In this paper, we focus on a class of Hadamard type fractional differential system involving Hadamard type fractional derivatives on an infinite interval. By utilizing the monotone iterative technique and Banach's contraction mapping principle, some explicit monotone iterative sequences for approximating the extreme positive solutions and the unique positive solution for the system are constructed.
Citation: Yaohong Li, Jiafa Xu, Honglin Luo. Approximate iterative sequences for positive solutions of a Hadamard type fractional differential system involving Hadamard type fractional derivatives[J]. AIMS Mathematics, 2021, 6(7): 7229-7250. doi: 10.3934/math.2021424
[1] | Limin Guo, Lishan Liu, Ying Wang . Maximal and minimal iterative positive solutions for p-Laplacian Hadamard fractional differential equations with the derivative term contained in the nonlinear term. AIMS Mathematics, 2021, 6(11): 12583-12598. doi: 10.3934/math.2021725 |
[2] | Mouffak Benchohra, John R. Graef, Nassim Guerraiche, Samira Hamani . Nonlinear boundary value problems for fractional differential inclusions with Caputo-Hadamard derivatives on the half line. AIMS Mathematics, 2021, 6(6): 6278-6292. doi: 10.3934/math.2021368 |
[3] | M. A. Zaky, M. Babatin, M. Hammad, A. Akgül, A. S. Hendy . Efficient spectral collocation method for nonlinear systems of fractional pantograph delay differential equations. AIMS Mathematics, 2024, 9(6): 15246-15262. doi: 10.3934/math.2024740 |
[4] | Hui Huang, Kaihong Zhao, Xiuduo Liu . On solvability of BVP for a coupled Hadamard fractional systems involving fractional derivative impulses. AIMS Mathematics, 2022, 7(10): 19221-19236. doi: 10.3934/math.20221055 |
[5] | Subramanian Muthaiah, Dumitru Baleanu, Nandha Gopal Thangaraj . Existence and Hyers-Ulam type stability results for nonlinear coupled system of Caputo-Hadamard type fractional differential equations. AIMS Mathematics, 2021, 6(1): 168-194. doi: 10.3934/math.2021012 |
[6] | Pinghua Yang, Caixia Yang . The new general solution for a class of fractional-order impulsive differential equations involving the Riemann-Liouville type Hadamard fractional derivative. AIMS Mathematics, 2023, 8(5): 11837-11850. doi: 10.3934/math.2023599 |
[7] | Yunzhe Zhang, Youhui Su, Yongzhen Yun . Existence and stability of solutions for Hadamard type fractional differential systems with p-Laplacian operators on benzoic acid graphs. AIMS Mathematics, 2025, 10(4): 7767-7794. doi: 10.3934/math.2025356 |
[8] | Hasanen A. Hammad, Hassen Aydi, Hüseyin Işık, Manuel De la Sen . Existence and stability results for a coupled system of impulsive fractional differential equations with Hadamard fractional derivatives. AIMS Mathematics, 2023, 8(3): 6913-6941. doi: 10.3934/math.2023350 |
[9] | Jia-Bao Liu, Saad Ihsan Butt, Jamshed Nasir, Adnan Aslam, Asfand Fahad, Jarunee Soontharanon . Jensen-Mercer variant of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional operator. AIMS Mathematics, 2022, 7(2): 2123-2141. doi: 10.3934/math.2022121 |
[10] | H. H. G. Hashem, Hessah O. Alrashidi . Qualitative analysis of nonlinear implicit neutral differential equation of fractional order. AIMS Mathematics, 2021, 6(4): 3703-3719. doi: 10.3934/math.2021220 |
In this paper, we focus on a class of Hadamard type fractional differential system involving Hadamard type fractional derivatives on an infinite interval. By utilizing the monotone iterative technique and Banach's contraction mapping principle, some explicit monotone iterative sequences for approximating the extreme positive solutions and the unique positive solution for the system are constructed.
Fractional derivative extends the classical integer order derivative to an arbitrary order case. Fractional order differential equations can better describe various phenomenon than integer order differential equations in many complex and widespread fields of engineering and science such as biology, physics, finance, electrical circuits, signal processing, control theory, and diffusion processes, there has been a rapid growth in the number of fractional differential equations from both theoretical and applied perspectives, see [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18] and references cited therein.
Note that most of the results on the current works are based on Riemann-Liouville type and Caputo type fractional differential equations in the past ten years. Hadamard type fractional derivative is first introduced in 1892 [19], which contains logarithmic function of arbitrary exponent in the kernel of integral appearing in its definition. Hadamard type integrals arise in the formulation of many problems in mechanics such as in fracture analysis. For details and applications of Hadamard type fractional derivative and integral, see [3,20,21,22]. Recently, more and more scholars pay special attention to Hadamard type fractional differential equations on the finite interval [23,24,25,26,27,28]. For example, by applying Leray-Schauder's alternative and Banach's contraction principle, Ahmad and Ntouyas [29] established the existence and uniqueness of solutions for a coupled system of nonlinear fractional differential equations with a fully Hadamard type integral boundary conditions:
{HDαu(t)=f(t,u(t),v(t)), 1<t<e, 1<α≤2,HDβv(t)=g(t,v(t),u(t)), 1<t<e, 1<β≤2,u(1)=0, u(e)=HIru(σ1)=1Γ(r)∫σ11(logσ1−logs)r−1u(s)dss,v(1)=0, v(e)=HIru(σ2)=1Γ(r)∫σ21(logσ2−logs)r−1v(s)dss, | (1.1) |
where γ>0,1<σ1,σ2<e,HD(⋅) are the Hadamard type fractional derivative and HIr is the Hadamard type fractional integral of order r, f,g:[1,e]×R×R are given continuous functions.
In [30] by means of comparison principle and the monotone iterative technique combined with the method of upper and lower solutions, Yang investigated the extremal iterative solutions for the following coupled system of nonlinear Hadamard type fractional differential equations:
{(HDαa+x)(t)=f(t,x(t),y(t)), 0<α≤1, a<t≤b,(HDαa+y)(t)=g(t,x(t),y(t)), 0<α≤1, a<t≤b,(HJ1−αa+x)(a+)=x∗, (HJ1−αa+y)(a+)=y∗, | (1.2) |
where f,g∈C([a,b]×R×R,R),HDαa+ and HJαa+ are the left-sided Hadamard type fractional derivative and Hadamard type fractional integral of order α, respectively.
On the other hand, some authors have also focused on the existence of solutions for Hadamard type fractional differential equations on the infinite intervals, see[31,32,33,34,35,36] and the references quoted therein. In another study [37], by applying standard fixed point theorems, Tariboon et al. obtained the existence of positive solutions of the Hadamard type fractional differential system with coupled integral boundary conditions:
{HDpx(t)+f(t,x(t),y(t))=0, 1<p≤2,t∈[1,+∞),HDqy(t)+g(t,x(t),y(t))=0, 1<q≤2,t∈[1,+∞),x(0)=0, HDp−1x(+∞)=∑mi=1λiHIαiy(η),y(0)=0, HDq−1y(+∞)=∑nj=1σjHIβjx(ξ), | (1.3) |
In [38] Zhang and Liu focused on a class of Hadamard type fractional differential equation with nonlocal boundary conditions on an infinite interval:
{HDα1+x(t)+a(t)f(t,x(t))=0, 2<α≤3,t∈(1,+∞),x(0)=x′(0)=0, HDα−11+x(+∞)=∑mi=1αiHIβi1+x(η)+b∑nj=1σjx(ξj), | (1.4) |
where HDα1+,HIβi1+ are the Hadamard type fractional derivative of order α and the Hadamard type fractional integral of order βi>0 (i=1,2,3,⋯,m),1<η<ξ1<ξ2<⋯<ξn. b,αi,σj≥0 (i=1,2,3,⋯,m;j=1,2,3,⋯,n) are given constants satisfy certain prior conditions. By using various fixed point methods, the authors not only obtained the existence and uniqueness of solutions, but also the iterative sequences of approximate solutions.
Motivated by the mentioned results above, a nature and meaningful question is if we know the existence of solution for the following Hadamard type fractional differential system (1.5), how can we seek it? This idea lead us to develop the research of approximate sequences of positive solutions for the following Hadamard type fractional differential system with Hadamard type fractional integral boundary conditions:
{HDα1u(t)+f1(t,u(t),v(t),HDα1−1u(t),HDα2−1v(t))=0, 1<α1≤2,t∈J,HDα2v(t)+f2(t,v(t),u(t),HDα1−1u(t),HDα2−1v(t))=0, 1<α2≤2,t∈J,u(0)=0,HDα1−1u(+∞)=∑m1i=1λ1iHIβ1iu(η1),η1∈J,v(0)=0,HDα2−1v(+∞)=∑m2i=1λ2iHIβ2iv(η2),η2∈J | (1.5) |
where J=[1,+∞),HDαj,HIβji are the common Hadamard type fractional derivative of order αj and the Hadamard type fractional integral of order βji>0,fj∈C(J×R×R×R×R,R+),λji>0 are given constants and satisfy Ωj=Γ(αj)−∑mji=1λjiΓ(αj)Γ(αj+βji)(logηj)αj+βji−1>0,j=1,2;i=1,2,⋯,mj,mj∈N+.
In this paper, we emphasize that the nonlinearity terms fj of the system (1.5) involve multiple unknown functions and the lower-order Hadamard type fractional derivative of multiple unknown functions. By utilizing the monotone iterative method, we establish some explicit monotone iterative sequences for approximating the extreme positive solutions and the unique positive solution, which are more valuable and interesting than just constructing the existence of solutions. Further we extend the iterative methods that are often used in a single equation to the system which is different from [31,34,38,39,40,41,42]. Finally we give some examples to verify the application of main results.
First we recall some Hadamard type fractional calculus definitions and lemmas that are helpful to the proof of main results.
Definition 2.1 (see [1]). The Hadamard type fractional derivative of order q for a integrable function g:[1,∞)→R is given by
HDqg(t)=1Γ(n−q)(tddt)n∫t1(logt−logs)n−q−1g(s)dss,n−1<q<n, |
where n=[q]+1, [q] denotes the integer part of the real number q and log(⋅)=loge(⋅).
Definition 2.2 (see [1]). The Hadamard type fractional integral of order q for a integrable function g is given by
HIqg(t)=1Γ(q)∫t1(logt−logs)q−1g(s)dss,q>0, |
provided the integral exists.
