7, V, : Dk, — 7—(12@ i1s compact operator. Combining this with
Theorem 1 and the linearity of V, respect to g implies

”Vg”e < ”Vg - Vg,” = ”Vg—gr” ~ ”g - gr”B'
Together with Lemma 8, we have

IVelle < limsup(1 = |z)|g’(2)| = dist(g, By).

lzl—=1~
The proof is completed. O

Corollary 1. Suppose 0 < a < 1 and K satisfies the conditions (A) and (B). If g € H(D), then
Vo : Dk — 7{;‘;’0 is compact if and only if g € By.

Theorem 4. Suppose 0 < a < 1 and K satisfies the conditions (A) and (B). If g € H(D) and S, is
bounded from Dk, to 7{,2(’&, then

1S ¢lle = sup [g(2)].

zeD

Proof. For compact operators S, it follows that

1Sglle = infllSg = SI < ISl < suplg(2)]-

zeD

On the other hand, we choose the sequence {a,} C D such that |a,| — 1. We define

_ 2 _ 2
£) = (= lal”) K(L” || )’

(I -a2)>
It follows from the proof of Lemma 2 that || f,l|lp,, < 1. It is easy to check that f, converges to zero

uniformly on any compact subsets of D. Then ||S fnllq{i — 0 as n — oo for any compact operator §
from D, to Hz . So

IS, = S|l 2 limsup[|(S, - S)‘f;l”(}_llz{,a

n—oo

> lim sup(lngfn”w}w - ”Sﬁl”%%,a)

n—oo

=limsupIS o fully -

n—oo

From the proof of Theorem 2, we have

IS efullyz, 2lg(@nl

Since {a,} C D is arbitrary, we have

1S ¢lle = suplg(2)l.
zeD

The proof is completed. O

Corollary 2. Suppose 0 < a < 1 and K satisfy the conditions (A) and (B). If g € H(D), then S, :
Dk o — 7{,2{,0 is compact if and only if g = 0.

AIMS Mathematics Volume 6, Issue 9, 10092—-10104.
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5. Conclusions

In this paper, we give some equivalent characterizations of Volterra integral operator and essential
norm from Dirichlet type spaces Dk, to Morrey type spaces 7—(12{30.
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