Lemma 2.1 (see [1,32]). If a,α,β>0, then
(HDαa(logt−loga)β−1)(x)=Γ(β)Γ(β−α)(logx−loga)β−α−1. |
Lemma 2.2 Let hj∈C[1,∞) with 0<∫∞1hj(s)dss<∞ and Ωj>0,j=1,2, then the following Hadamard type fractional differential system with Hadamard type fractional integral boundary conditions
{HDα1u(t)+h1(t)=0,1<α1≤2,t∈J,HDα2v(t)+h2(t)=0,1<α2≤2,t∈J,u(0)=0,HDα1−1u(+∞)=∑m1i=1λ1iHIβ1iu(η1),v(0)=0,HDα2−1v(+∞)=∑m2i=1λ2iHIβ2iv(η2), | (2.1) |
has a unique solution:
{u(t)=∫+∞1G1(t,s)h1(s)dss,v(t)=∫+∞1G2(t,s)h2(s)dss, | (2.2) |
where
Gj(t,s)=gj(t,s)+mj∑i=1λji(logt)αj−1ΩjΓ(αj+βji)gji(ηj,s),j=1,2, | (2.3) |
and
gj(t,s)=1Γ(αj){(logt)αj−1−(logt−logs)αj−1,1≤s≤t<+∞,(logt)αj−1,1≤t≤s<+∞, | (2.4) |
gji(ηj,s)={(logηj)αj+βji−1−(logηj−logs)αj+βji−1,1≤s≤ηj<+∞,(logηj)αj+βji−1,1≤ηj≤s<+∞. | (2.5) |
Proof. Utilizing Lemmas 2.5 of [32], we can derive directly the above results.
Remark 2.1 Applying definition 2.1 of Hadamard type fractional derivative and Lemma 2.1, from (2.2), (2.3), (2.4) and (2.5), by a simple computation, one can obtain
{HDα1−1u(t)=∫+∞1G∗1(t,s)h1(s)dss,HDα2−1v(t)=∫+∞1G∗2(t,s)h2(s)dss, |
where
G∗j(t,s)=k(t,s)+mj∑i=1λjiΓ(αj)ΩjΓ(αj+βji)gji(ηj,s),j=1,2, | (2.6) |
and
k(t,s)={0,1≤s≤t<+∞,1,1≤t≤s<+∞. | (2.7) |
For convenience, we introduce the following notations:
Λj=1Γ(αj)+mj∑i=1λjiΓ(αj)ΩjΓ(αj+βji)(logηj)αj+βji−1, Ξj=1+mj∑i=1λjiΓ(αj)ΩjΓ(αj+βji)(logηj)αj+βji−1,j=1,2. |
Lemma 2.3 (see [32]). The Green's function Gj(t,s) defined by (2.3) has the following properties:
(A1): Gj(t,s)≥0 and Gj(t,s) are continuous for all (t,s)∈J×J,j=1,2;
(A2): Gj(t,s)1+(logt)αj≤Λj for all (t,s)∈J×J,j=1,2.
Remark 2.2 The Green's function Gj(t,s) and G∗j(t,s) defined by (2.3) and (2.6) still have the following properties:
(B1): Gj(t,s)≤Λj(logt)αj−1 for (t,s)∈J×J,j=1,2;
(B2): 0≤G∗j(t,s)≤Ξj for (t,s)∈J×J,j=1,2.
Proof. From (2.4) and (2.5), it is obvious that
gj(t,s)≤(logt)αj−1Γ(αj), gji(ηj,s)≤(logηj)αj+βji−1,(t,s)∈J×J, |
then
Gj(t,s)≤Λj(logt)αj−1,(t,s)∈J×J, |
so (B1) holds. And from (2.6) and (2.7), it is easy to that (B2) holds.
Lemma 2.4 (see [32,33]). Let U⊂X be a bounded set. Then U is a relatively compact in X if the following conditions hold:
(ⅰ) For any u∈U,u(t)1+(logt)α−1 and HDα−1u(t) are equicontinuous on any compact interval of J;
(ⅱ) For any ε>0, there is a constant C=C(ε)>1 such that |u(t1)1+(logt1)α−1−u(t2)1+(logt2)α−1|<ε and |HDα−1u(t1)−Dα−1u(t2)|<ε for any t1,t2≥C and u∈U.
Next we present some assumptions that will play an important role in subsequent discussion.
(C1) Ωj=Γ(αj)−mj∑i=1λjiΓ(αj)Γ(αj+βji)(logηj)αj+βji−1>0 and fj(t,0,0,0,0)≢0,∀t∈J, j=1,2;
(C2) There exist some nonnegative integrable functions aj0(t),ajk(t) defined on J and some constants 0<γjk<1 satisfy
|fj(t,u1,u2,u3,u4)|≤aj0(t)+4∑k=1ajk(t)|uk|γjk,∀t∈J, uk∈R,j=1,2, k=1,2,3,4, |
and
∫+∞1aj0(t)dtt=a∗j0<+∞,∫+∞0aj1(t)[1+(logt)αj−1]γj1dtt=a∗j1<+∞, |
∫+∞1aj2(t)[1+(logt)αj−1]γj2dtt=a∗j2<+∞,∫+∞1aj3(t)dtt=a∗j3<+∞, |
∫+∞1aj4(t)dtt=a∗j4<+∞,j=1,2; |
(C3) Functions fj are nondecreasing with respect to the second, third, fourth and last variables on J,j=1,2;
(C4) There exist some nonnegative integrable functions bjk(t)(j=1,2, k=1,2,3,4) defined on J satisfy
|fj(t,u1,u2,u3,u4)−fj(t,ˉu1,ˉu2,ˉu3,ˉu4)|≤4∑k=1bjk(t)|uk−ˉuk|,∀t∈J,uk,ˉuk∈R, |
and
∫+∞1bj1(t)[1+(logt)αj−1]dtt=b∗j1<+∞,∫+∞1bj2(t)[1+tαj−1]dtt=b∗j2<+∞, |
∫+∞1bj3(t)dtt=b∗j3<+∞,∫+∞1bj4(t)dtt=b∗j4<+∞,∫+∞1|fj(t,0,0,0,0)|dtt=ϱj<+∞. |
In this paper, we will use two Banach spaces which are define by
X={u∈C(J,R),HDα1−1u∈C(J,R)|supt∈J|u(t)|1+(logt)α1−1<+∞,supt∈J|HDα1−1u(t)|<+∞} |
equipped with the norm ‖ where \|u\|_{1} = \sup_{t\in J}\frac{|u(t)|}{1+(\log t)^{\alpha_{1}-1}} and \|{}^HD^{\alpha_{1}-1}u\| = \sup_{t\in J}|{}^HD^{\alpha_{1}-1}u(t)| , and
Y = \big\{v\in C(J,\mathbb{R}),{}^HD^{\alpha_{2}-1}v\in C(J,\mathbb{R})|\sup\limits_{t\in J}\frac{|v(t)|}{1+(\log t)^{\alpha_{2}-1}} < +\infty,\sup\limits_{t\in J}|{}^HD^{\alpha_{2}-1}v(t)| < +\infty\big\} |
equipped with the norm \|u\|_{Y} = \max\{\|v\|_{2}, \|{}^HD^{\alpha_{2}-1}v\|\}, where \|v\|_{2} = \sup_{t\in J}\frac{|v(t)|}{1+t^{\alpha_{2}-1}} and \|{}^HD^{\alpha_{2}-1}v\| = \sup_{t\in J}|{}^HD^{\alpha_{2}-1}v(t)| . Then the space (X, \|\cdot\|_{X}) and (Y, \|\cdot\|_{Y}) are two Banach spaces which can be shown similarly to Lemma 2.7 of the literature [32]. Moreover, the product space (X\times Y, \|\cdot\|_{X\times Y}) is also a Banach space with the norm
\|\cdot\|_{X\times Y} = \max\{\|u\|_{X}, \|v\|_{Y}\}. |
Lemma 3.1 If assumption (C2) holds, then for any (u, v)\in X\times Y ,
\int_{1}^{+\infty}|f_{i}(t,u(t),v(t),{}^HD^{\alpha_{1}-1}u(t),{}^HD^{\alpha_{2}-1}v(t))|\frac{\rm{d}t}{t} \leq a_{j0}^{\ast}+\sum\limits_{k = 1}^{4}a_{jk}^{\ast}||(u,v)||_{X\times Y}^{\gamma_{ik}},\ j = 1,2. |
Proof. For any (u, v)\in X\times Y , by assumption (C2), one can obtain
\begin{aligned} &|f_{j}(t,u(t),v(t),{}^HD^{\alpha_{1}-1}u(t),{}^HD^{\alpha_{2}-1}v(t))|\\ \leq& a_{j0}(t)+a_{j1}(t)|u(t)|^{\gamma_{j1}}+a_{j2}(t)|v(t)|^{\gamma_{j2}}+a_{j3}(t)|{}^HD^{\alpha_{1}-1}u(t))|^{\gamma_{j3}} +a_{j4}(t)|{}^HD^{\alpha_{2}-1}v(t))|^{\gamma_{j4}} \\ \leq& a_{j0}(t)+a_{j1}(t))[1+(\log t)^{\alpha_{1}-1}]^{\gamma_{j1}}\frac{|u(t)|^{\gamma_{j1}}} {[1+(\log t)^{\alpha_{1}-1}]^{\gamma_{j1}}}\\&+a_{j2}(t))[1+(\log t)^{\alpha_{2}-1}]^{\gamma_{j2}}\frac{|v(t)|^{\gamma_{j2}}}{[1+(\log t)^{\alpha_{2}-1}]^{\gamma_{j2}}}\\ &+a_{j3}(t)|^HD^{\alpha_{1}-1}u(t)|^{\gamma_{j3}} +a_{j4}(t)|^HD^{\alpha_{2}-1}v(t)|^{\gamma_{j4}}\\ \leq& a_{j0}(t)+a_{j1}(t))[1+(\log t)^{\alpha_{1}-1}]^{\gamma_{j1}}||u||_{X}^{\gamma_{j1}}+a_{j2}(t))[1+(\log t)^{\alpha_{2}-1}]^{\gamma_{j2}}||v||_{Y}^{\gamma_{j2}}\\ &+a_{j3}(t)||u||_{X}^{\gamma_{j3}} +a_{j4}(t)||v||_{Y}^{\gamma_{j4}},\ j = 1,2. \end{aligned} |
Thus we have
\begin{aligned} &\int_{1}^{+\infty}|f_{j}(t,u(t),v(t),{}^HD^{\alpha_{1}-1}u(t),{}^HD^{\alpha_{2}-1}v(t))|\frac{\rm{d}t}{t}\\ \leq&\int_{1}^{+\infty} \Big(a_{j0}(t)+a_{j1}(t))[1+(\log t)^{\alpha_{1}-1}]^{\gamma_{j1}}||u||_{X}^{\gamma_{j1}}+a_{j2}(t))[1+(\log t)^{\alpha_{2}-1}]^{\gamma_{j2}}||v||_{Y}^{\gamma_{j2}} \\&+a_{j3}(t)||u||_{X}^{\gamma_{j3}} +a_{j4}(t)||v||_{Y}^{\gamma_{j4}}\Big)\frac{\rm{d}t}{t}\\ \leq& a_{j0}^{\ast}+a_{j1}^{\ast}||u||_{X}^{\gamma_{j1}}+a_{i2}^{\ast}||v||_{Y}^{\gamma_{j2}} +a_{j3}^{\ast}||u||_{X}^{\gamma_{j3}}+a_{j4}^{\ast}||v||_{Y}^{\gamma_{j4}}\\ \leq& a_{j0}^{\ast}+\sum\limits_{k = 1}^{4}a_{jk}^{\ast}||(u,v)||_{X\times Y}^{\gamma_{jk}},\ j = 1,2. \end{aligned} |
Lemma 3.2 If assumption (C4) holds, then for any (u, v)\in X\times Y ,
\int_{1}^{+\infty}|f_{j}(t,u(t),v(t),{}^HD^{\alpha_{1}-1}u(t),{}^HD^{\alpha_{2}-1}v(t))|\frac{\rm{d}t}{t} \leq \sum\limits_{k = 1}^{4}b_{jk}^{\ast}||(u,v)||_{X\times Y}+\varrho_{j},\ j = 1,2. |
Proof. For any (u, v)\in X\times Y , by assumption (C4), one can obtain
\begin{aligned} &|f_{j}(t,u(t),v(t),{}^HD^{\alpha_{1}-1}u(t),{}^HD^{\alpha_{2}-1}v(t))|\\ = &|f_{j}(t,u(t),v(t),{}^HD^{\alpha_{1}-1}u(t),{}^HD^{\alpha_{2}-1}v(t))-f_{j}(t,0,0,0,0)+f_{i}(t,0,0,0,0)|\\ \leq&|f_{j}(t,u(t),v(t),{}^HD^{\alpha_{1}-1}u(t),{}^HD^{\alpha_{2}-1}v(t)) -f_{j}(t,0,0,0,0)|+|f_{j}(t,0,0,0,0)|\\ \leq& b_{j1}(t)[1+(\log t)^{\alpha_{1}-1}]\frac{|u(t)|}{[1+(\log t)^{\alpha_{1}-1}]}+ b_{j2}(t)[1+(\log t)^{\alpha_{2}-1}]\frac{|v(t)|}{[1+(\log t)^{\alpha_{2}-1}]}\\ &+b_{j3}(t)|{}^HD^{\alpha_{1}-1}u(t)| +b_{j4}(t)|{}^HD^{\alpha_{2}-1}v(t)| +|f_{j}(t,0,0,0,0)|\\ \leq& b_{j1}(t)[1+(\log t)^{\alpha_{1}-1}]||u||_{X}+b_{j2}(t)[1+(\log t)^{\alpha_{2}-1}]||v||_{Y}+b_{j3}(t)||u||_{X}+b_{j4}(t)||v||_{Y}\\ &+|f_{j}(t,0,0,0,0)|,\ j = 1,2.\end{aligned} |
Thus we have
\begin{aligned} \int_{1}^{+\infty}|f_{j}(t,u(t),v(t),{}^HD^{\alpha_{1}-1}u(t),{}^HD^{\alpha_{2}-1}v(t))|\frac{\rm{d}t}{t} \leq& b_{j1}^{\ast}||u||_{X}+b_{j2}^{\ast}||v||_{Y}+b_{j3}^{\ast}||u||_{X}+b_{j4}^{\ast}||v||_{Y} +\varrho_{j}\\ \leq& \sum\limits_{k = 1}^{4}b_{jk}^{\ast}||(u,v)||_{X\times Y}+\varrho_{j},\ j = 1,2.\end{aligned} |
Define two cones P_{1} = \{u\in X| u(t)\geq0, {}^HD^{\alpha_{1}-1}u(t)\geq0, t\in J\} and P_{2} = \{v\in Y| v(t)\geq0, {}^HD^{\alpha_{2}-1}v(t)\geq0, t\in J\} , then P_{1} \times P_{2}\subset X\times Y is also a cone by P_{1} \times P_{2} = \{(u, v)\in X\times Y| u(t)\geq0, v(t)\geq0, {}^HD^{\alpha_{1}-1}u(t)\geq0, {}^HD^{\alpha_{2}-1}v(t)\geq0, t\in J\} .
From Lemma 2.2, we can know that the system (2.2) is equivalent to the following system of Hammerstein-type integral equations:
\begin{equation} \left(\begin{aligned} &{u(t)} \\ &{v(t)} \end{aligned}\right) = \left(\begin{aligned} &{\int^{+\infty}_{1}G_{1}(t,s)f_{1(u,v)}(s)\frac{\rm{d}s}{s}}\\ &{\int^{+\infty}_{1}G_{2}(t,s)f_{2(u,v)}(s)\frac{\rm{d}s}{s} }\\ \end{aligned}\right): = \left(\begin{aligned} &{T_1(u,v)(t)} \\ &{T_2(u,v)(t)} \end{aligned}\right), \ {\rm { for }}\ (u, v) \in P_{1} \times P_{2}, t \in J, \end{equation} | (3.1) |
and for convenience, we set
\begin{aligned} &{f_{1(u,v)}(s)} = f_{1}\big(s,u(s),v(s),{}^HD^{\alpha_{1}-1}u(s),{}^HD^{\alpha_{2}-1}v(s)\big), \\ &{f_{2(u,v)}(s)} = f_{2}\big(s,u(s),v(s),{}^HD^{\alpha_{1}-1}u(s),{}^HD^{\alpha_{2}-1}v(s)\big). \end{aligned} |
Therefore one can define an operator T:P_{1} \times P_{2} \to P_{1} \times P_{2} as follows:
\begin{equation} T(u, v)(t) = \left(T_{1}, T_{2}\right)(u, v)(t), \ {\rm { for }}\ (u, v) \in P_{1} \times P_{2}, t \in J. \end{equation} | (3.2) |
By Remark 2.1, one can also define
\begin{equation} \left(\begin{aligned} &{^H D^{\alpha_{1}-1} T_{1}(u,v)(t)} \\ &{ ^H D^{\alpha_{2}-1}T_{2}(u,v)(t)} \end{aligned}\right) = \left(\begin{aligned} &{\int^{+\infty}_{1}G^{\ast}_{1}(t,s)f_{1(u,v)}(s)\frac{\rm{d}s}{s}}\\ &{\int^{+\infty}_{1}G^{\ast}_{2}(t,s)f_{2(u,v)}(s)\frac{\rm{d}s}{s} }\\ \end{aligned}\right), \ {\rm { for }}\ (u, v) \in P_{1} \times P_{2}, t \in J. \end{equation} | (3.3) |
Therefore, if (u, v) \in P_{1} \times P_{2} /(0, 0) is a fixed point of the operator T , then (u, v) is a positive solution for the Hadamard type fractional differential system (1.5). It is obvious that the system (1.5) has a positive solution if and only if the operator equation (u, v) = T(u, v) has a positive fixed point in P_{1} \times P_{2} , where T is given as (3.2). Next we will directly consider the existence of fixed points of the operator T .
Lemma 3.3 If assumption (C1), (C2) and (C3) hold, then the operator T:P_{1} \times P_{2} \to P_{1} \times P_{2} is completely continuous.
Proof. Due to G_{j}(t, s)\geq 0, G^{\ast}_{j}(t, s)\geq 0 and f_{j}\geq 0 , we have T_{j}(u, v)(t)\geq 0, {}^HD^{\alpha_{j}-1}T_{j}(u, v)(t)\geq 0, for any (u, v)\in P_{1} \times P_{2}, \ t\in J, \ j = 1, 2 , so it is easy to know T:P_{1} \times P_{2} \to P_{1} \times P_{2} .
Next we show in four steps that the operator T:P_{1} \times P_{2} \to P_{1} \times P_{2} is completely continuous.
Step 1 Take U = \{(u, v)|(u, v)\in P_{1} \times P_{2}, ||(u, v)||_{X\times Y}\leq M\} . For any (u, v)\in U , by Lemma 2.3, Lemma 3.1 and Remark 2.2, one can obtain
\begin{equation} \begin{array}{rcl} ||T_{1}(u,v)||_{1}& = & \sup\limits_{t\in J}\Big|\int_{1}^{+\infty}\frac{G_{1}(t,s)}{1+(\log t)^{\alpha_{1}-1}} f_{1(u,v)}(s)\frac{\rm{d}s}{s}\Big| \leq \Lambda_{1} \int_{1}^{+\infty} |f_{1(u,v)}(s)|\frac{\rm{d}s}{s} \\ &\leq& \Lambda_{1}\Big(a_{10}^{\ast}+\sum\limits_{k = 1}^{4}a_{1k}^{\ast}||(u,v)||_{X\times Y}^{\gamma_{1k}}\Big) < \infty \end{array} \end{equation} | (3.4) |
and
\begin{equation} \begin{array}{rcl} ||{}^HD^{\alpha_{1}-1}T_{1}(u,v)||& = & \sup\limits_{t\in J}\Big|\int_{1}^{\infty}G_{1}^{\ast}(t,s)f_{1(u,v)}(s)\frac{\rm{d}s}{s}\Big| \leq \Xi_{1}\int_{1}^{+\infty}|f_{1(u,v)}(s)|\frac{\rm{d}s}{s}\\ &\leq& \Xi_{1}\Big(a_{10}^{\ast}+\sum\limits_{k = 1}^{4}a_{1k}^{\ast}||(u,v)||_{X\times Y}^{\gamma_{1k}}\Big) < \infty. \end{array} \end{equation} | (3.5) |
Thus
||T_{1}(u,v)||_{X}\leq\max\{\Lambda_{1},\Xi_{1}\} \Big(a_{10}^{\ast}+\sum\limits_{k = 1}^{4}a_{1k}^{\ast}M^{\gamma_{1k}}\Big). |
Similarly
||T_{2}(u,v)||_{Y}\leq\max\{\Lambda_{2},\Xi_{2}\} \Big(a_{20}^{\ast}+\sum\limits_{k = 1}^{4}a_{2k}^{\ast}M^{\gamma_{2k}}\Big). |
Then
\begin{array}{rcl} ||T(u,v)||_{X\times Y}& = &\max\Big\{\|T_{1}(u,v)\|_{X},\|T_{2}(u,v)\|_{Y}\Big\}\\ &\leq&\max\{\Lambda_{1},\Xi_{1},\Lambda_{2},\Xi_{2}\} \max\Big(a_{10}^{\ast}+\sum\limits_{k = 1}^{4}a_{1k}^{\ast}M^{\gamma_{1k}},a_{20}^{\ast}+\sum\limits_{k = 1}^{4}a_{2k}^{\ast}M^{\gamma_{2k}}\Big) < \infty. \end{array} |
which implies that TU is uniformly bounded for any (u, v)\in U .
Step 2 Let I\subset J be any compact interval. Then, for all t_{1}, t_{2}\in I, t_{2} > t_{1} and (u, v)\in U , we have
\begin{equation} \begin{array}{rcl} \Big|\frac{T_{1}(u,v)(t_{2})}{1+(\log t_{2})^{\alpha_{1}-1}} -\frac{T_{1}(u,v)(t_{1})}{1+(\log t)^{\alpha_{1}-1}_{1}}\Big| &\leq&\Big| \int_{1}^{+\infty}\Big(\frac{G_{1}(t_{2},s)}{1+(\log t_{2})^{\alpha_{1}-1}} -\frac{G_{1}(t_{1},s)}{1+(\log t_{1})^{\alpha_{1}-1}}\Big) f_{1(u,v)}(s)\frac{\rm{d}s}{s}\Big|\\ &\leq& \int_{1}^{+\infty}\Big|\frac{G_{1}(t_{2},s)}{1+(\log t_{2})^{\alpha_{1}-1}} -\frac{G_{1}(t_{1},s)}{1+(\log t_{1})^{\alpha_{1}-1}}\Big|\big| f_{1(u,v)}(s)\big|\frac{\rm{d}s}{s}. \end{array} \end{equation} | (3.6) |
Noticing that G_{1}(t, s)/1+(\log t)^{\alpha_{1}-1} is uniformly continuous for any (t, s)\in I\times I . Moreover the function G_{1}(t, s)/1+(\log t)^{\alpha_{1}-1} is only associated with t for s\geq t , which implies that G_{1}(t, s)/1+(\log t)^{\alpha_{1}-1} is uniformly continuous on I\times (J\setminus I) . That is, for all s\in J and t_{1}, t_{2}\in I, \forall \epsilon > 0, \exists \delta(\epsilon) > 0 if |t_{1}-t_{2}| < \delta such that
\begin{equation} \Big|\frac{G_{1}(t_{2},s)}{1+(\log t_{2})^{\alpha_{1}-1}} -\frac{G_{1}(t_{1},s)}{1+(\log t_{1})^{\alpha_{1}-1}}\Big| < \epsilon. \end{equation} | (3.7) |
By Lemma 3.1, for all (u, v)\in U , we have
\begin{equation} \int_{1}^{+\infty}|f_{1(u,v)}(s)|\frac{\rm{d}s}{s}\leq a_{10}^{\ast}+\sum\limits_{k = 1}^{4}a_{1k}^{\ast}M^{\gamma_{1k}} < \infty. \end{equation} | (3.8) |
For all t_{1}, t_{2}\in I, t_{2} > t_{1} and (u, v)\in U , together (3.6), (3.7) and (3.8) mean that
\forall \epsilon > 0, \exists \delta(\epsilon) > 0\; such\; that\; if\; |t_{1}-t_{2}| < \delta\; then\; \Big|\frac{T_{1}(u,v)(t_{2})}{1+(\log t_{2})^{\alpha_{1}-1}} -\frac{T_{1}(u,v)(t_{1})}{1+(\log t)^{\alpha_{1}-1}_{1}}\Big| < \epsilon. |
That is, T_{1}(u, v)(t)/1+(\log t)^{\alpha_{1}-1} is equicontinuous on I .
Note that
^{H}D^{\alpha_{1}-1}T_{1}(u,v)(t) = \int_{1}^{+\infty}G_{1}^{\ast}(t,s)f_{1(u,v)}(s)\rm{d}s |
and function G_{1}^{\ast}(t, s)\in C(J\times J) is independent of t , which implies that ^{H}D^{\alpha_{1}-1}T_{1}(u, v)(t) is equicontinuous on I .
In the same way, one can easily show that T_{2}(u, v)(t)/1+(\log t)^{\alpha_{2}-1} and D^{\alpha_{2}-1}T_{2}(u, v)(t) are equicontinuous. Hence T_{1} and T_{2} are equicontinuous on I . Then the operator T is equicontinuous for all (u, v)\in U on any compact interval I of J .
Step 3 Now we prove the operator T is equiconvergent at +\infty . Due to
\begin{aligned}\lim\limits_{t\rightarrow +\infty}\frac{G_{j}(t,s)}{1+(\log t)^{\alpha_{j}-1}} & = \frac{1}{\Gamma(\alpha_{j})}+\sum\limits_{i = 1}^{m_{j}}\frac{\lambda_{ji}\Gamma(\alpha_{j})}{\Omega_{j} \Gamma(\alpha_{j}+\beta_{ji})}g_{ji}(\eta_{j},s)\\ \leq&\frac{1}{\Gamma(\alpha_{j})}+\sum\limits_{i = 1}^{m_{j}}\frac{\lambda_{ji}\Gamma(\alpha_{j})}{\Omega_{j} \Gamma(\alpha_{j}+\beta_{ji})}(\log\eta_{j})^{\alpha_{j}+\beta_{ji}-1} < +\infty,\ j = 1,2,\end{aligned} |
one can infer that for any \epsilon > 0 , there exists a constant C = C(\epsilon) > 0 , for any t_{1}, t_{2}\geq C and s\in J , such that
\Big|\frac{G_{j}(t_{2},s)}{1+(\log t_{2})^{\alpha_{j}-1}} -\frac{G_{j}(t_{1},s)}{1+(\log t_{1})^{\alpha_{j}-1}}\Big| < \epsilon,\ j = 1,2, |
with the help of Lemma 3.1 and (3.6), which mean that T_{j}(u, v)(t)/1+(\log t)^{\alpha_{j}-1}(j = 1, 2) are equiconvergent at +\infty . Meanwhile function G_{j}^{\ast}(t, s)(j = 1, 2) are independent of t , one can easily show that {}^HD^{\alpha_{j}-1}T_{j}(u, v)(t)(j = 1, 2) are equiconvergent at +\infty .
From \bf{Step\ \ 1}, \ \ \bf{Step\ \ 2} and \bf{Step\ \ 3} , Lemma 2.4 holds. So the operator T is relatively compact in P_{1}\times P_{2} .
Step 4 Finally we prove that the operator T:P_{1} \times P_{2} \to P_{1} \times P_{2} is continuous. Set (u_{n}, v_{n}), (u, v)\in P_{1} \times P_{2} and (u_{n}, v_{n})\rightarrow (u, v)(n\rightarrow \infty). So ||(u_{n}, v_{n})||_{X\times Y} < +\infty, ||(u, v)||_{X\times Y} < +\infty . Similar to (3.4) and (3.5), one has
\begin{aligned} ||T_{1}(u_{n},v_{n})||_{1} = &\sup\limits_{t\in J}\Big|\int_{0}^{+\infty}\frac{G_{1}(t,s)}{1+(\log t)^{\alpha_{1}-1}} f_{1(u_{n},V_{n})}(s)\frac{\rm{d}s}{s}\Big| \leq\Lambda_{1}\Big[a_{10}^{\ast}+\sum\limits_{k = 1}^{4}a_{1k}^{\ast}||(u_{n},v_{n})||_{X\times Y}^{\gamma_{1k}}\Big], \end{aligned} |
and
\begin{aligned} ||^{H}D^{\alpha_{1}-1}T_{1}(u_{n},v_{n})|| = \sup\limits_{t\in J}\Big|\int_{0}^{+\infty}G^{\ast}_{1}(t,s)f_{1(u_{n},v_{n})}(s)ds\Big| \leq\Xi_{1}\Big[a_{10}^{\ast}+\sum\limits_{k = 1}^{4}a_{1k}^{\ast}||(u_{n},v_{n})||_{X\times Y}^{\gamma_{1k}}\Big]. \end{aligned} |
Via the Lebesgue dominated convergence theorem and continuity of function f_{1} , we know
\begin{aligned} \lim\limits_{n\rightarrow \infty}\int_{1}^{+\infty}\frac{G_{1}(t,s)}{1+(\log t)^{\alpha_{1}-1}}f_{1(u_{n},v_{n})}(s) \frac{\rm{d}s}{s} = \int_{1}^{+\infty}\frac{G_{1}(t,s)}{1+(\log t)^{\alpha_{1}-1}}f_{1(u,v)}(s)\frac{\rm{d}s}{s}, \end{aligned} |
and
\begin{aligned}\lim\limits_{n\rightarrow \infty}\int_{1}^{+\infty}G_{1}^{\ast}(t,s)f_{1(u_{n},v_{n})}(s) \frac{\rm{d}s}{s} = \int_{1}^{\infty}G_{1}^{\ast}(t,s)f_{1(u,v)}(s)\frac{\rm{d}s}{s}. \end{aligned} |
Again
\begin{aligned}\|T_{1}(u_{n},v_{n})-T_{1}(u,v)\|_{1} \leq\sup\limits_{t\in J}\int_{1}^{+\infty}\frac{G_{1}(t,s)}{1+(\log t)^{\alpha_{1}-1}}\Big|f_{1(u_{n},v_{n})}(s)-f_{1(u,v)}(s)\Big|\frac{\rm{d}s}{s}\rightarrow 0 ,\ n\rightarrow \infty ,\end{aligned} |
and
\begin{aligned}\|{}^HD^{\alpha_{1}-1}T_{1}(u_{n},v_{n})-{}^HD^{\alpha_{1}-1}T_{1}(u,v)\|_{1} \leq\sup\limits_{t\in J}\int_{1}^{+\infty}K^{\ast}_{1}(t,s)\Big|f_{1(u_{n},v_{n})}(s)-f_{1(u,v)}(s)\Big|\frac{\rm{d}s}{s}\rightarrow 0 ,\ n\rightarrow \infty .\end{aligned} |
Therefore, as n\rightarrow \infty ,
\begin{aligned} \|T_{1}(u_{n},v_{n})-T_{1}(u,v)\|_{X} = \max\big\{\|T_{1}(u_{n},v_{n})-T_{1}(u,v)\|_{1}, \|^{H}D^{\alpha_{1}-1}T_{1}(u_{n},v_{n})-^{H}D^{\alpha_{1}-1}T_{1}(u,v)\|\big\}\rightarrow 0. \end{aligned} |
This implies that the operator T_{1} is continuous. At the same way, one can obtain than the operator T_{2} is continuous. That is, the operator T is continuous.
Summarize all of the above discussions, one can infer that the operator T:P_{1} \times P_{2} \to P_{1} \times P_{2} is completely continuous. So the proof of Lemma 3.3 is completed.
For convenience, we set
\Upsilon = \max\Big\{\Lambda_{1},\Lambda_{2},\Xi_{1},\Xi_{2}\Big\}. |
Define a partial order over the product space:
\begin{pmatrix} u_{1} \\ v_{1} \\ \end{pmatrix} \geq \begin{pmatrix} u_{2} \\ v_{2} \\ \end{pmatrix} |
if u_{1}(t)\geq u_{2}(t), v_{1}(t)\geq v_{2}(t), {}^HD^{\alpha_{1}-1}u_{1}(t)\geq {}^HD^{\alpha_{1}-1}u_{2}(t), {}^HD^{\alpha_{2}-1}v_{1}(t)\geq {}^HD^{\alpha_{2}-1}v_{2}(t), t\in J.
Theorem 3.1 If assumption (C1), (C2) and (C3) hold, then the system (1.5) exist two positive solutions (u^{\ast}, v^{\ast}) and (w^{\ast}, z^{\ast}) satisfying 0\leq \|(u^{\ast}, v^{\ast})\|_{X\times Y}\leq R and 0\leq \|(w^{\ast}, z^{\ast})\|_{X\times Y}\leq R , where R is a positive preset constant. Moreover, there exist \lim\limits_{n\rightarrow \infty}(u_{n}, v_{n}) = (u^{\ast}, v^{\ast}) and \lim\limits_{n\rightarrow \infty}(w_{n}, z_{n}) = (w^{\ast}, z^{\ast}) , where (u_{n}, v_{n}) and (w_{n}, z_{n}) are given by the following monotone iterative sequences
\begin{equation} \left(\begin{aligned} &{ u_{n}(t) } \\ &{ v_{n}(t) } \end{aligned}\right) = \left(\begin{aligned} &{ T_{1}(u_{n-1},v_{n-1})(t) } \\ &{ T_{2}(u_{n-1},v_{n-1})(t)} \end{aligned}\right),n = 1,2,\ldots,\ with \ \left(\begin{aligned} &{ u_{0}(t) } \\ &{ v_{0}(t) } \end{aligned}\right) = \left(\begin{aligned} &{ R(\log t)^{\alpha_{1}-1} } \\ &{ R (\log t)^{\alpha_{2}-1}} \end{aligned}\right) \end{equation} | (3.9) |
and
\begin{equation} \left(\begin{aligned} &{ w_{n}(t) } \\ &{ z_{n}(t) } \end{aligned}\right) = \left(\begin{aligned} &{ T_{1}(w_{n-1},z_{n-1})(t) } \\ &{ T_{2}(w_{n-1},z_{n-1})(t)} \end{aligned}\right),n = 1,2,\ldots,\ with \ \left(\begin{aligned} &{ w_{0}(t) } \\ &{z_{0}(t)} \end{aligned}\right) = \left(\begin{aligned} &{ 0 } \\ &{0} \end{aligned}\right). \end{equation} | (3.10) |
In addition
\left(\begin{aligned} &{w_{0}(t)} \\ &{ z_{0}(t)} \end{aligned}\right)\leq \left(\begin{aligned} &{w_{1}(t)} \\ &{ z_{1}(t)} \end{aligned}\right)\leq \cdots\leq \left(\begin{aligned} &{w_{n}(t)} \\ &{ z_{n}(t)} \end{aligned}\right) \leq\cdots\leq \left(\begin{aligned} &{ w^{\ast}} \\ &{ z^{\ast}} \end{aligned}\right) \leq\cdots\leq \left(\begin{aligned} &{ u^{\ast}} \\ &{ v^{\ast}} \end{aligned}\right) \leq\cdots\leq \left(\begin{aligned} &{ u_{n}(t)} \\ &{ v_{n}(t)} \end{aligned}\right) |
\begin{equation} \leq\cdots\leq \left(\begin{aligned} &{u_{1}(t)} \\ &{ v_{1}(t)} \end{aligned}\right) \leq \left(\begin{aligned} &{u_{0}(t)} \\ &{ v_{0}(t)} \end{aligned}\right) \end{equation} | (3.11) |
and
\left(\begin{aligned} &{ {}^HD^{\alpha_{1}-1} w_{0}(t)} \\ &{ {}^HD^{\alpha_{2}-1} z_{0}(t)} \end{aligned}\right)\leq \left(\begin{aligned} &{ {}^HD^{\alpha_{1}-1} w_{1}(t)} \\ &{ {}^HD^{\alpha_{2}-1} z_{1}(t)} \end{aligned}\right)\leq\cdots\leq \left(\begin{aligned} &{ {}^HD^{\alpha_{1}-1} w_{n}(t)} \\ &{ {}^HD^{\alpha_{2}-1} z_{n}(t)} \end{aligned}\right) \leq\cdots\leq \left(\begin{aligned} &{ {}^HD^{\alpha_{1}-1} w^{\ast}} \\ &{ {}^HD^{\alpha_{2}-1}z^{\ast}} \end{aligned}\right) \leq\cdots\leq |
\begin{equation} \left(\begin{aligned} &{ {}^HD^{\alpha_{1}-1}u^{\ast}} \\ &{ {}^HD^{\alpha_{2}-1}v^{\ast}} \end{aligned}\right) \leq\cdots\leq \left(\begin{aligned} &{ {}^HD^{\alpha_{1}-1} u_{n}(t)} \\ &{ {}^HD^{\alpha_{2}-1} v_{n}(t)} \end{aligned}\right) \leq\cdots\leq \left(\begin{aligned} &{ {}^HD^{\alpha_{1}-1} u_{1}(t)} \\ &{ {}^HD^{\alpha_{2}-1} v_{1}(t)} \end{aligned}\right) \leq \left(\begin{aligned} &{ {}^HD^{\alpha_{1}-1} u_{0}(t)} \\ &{ {}^HD^{\alpha_{2}-1} v_{0}(t)} \end{aligned}\right). \end{equation} | (3.12) |
Proof. First, Lemma 3.3 means the fact that T(P_{1} \times P_{2}) \subset P_{1} \times P_{2} for any (u, v)\in P_{1} \times P_{2}, t\in J .
Next, for 0\leq \gamma_{1k}, \gamma_{2k} < 1(k = 1, 2, 3, 4) , set
R\geq\max\Big\{5a_{10}^{\ast}\Upsilon,5a_{20}^{\ast}\Upsilon,(5\Upsilon a_{1k}^{\ast})^{1/(1-\gamma_{1k})},(5\Upsilon a_{2k}^{\ast})^{1/(1-\gamma_{2k})},k = 1,2,3,4\Big\}, |
and U_{R} = \{(u, v)\in P_{1} \times P_{2}:||(u, v)||_{X\times Y}\leq R\}. For any (u, v)\in U_{R} , similar to (3.4) and (3.5), one can obtain
||T_{1}(u,v)||_{1}\leq \Lambda_{1}\Big[a_{10}^{\ast}+\sum\limits_{k = 1}^{4}a_{1k}^{\ast}||(u,v)||_{X\times Y}^{\gamma_{1k}}\Big]\leq \Upsilon\Big[a_{10}^{\ast}+\sum\limits_{k = 1}^{4}a_{1k}^{\ast}R^{\gamma_{1k}}\Big]\leq R |
and
|{}^HD^{\alpha_{1}-1}T_{1}(u,v)||\leq \Xi_{1}\Big[a_{10}^{\ast}+\sum\limits_{k = 1}^{4}a_{1k}^{\ast}||(u,v)||_{X\times Y}^{\gamma_{1k}}\Big]\leq \Upsilon\Big[a_{10}^{\ast}+\sum\limits_{k = 1}^{4}a_{1k}^{\ast}R^{\gamma_{1k}}\Big]\leq R. |
This implies that ||T_{1}(u, v)||_{X}\leq R for all (u, v)\in U_{R} . In the same way, ||T_{2}(u, v)||_{Y}\leq R . Consequently one has
||T(u,v)||_{X\times Y} = \max\Big\{\|T_{1}(u,v)\|_{X},\|T_{2}(u,v)\|_{Y}\Big\}\leq R. |
That is, T(U_{R})\subset U_{R} .
Via the complete continuity of the operator T , we present the sequences (u_{n}, v_{n}) and (w_{n}, z_{n}) by (u_{n}, v_{n}) = T(u_{n-1}, v_{n-1}), (w_{n}, z_{n}) = T(w_{n-1}, z_{n-1}) for n = 1, 2, \cdots. In virtue of (3.9) and (3.10), it is obvious that (u_{0}(t), v_{0}(t)), \ \ (w_{0}(t), z_{0}(t))\in U_{R} .
Due to T(U_{R})\subset U_{R} , it is easy to see that (u_{n}, v_{n}), (w_{n}, z_{n})\in T(U_{R}) for n = 1, 2, \cdots. Thus we just need to show that there exist (u^{\ast}, v^{\ast}) and (w^{\ast}, z^{\ast}) satisfying \lim\limits_{n\rightarrow \infty}(u_{n}, v_{n}) = (u^{\ast}, v^{\ast}) and \lim\limits_{n\rightarrow \infty}(w_{n}, z_{n}) = (w^{\ast}, z^{\ast}) , which are two monotone sequences for approximating positive solutions of the system (1.5).
For t\in J, (u_{n}, v_{n})\in U_{R} , from Lemma 2.2 and (3.9), one has
\begin{aligned} u_{1}(t) = T_{1}(u_{0},v_{0})(t) = & \int^{+\infty}_{1}G_{1}(t,s)f_{1(u_{0},v_{0})}(s)\frac{\rm{d}s}{s} \leq \Lambda_{1}\Big[a_{10}^{\ast}+\sum\limits_{k = 1}^{4}a_{1k}^{\ast}R^{\gamma_{1k}}\Big](\log t)^{\alpha_{1}-1}\\ \leq& R (\log t)^{\alpha_{1}-1} = u_{0}(t)\end{aligned} |
and
\begin{aligned} v_{1}(t) = T_{2}(u_{0},v_{0})(t) = & \int^{+\infty}_{1}G_{2}(t,s)f_{2(u_{0},v_{0})}(s)\frac{\rm{d}s}{s} \leq \Lambda_{2}\Big[a_{20}^{\ast}+\sum\limits_{k = 1}^{4}a_{2k}^{\ast}R^{\gamma_{2k}}\Big](\log t)^{\alpha_{2}-1}\\ \leq& R (\log t)^{\alpha_{2}-1} = v_{0}(t),\end{aligned} |
that is
\begin{equation} \left(\begin{aligned} &{u_{1}(t) } \\ &{ v_{1}(t)} \end{aligned}\right) = \left(\begin{aligned} &{ T_{1}(u_{0},v_{0})(t) } \\ &{ T_{2}(u_{0},v_{0})(t) } \end{aligned}\right)\leq \left(\begin{aligned} &{R(\log t)^{\alpha_{1}-1}} \\ &{ R(\log t)^{\alpha_{2}-1}} \end{aligned}\right) = \left(\begin{aligned} &{ u_{0}(t)} \\ &{ v_{0}(t)} \end{aligned}\right). \end{equation} | (3.13) |
Next we consider the monotonicity of the Hadamard type fractional derivative of (u, v) . By (3.13) we have
\begin{aligned} {}^HD^{\alpha_{1}-1}u_{1}(t) = & {}^HD^{\alpha_{1}-1}T_{1}(u_{0},v_{0})(t) = \int^{+\infty}_{1}G^{\ast}_{1}(t,s)f_{1(u_{0},v_{0})}(s)\frac{\rm{d}s}{s} \\ \leq& \Xi_{1}\Big[a_{10}^{\ast}+\sum\limits_{k = 1}^{4}a_{1k}^{\ast}R^{\gamma_{1k}}\Big] \leq R = {}^HD^{\alpha_{1}-1}u_{0}(t),\\ {}^HD^{\alpha_{2}-1}v_{1}(t) = & {}^HD^{\alpha_{2}-1}T_{2}(u_{0},v_{0})(t) = \int^{+\infty}_{1}G^{\ast}_{2}(t,s)f_{2(u_{0},v_{0})}(s)\frac{\rm{d}s}{s} \\ \leq& \Xi_{2}\Big[a_{20}^{\ast}+\sum\limits_{k = 1}^{4}a_{2k}^{\ast}R^{\gamma_{2k}}\Big] \leq R = {}^HD^{\alpha_{2}-1}v_{0}(t),\end{aligned} |
that is
\begin{equation} \left(\begin{aligned} &{{}^HD^{\alpha_{1}-1}u_{1}(t) } \\ &{{}^HD^{\alpha_{2}-1}v_{1}(t)} \end{aligned}\right) = \left(\begin{aligned} &{ {}^HD^{\alpha_{1}-1}T_{1}(u_{0},v_{0})(t) } \\ &{ {}^HD^{\alpha_{2}-1}T_{2}(u_{0},v_{0})(t) } \end{aligned}\right)\leq \left(\begin{aligned} &{ R } \\ &{ R} \end{aligned}\right) = \left(\begin{aligned} &{ {}^HD^{\alpha_{1}-1}u_{0}(t)} \\ &{ {}^H D^{\alpha_{2}-1}v_{0}(t)} \end{aligned}\right) \end{equation} | (3.14) |
Then, by (3.13) and (3.14), for any \ t\in J , via the monotonicity conditions (C3) of functions f_{j}(j = 1, 2) , we do the second iteration
\begin{pmatrix} u_{2}(t) \\ v_{2}(t) \\ \end{pmatrix} = \begin{pmatrix} T_{1}(u_{1},v_{1})(t) \\ T_{2}(u_{1},v_{1})(t) \\ \end{pmatrix} \leq \begin{pmatrix} T_{1}(u_{0},v_{0})(t) \\ T_{2}(u_{0},v_{0})(t) \\ \end{pmatrix} = \begin{pmatrix} u_{1}(t) \\ v_{1}(t) \\ \end{pmatrix} , |
\begin{pmatrix} ^{H}D^{\alpha_{1}-1}u_{2}(t) \\ ^{H}D^{\alpha_{2}-1}v_{2}(t) \\ \end{pmatrix} = \begin{pmatrix} ^{H} D^{\alpha_{1}-1}T_{1}(u_{1},v_{1})(t) \\ ^{H} D^{\alpha_{2}-1}T_{2}(u_{1},v_{1})(t) \\ \end{pmatrix} \leq \begin{pmatrix} ^{H} D^{\alpha_{1}-1}T_{1}(u_{0},v_{0})(t) \\ ^{H} D^{\alpha_{2}-1}T_{2}(u_{0},v_{0})(t) \\ \end{pmatrix} = \begin{pmatrix} ^{H} D^{\alpha_{1}-1}u_{1}(t) \\ ^{H}D^{\alpha_{2}-1}v_{1}(t) \\ \end{pmatrix} . |
For t\in J , by method of induction, the sequences \{(u_{n}, v_{n})\}_{n = 0}^{\infty} satisfy
\begin{pmatrix} u_{n+1}(t) \\ v_{n+1}(t) \\ \end{pmatrix} \leq \begin{pmatrix} u_{n}(t) \\ v_{n}(t) \\ \end{pmatrix}, \begin{pmatrix} ^{H}D^{\alpha_{1}-1}u_{n+1}(t) \\ ^{H} D^{\alpha_{2}-1}v_{n+1}(t) \\ \end{pmatrix} \leq \begin{pmatrix} ^{H}D^{\alpha_{1}-1}u_{n}(t) \\ ^{H} D^{\alpha_{2}-1}v_{n}(t) \\ \end{pmatrix} . |
With the help of iterative sequences (u_{n+1}, v_{n+1}) = T(u_{n}, v_{n}) and the complete continuity of the operator T , one can easily infer that (u_{n}, v_{n})\rightarrow (u^{\ast}, v^{\ast}) and T(u^{\ast}, v^{\ast}) = (u^{\ast}, v^{\ast}) .
For the sequences \{(w_{n}, z_{n})\}_{n = 0}^{\infty} , we employ a similar discussion. For t\in J , we have
\begin{pmatrix} w_{1}(t) \\ z_{1}(t) \\ \end{pmatrix} = \begin{pmatrix} T_{1}(w_{0},z_{0})(t) \\ T_{2}(w_{0},z_{0})(t) \\ \end{pmatrix} = \begin{pmatrix} \int^{+\infty}_{1}G_{1}(t,s)f_{1(w_{0},z_{0})}(s)\frac{\mbox{d}s}{s} \\ \int^{+\infty}_{1}G_{2}(t,s)f_{2(w_{0},z_{0})}(s)\frac{\mbox{d}s}{s} \\ \end{pmatrix} \geq \begin{pmatrix} 0 \\ 0 \\ \end{pmatrix} = \begin{pmatrix} w_{0}(t) \\ z_{0}(t) \\ \end{pmatrix} , |
\begin{pmatrix} ^{H}D^{\alpha_{1}-1}w_{1}(t) \\ ^{H}D^{\alpha_{2}-1}z_{1}(t) \\ \end{pmatrix} = \begin{pmatrix} ^{H}D^{\alpha_{1}-1}T_{1}(w_{0},z_{0})(t) \\ ^{H}D^{\alpha_{2}-1} T_{2}(w_{0},z_{0})(t) \\ \end{pmatrix} = \begin{pmatrix} \int^{+\infty}_{1}G^{\ast}_{1}(t,s)f_{1(w_{0},z_{0})}(s)\frac{\mbox{d}s}{s} \\ \int^{+\infty}_{1}G^{\ast}_{2}(t,s)f_{1(w_{0},z_{0})}(s)\frac{\mbox{d}s}{s} \\ \end{pmatrix} \geq \begin{pmatrix} 0 \\ 0 \\ \end{pmatrix} = \begin{pmatrix} ^{H}D^{\alpha_{1}-1}w_{0}(t) \\ ^{H}D^{\alpha_{2}-1}z_{0}(t) \\ \end{pmatrix} . |
Using the the monotonicity condition (C3) of functions f_{j} , one has
\begin{pmatrix} w_{2}(t) \\ z_{2}(t) \\ \end{pmatrix} = \begin{pmatrix} T_{1}(w_{1},z_{1})(t) \\ T_{2}(w_{1},z_{1})(t) \\ \end{pmatrix} \geq \begin{pmatrix} T_{1}(w_{0},z_{0})(t) \\ T_{2}(w_{0},z_{0})(t) \\ \end{pmatrix} = \begin{pmatrix} w_{1}(t) \\ z_{1}(t) \\ \end{pmatrix} , |
\begin{pmatrix} ^{H}D^{\alpha_{1}-1}w_{2}(t) \\ ^{H}D^{\alpha_{2}-1}z_{2}(t) \\ \end{pmatrix} = \begin{pmatrix} ^{H}D^{\alpha_{1}-1}T_{1}(w_{1},z_{1})(t) \\ ^{H}D^{\alpha_{2}-1} T_{2}(w_{1},z_{1})(t) \\ \end{pmatrix} \geq \begin{pmatrix} ^{H}D^{\alpha_{1}-1}T_{1}(w_{0},z_{0})(t) \\ ^{H}D^{\alpha_{2}-1}T_{2}(w_{0},z_{0})(t) \\ \end{pmatrix} = \begin{pmatrix} ^{H}D^{\alpha_{1}-1}w_{1}(t) \\ ^{H}D^{\alpha_{2}-1}z_{1}(t) \\ \end{pmatrix} . |
Analogously, for n = 0, 1, 2, \ldots and t\in J , one has
\begin{pmatrix} w_{n+1}(t) \\ z_{n+1}(t) \\ \end{pmatrix} \geq \begin{pmatrix} w_{n}(t) \\ z_{n}(t) \\ \end{pmatrix}, \begin{pmatrix} ^{H}D^{\alpha_{1}-1}w_{n+1}(t) \\ ^{H}D^{\alpha_{2}-1}z_{n+1}(t) \\ \end{pmatrix} \geq \begin{pmatrix} ^{H}D^{\alpha_{1}-1}w_{n}(t) \\ ^{H}D^{\alpha_{2}-1}z_{n}(t) \\ \end{pmatrix} . |
In virtue of the iterative sequences (w_{n+1}, z_{n+1}) = T(w_{n}, z_{n}) and the complete continuity of the operator T , it is also easy to conclude that (w_{n}, z_{n})\rightarrow (w^{\ast}, z^{\ast}) and T(w^{\ast}, z^{\ast}) = (w^{\ast}, z^{\ast}) . Finally we demonstrate that (u^{\ast}, v^{\ast}) and (w^{\ast}, z^{\ast}) are the minimal and maximal positive solutions of the system (1.5). Suppose that (\xi(t), \eta(t)) is any positive solution of the Hadamard type fractional differential system (1.5), then T(\xi(t), \eta(t)) = (\xi(t), \eta(t)) and
\begin{pmatrix} w_{0}(t) \\ z_{0}(t) \\ \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \end{pmatrix} \leq \begin{pmatrix} \xi(t) \\ \eta(t) \\ \end{pmatrix} \leq \begin{pmatrix} Rt^{\alpha_{1}-1} \\ Rt^{\alpha_{2}-1}\\ \end{pmatrix} = \begin{pmatrix} u_{0}(t) \\ v_{0}(t)\\ \end{pmatrix} , |
\begin{pmatrix} ^{H}D^{\alpha_{1}-1}w_{0}(t) \\ ^{H}D^{\alpha_{2}-1}z_{0}(t) \\ \end{pmatrix} \leq \begin{pmatrix} ^{H}D^{\alpha_{1}-1}\xi(t) \\ ^{H}D^{\alpha_{2}-1}\eta(t) \\ \end{pmatrix} \leq \begin{pmatrix} ^{H}D^{\alpha_{1}-1}u_{0}(t) \\ ^{H}D^{\alpha_{2}-1}v_{0}(t)\\ \end{pmatrix} . |
Using the monotone conditions (C3) of the operator T , we obtain
\begin{pmatrix} w_{1}(t) \\ z_{1}(t) \\ \end{pmatrix} = \begin{pmatrix} T_{1}(w_{0},z_{0})(t) \\ T_{2}(w_{0},z_{0})(t) \\ \end{pmatrix} \leq \begin{pmatrix} \xi(t) \\ \eta(t) \\ \end{pmatrix} \leq \begin{pmatrix} T_{1}(u_{0},v_{0})(t) \\ T_{2}(u_{0},v_{0})(t) \\ \end{pmatrix} = \begin{pmatrix} u_{1}(t) \\ v_{1}(t) \\ \end{pmatrix} , |
\begin{pmatrix} ^{H}D^{\alpha_{1}-1} w_{1}(t) \\ ^{H} D^{\alpha_{2}-1}z_{1}(t) \\ \end{pmatrix} \leq \begin{pmatrix} ^{H}D^{\alpha_{1}-1} \xi(t) \\ ^{H}D^{\alpha_{2}-1}\eta(t) \\ \end{pmatrix} \leq \begin{pmatrix} ^{H}D^{\alpha_{1}-1} u_{1}(t) \\ ^{H}D^{\alpha_{2}-1} v_{1}(t) \\ \end{pmatrix} . |
Repeating the above process, we have
\begin{pmatrix} w_{n}(t) \\ z_{n}(t) \\ \end{pmatrix} \leq \begin{pmatrix} \xi(t) \\ \eta(t) \\ \end{pmatrix} \leq \begin{pmatrix} u_{n}(t) \\ v_{n}(t) \\ \end{pmatrix}, |
\begin{pmatrix} ^{H}D^{\alpha_{1}-1}w_{n}(t) \\ ^{H}D^{\alpha_{2}-1}z_{n}(t) \\ \end{pmatrix} \leq \begin{pmatrix} ^{H}D^{\alpha_{1}-1}\xi(t) \\ ^{H}D^{\alpha_{2}-1}\eta(t) \\ \end{pmatrix} \leq \begin{pmatrix} ^{H}D^{\alpha_{1}-1}u_{n}(t) \\ ^{H} D^{\alpha_{2}-1}v_{n}(t)\\ \end{pmatrix} , |
which combine \lim\limits_{n\rightarrow \infty} (w_{n}, z_{n}) = (w^{\ast}, z^{\ast}) and \lim\limits_{n\rightarrow \infty} (u_{n}, u_{n}) = (u^{\ast}, v^{\ast}) , we gain the results (3.11) and (3.12).
On the other hand, due to f(t, 0, 0, 0, 0)\neq 0 for all t\in J , we know that (0, 0) isn't a solution of the Hadamard type fractional differential system (1.5). From (3.11) and (3.12), it is clear that (w^{\ast}, z^{\ast}) and (u^{\ast}, v^{\ast}) are two extreme positive solutions of the system (1.5), which can be constructed via limit of two monotone iterative sequences in (3.9) and (3.10).
Theorem 3.2 If assumption (C1), (C4) and
\begin{equation} m = \Upsilon\max\Big\{\sum\limits_{k = 1}^{4}b_{1k},\sum\limits_{k = 1}^{4}b_{2k}\Big\} < 1 \end{equation} | (3.15) |
hold, then the system (1.5) has a unique positive solution (x, y) in P_{1}\times P_{2} . Further there exists a iterative sequence (u_{n}, v_{n}) such that \lim\limits_{n\rightarrow \infty}(u_{n}, v_{n}) = (x, y) is satisfied uniformly on any finite interval of J , where
\begin{equation} \left(\begin{aligned} &{u_{n}(t)} \\ &{v_{n}(t)} \end{aligned}\right) = \left(\begin{aligned} &{T_{1}(u_{n-1},v_{n-1})(t)} \\ &{T_{2}(u_{n-1},v_{n-1})(t)} \end{aligned}\right),n = 1,2,\cdots. \end{equation} | (3.16) |
Moreover there exists an error estimate for the approximation sequence
\begin{equation} ||(u_{n},v_{n})-(x,y)||_{X\times Y} = \frac{m^{n}}{1-m}||(u_{1},v_{1})-(u_{0},v_{0})||_{X\times Y}, n = 1,2,\cdots. \end{equation} | (3.17) |
Proof. Take
r\geq \Upsilon\varrho/(1-m), |
where m is defined by (3.15) and \varrho = \max\{\varrho_{1}, \varrho_{2}\}, \ \ \varrho_{j}\ \ (j = 1, 2) are defined by the aussumption (C4).
First we show that TU_{r}\subset U_{r} , where U_{r} = \{(u, v)\in P_{1}\times P_{2}, ||(u, v)||_{X\times Y}\leq r\} . For any (u, v)\in U_{r} , by Lemma 3.2 and Remark 2.2, we have
||T_{1}(u,v)||_{1}\leq \Lambda_{1}\Big(\sum\limits_{k = 1}^{4}b_{1k}^{\ast}r+\varrho_{1}\Big) |
and
||^{H}D^{\alpha_{1}-1}T_{1}(u,v)|| \leq \Xi_{1}\Big(\sum\limits_{k = 1}^{4}b_{1k}^{\ast}r+\varrho_{1}\Big), |
which implies
||T_{1}(u,v)||_{X}\leq \Upsilon\Big(\sum\limits_{k = 1}^{4}b_{1k}^{\ast}r+\varrho_{1}\Big)\leq mr+\Upsilon\varrho_{1}, \ \forall (u,v)\in U_{r}. |
Similar
||T_{2}(u,v)||_{Y}\leq \Upsilon\Big(\sum\limits_{k = 1}^{4}b_{2k}^{\ast}r+\varrho_{2}\Big)\leq mr+\Upsilon\varrho_{2}, \ \forall (u,v)\in U_{r}. |
So one has
||T(u,v)||_{X\times Y}\leq mr+\Upsilon\varrho\leq r, \forall (u,v)\in U_{r}. |
Now we demonstrate that operator T is a contraction. For any (u_{1}, v_{1}), (u_{2}, v_{2})\in U_{r} , by assumption (C4), we have
\begin{aligned} & ||T_{1}(u_{1},v_{1})-T_{1}(u_{2},v_{2})||_{1}\\ \leq &\sup\limits_{t\in J}\int_{1}^{+\infty}\frac{G_{1}(t,s)}{1+(\log t)^{\alpha_{1}-1}}\Big|f_{1(u_{1},v_{1})}(s)-f_{1(u_{2},v_{2})}(s)\Big|\frac{\rm{d}s}{s}\\ \leq& \Lambda_{1}\int_{1}^{+\infty}\Big[b_{11}(s)(1+(\log s)^{\alpha_{1}-1})\frac{|u_{1}(s)-u_{2}(s)|}{1+(\log s)^{\alpha_{1}-1}} +b_{12}(s)(1+(\log s)^{\alpha_{2}-1})\frac{|v_{1}(s)-v_{2}(s)|}{1+(\log s)^{\alpha_{2}-1}}\\ &+b_{13}(s)|^{H}D^{\alpha_{1}-1}u_{1}(s)-^{H}D^{\alpha_{1}-1}u_{2}(s)|\Big] +b_{14}(s)|^{H}D^{\alpha_{2}-1}v_{1}(s)-^{H}D^{\alpha_{2}-1}v_{2}(s)|\Big]\frac{\rm{d}s}{s}\\ \leq &\Lambda_{1}\sum\limits_{k = 1}^{4}b^{\ast}_{1k}||(u_{1},v_{1})-(u_{2},v_{2})||_{X\times Y} \end{aligned} |
and
\begin{aligned} ||^{H}D^{\alpha_{1}-1}T_{1}(u_{1},v_{1})-^{H}D^{\alpha_{1}-1}T_{1}(u_{2},v_{2})|| \leq & \sup\limits_{t\in J}\int_{0}^{+\infty}G_{1}^{\ast}(t,s)\Big|f_{1(u_{1},v_{1})}(s)-f_{1(u_{2},v_{2})}(s)\Big|ds\\ \leq &\Xi_{1}\sum\limits_{k = 1}^{4}b^{\ast}_{1k}||(u_{1},v_{1})-(u_{2},v_{2})||_{X\times Y}, \end{aligned} |
which implies
\begin{equation} ||T_{1}(u_{1},v_{1})-T_{1}(u_{2},v_{2})||_{X}\leq \Upsilon\sum\limits_{k = 1}^{4}b^{\ast}_{1k}||(u_{1},v_{1})-(u_{2},v_{2})||_{X\times Y}. \end{equation} | (3.18) |
In the same way, one can obtain
\begin{equation} ||T_{2}(u_{1},v_{1})-T_{2}(u_{2},v_{2})||_{Y}\leq \Upsilon\sum\limits_{k = 2}^{4}b^{\ast}_{2k}||(u_{1},v_{1})-(u_{2},v_{2})||_{X\times Y}. \end{equation} | (3.19) |
By (3.18) and (3.19), we gain
\begin{equation} ||T(u_{1},v_{1})-T(u_{2},v_{2})||_{X\times Y}\leq m||(u_{1},v_{1})-(u_{2},v_{2})||_{X\times Y},\forall (u_{1},v_{1}),(u_{2},v_{2})\in U_{r}. \end{equation} | (3.20) |
Due to m < 1 , then operator T is a contraction. With the help of the Banach fixed-point theorem, T has a unique fixed point (x, y) in U_{r} . That is, the system (1.5) has a unique positive solution (x, y) .
Further, for any (u_{0}, v_{0})\in U_{r}, \|(u_{n}, v_{n}) -(x, y)\|_{X\times Y}\rightarrow 0 as n\rightarrow \infty , where u_{ n} = T_{1}(u_{n-1}, v_{n-1}), v_{ n} = T_{2}(u_{n-1}, v_{n-1}), n = 1, 2, \cdots. From (3.20), we have
||(u_{n},v_{n})-(u_{n-1},v_{n-1})||_{X\times Y}\leq m^{n-1}||(u_{1},v_{1})-(u_{0},v_{0})||_{X\times Y}, |
and
\begin{equation} \begin{array}{rcl} ||(u_{n},v_{n})-(u_{j},v_{j})||_{X\times Y}&\leq & ||(u_{n},v_{n})-(u_{n-1},v_{n-1})||_{X\times Y}+ ||(u_{n-1},v_{n-1})-(u_{n-2},v_{n-2})||_{X\times Y}\\\\&&+\cdots + ||(u_{j+1},v_{j+1})-(u_{j},v_{j})||_{X\times Y}\\\\ &\leq & \frac{m^{n}(1-m^{j-n})}{1-m}||(u_{1},v_{1})-(u_{0},v_{0})||_{X\times Y}. \end{array} \end{equation} | (3.21) |
Taking j\rightarrow +\infty on both sides of (3.21), one can obtain
||(u_{n},v_{n})-(x,y)||_{X\times Y}\leq \frac{m^{n}}{1-m}||u_{1}-u_{0}||_{X\times Y}. |
So the proof of Theorem 3.2 is completed.
Example 4.1 Consider the following Hadamard type fractional differential system
\begin{equation} \left\{ \begin{array}{ll} -{}^HD^{1.8}u(t) = e^{-2t}+\frac{e^{-t}|u(t)|^{0.1}}{[1+(\log t)^{0.8}]^{0.1}} +\frac{e^{-2t}|v(t)|^{0.3}}{[1+(\log t)^{0.5}]^{0.3}} +\frac{t|{}^HD^{0.8}u(t)|^{0.2}}{2(4+t)^{2}} +\frac{t|{}^HD^{0.5}v(t)|^{0.4}}{5(1+t^{2})},\\\\ - {}^HD^{1.5}v(t) = t^{-5}+\frac{e^{-3t}|u(t)|^{0.2}}{[1+(\log t)^{0.8}]^{0.2}} +\frac{e^{-4t}|v(t)|^{0.4}}{[1+(\log t)^{0.5}]^{0.4}} +\frac{t|{}^H D^{1.5}u(t)|^{0.2}}{5(1+t^{2})} +\frac{t|{}^H D^{0.5}v(t)|^{0.6}}{(9+t)^{2}},\\\\ u(1) = 0,\ {}^HD^{0.8}u(+\infty) = 0.2{}^HI^{1.8}u(2.5)+0.1{}^HI^{2.8}u(2.5),\\\\ v(1) = 0, {}^HD^{0.5}v(+\infty) = 0.1{}^HI^{1.5}u(1.5)+0.3{}^HI^{2.5}u(1.5)+2{}^HI^{3.5}u(1.5),\\ \end{array} \right. \end{equation} | (4.1) |
where \alpha_{1} = 1.8, \ \ \alpha_{2} = 1.5, \ \ \beta_{11} = 1.8, \ \ \beta_{12} = 2.8, \ \ \lambda_{11} = 0.2, \ \ \lambda_{12} = 0.1, \ \ \beta_{21} = 1.5, \ \ \beta_{22} = 2.5, \ \ \beta_{23} = 3.5, \ \ \lambda_{21} = 0.1, \ \ \lambda_{22} = 0.3, \ \ \lambda_{23} = 2, \ \ \eta_{1} = 2.5, \ \ \eta_{2} = 1.5 and
f_{1}(t,u_{1},u_{2},u_{3},u_{4}) = e^{-2t}+\frac{e^{-t}|u_{1}|^{0.1}}{[1+(\log t)^{0.8}]^{0.1}} +\frac{e^{-2t}|u_{2}|^{0.3}}{[1+(\log t)^{0.5}]^{0.3}} +\frac{t|u_{3}|^{0.2}}{2(4+t)^{2}} +\frac{t|u_{4}|^{0.4}}{5(1+t^{2})}, |
f_{2}(t,u_{1},u_{2},u_{3},u_{4}) = t^{-5}+\frac{e^{-3t}|u_{1}|^{0.2}}{[1+(\log t)^{0.8}]^{0.2}} +\frac{e^{-4t}|u_{2})|^{0.4}}{[1+(\log t)^{0.5}]^{0.4}} +\frac{t|u_{3}|^{0.2}}{5(1+t^{2})} + \frac{t|u_{4}|^{0.6}}{(9+t)^{2}}. |
Here \gamma_{11} = 0.1, \ \ \gamma_{12} = 0.3, \ \ \gamma_{13} = 0.2, \ \ \gamma_{14} = 0.4, \ \ \gamma_{21} = 0.2, \ \ \gamma_{22} = 0.4, \ \ \gamma_{23} = 0.2, \ \ \gamma_{23} = 0.2, \ \ \gamma_{24} = 0.6.
We find that f_{1}(t, 0, 0, 0, 0)\not\equiv 0, f_{1}(t, 0, 0, 0, 0)\not\equiv 0 , for \forall t\in J and \Omega_{1} = \Gamma(\alpha_{1})-\sum\limits_{i = 1}^{2}\frac{\lambda_{1i}\Gamma(\alpha_{1})} {\Gamma(\alpha_{1}+\beta_{1i})} (\log \eta_{1})^{\alpha_{1}+\beta_{1i}-1}\approx 0.885609 > 0, \ \ \Omega_{2} = \Gamma(\alpha_{2})-\sum\limits_{i = 1}^{3}\frac{\lambda_{2i}\Gamma(\alpha_{2})} {\Gamma(\alpha_{2}+\beta_{2i})} (\log \eta_{2})^{\alpha_{2}+\beta_{2i}-1}\approx 0.872852 > 0. So assumption (C1) holds.
Noting that
\begin{aligned} |f_{1}(t,u_{1},u_{2},u_{3},u_{4})|&\leq e^{-2t}+\frac{e^{-t}|u_{1}|^{0.1}}{[1+(\log t)^{0.8}]^{0.1}} +\frac{e^{-2t}|u_{2}|^{0.3}}{[1+(\log t)^{0.5}]^{0.3}} +\frac{t|u_{3}|^{0.2}}{2(4+t)^{2}} +\frac{t|u_{4}|^{0.4}}{5(1+t^{2})}\\ & = a_{10}(t)+a_{11}(t)|u_{1}|^{0.1}+a_{12}(t)|u_{2}|^{0.3}+a_{13}(t)|u_{3}|^{0.2}+a_{14}(t)|u_{4}|^{0.4}, \end{aligned} |
\begin{aligned} |f_{2}(t,u_{1},u_{2},u_{3},u_{4})|&\le t^{-5}+\frac{e^{-3t}|u_{1}|^{0.2}}{[1+(\log t)^{0.8}]^{0.2}} +\frac{e^{-4t}|u_{2})|^{0.4}}{[1+(\log t)^{0.5}]^{0.4}} +\frac{t|u_{3}|^{0.2}}{5(1+t^{2})} +\frac{t|u_{4}|^{0.6}}{(9+t)^{2}}\\ & = a_{20}(t)+a_{21}(t)|u_{1}|^{0.2}+a_{22}(t)|u_{2}|^{0.2}+a_{23}(t)|u_{3}|^{0.2}+a_{24}(t)|u_{4}|^{0.6} \end{aligned} |
and
\begin{aligned} a_{10}^{\ast}& = \int_{1}^{+\infty}a_{10}(t)\frac{\rm{d}t}{t} = \int_{1}^{+\infty}e^{-2t}\frac{\rm{d}t}{t} \leq\int_{1}^{+\infty}e^{-2t}\rm{d}t = \frac{1}{2e^{2}} < \infty,\\ a_{11}^{\ast}& = \int_{1}^{+\infty}a_{11}(t)[1+(\log t)^{0.8}]^{0.1}\frac{\rm{d}t}{t} = \int_{1}^{+\infty}\frac{e^{-t}}{[1+(\log t)^{0.8}]^{0.1}}[1+(\log t)^{0.8}]^{0.1}\frac{\rm{d}t}{t} \leq\frac{1}{e} < \infty,\\ a_{12}^{\ast}& = \int_{1}^{+\infty}a_{12}(t)[1+(\log t)^{0.5}]^{0.3}\frac{\rm{d}t}{t} = \int_{1}^{+\infty}\frac{e^{-2t}}{[1+(\log t)^{0.5}]^{0.3}}[1+(\log t)^{0.5}]^{0.3}\frac{\rm{d}t}{t}\leq\frac{1}{2e^{2}} < \infty,\\ a_{13}^{\ast}& = \int_{1}^{+\infty}a_{13}(t)\frac{\rm{d}t}{t} = \int_{1}^{+\infty}\frac{t}{2(4+t)^{2}}\frac{\rm{d}t}{t} = \frac{1}{10} < \infty,\\ a_{14}^{\ast}& = \int_{1}^{+\infty}a_{14}(t)\frac{\rm{d}t}{t} = \int_{1}^{+\infty}\frac{t}{5(1+t^{2})}\frac{\rm{d}t}{t} = \frac{\pi}{10} < \infty,\\ a_{20}^{\ast}& = \int_{1}^{+\infty}a_{20}(t)\frac{\rm{d}t}{t} = \int_{1}^{+\infty}t^{-5}\frac{\rm{d}t}{t} = \frac{1}{5} < \infty, \end{aligned} |
\begin{aligned} a_{21}^{\ast}& = \int_{1}^{+\infty}a_{11}(t)[1+(\log t)^{0.8}]^{0.2}\frac{\rm{d}t}{t} = \int_{1}^{+\infty}\frac{e^{-3t}}{[1+(\log t)^{0.8}]^{0.2}}[1+(\log t)^{0.8}]^{0.2}\frac{\rm{d}t}{t} \leq\frac{1}{3e^{3}} < \infty,\\ a_{22}^{\ast}& = \int_{1}^{+\infty}a_{12}(t)[1+(\log t)^{0.5}]^{0.4}\frac{\rm{d}t}{t} = \int_{1}^{+\infty}\frac{e^{-4t}}{[1+(\log t)^{0.5}]^{0.3}}[1+(\log t)^{0.5}]^{0.4}\frac{\rm{d}t}{t}\leq\frac{1}{4e^{4}} < \infty,\\ a_{23}^{\ast}& = \int_{1}^{+\infty}a_{13}(t)\frac{\rm{d}t}{t} = \int_{1}^{+\infty}\frac{t}{5(1+t^{2})}\frac{\rm{d}t}{t}\leq\frac{\pi}{10} < \infty,\\ a_{24}^{\ast}& = \int_{1}^{+\infty}a_{14}(t)\frac{\rm{d}t}{t} = \int_{1}^{+\infty}\frac{t}{(9+t)^{2}}\frac{\rm{d}t}{t}\leq\frac{1}{10} < \infty,\\ \end{aligned} |
which imply that assumption (C2) holds.
From the expression of function f_{j} , we can infer that f_{j} is increasing respect to the variables u_{1}, u_{2}, u_{3}, u_{4}, \forall t\in J, j = 1, 2 . Hence assumption (C3) is also satisfied. By Theorem 3.1, it follows that the system (4.1) have two pairs of positive solutions (u^{\ast}, v^{\ast}) and (w^{\ast}, z^{\ast}) , which can be constructed via the limit of two explicit monotone iterative sequences in (3.11) and (3.12).
Example 4.2 Consider the following Hadamard type fractional differential system
\begin{equation} \left\{ \begin{array}{ll} -{}^HD^{1.8}u(t) = e^{-2t}+\frac{e^{-t}|u(t)|}{[1+(\log t)^{0.8}]} +\frac{e^{-2t}|v(t)|^{0.3}}{[1+(\log t)^{0.5}]} +\frac{t|{}^HD^{0.8}u(t)|}{2(4+t)^{2}} +\frac{t|{}^HD^{0.5}v(t)|}{5(1+t^{2})},\\\\ - {}^HD^{1.5}v(t) = t^{-5}+\frac{e^{-3t}|u(t)|}{[1+(\log t)^{0.8}]} +\frac{e^{-4t}|v(t)|^{0.4}}{[1+(\log t)^{0.5}]} +\frac{t|{}^H D^{1.5}u(t)|}{5(1+t^{2})} +\frac{t|{}^H D^{0.5}v(t)|}{(9+t)^{2}},\\\\ u(1) = 0,\ {}^HD^{0.8}u(+\infty) = 0.2{}^HI^{1.8}u(2.5)+0.1{}^HI^{2.8}u(2.5),\\\\ v(1) = 0, {}^HD^{0.5}v(+\infty) = 0.1{}^HI^{1.5}u(1.5)+0.3{}^HI^{2.5}u(1.5)+2{}^HI^{3.5}u(1.5),\\ \end{array} \right. \end{equation} | (4.2) |
where \alpha_{1} = 1.8, \ \ \alpha_{2} = 1.5, \ \ \beta_{11} = 1.8, \ \ \beta_{12} = 2.8, \ \ \lambda_{11} = 0.2, \ \ \lambda_{12} = 0.1, \ \ \beta_{21} = 1.5, \ \ \beta_{22} = 2.5, \ \ \beta_{23} = 3.5, \ \ \lambda_{21} = 0.1, \ \ \lambda_{22} = 0.3, \ \ \lambda_{23} = 2, \ \ \eta_{1} = 2.5, \ \ \eta_{2} = 1.5 and
f_{1}(t,u_{1},u_{2},u_{3},u_{4}) = e^{-2t}+\frac{e^{-t}|u_{1}|}{1+(\log t)^{0.8}} +\frac{e^{-2t}|u_{2}|}{[1+(\log t)^{0.5}]} +\frac{t|u_{3}|}{2(4+t)^{2}} +\frac{t|u_{4}|}{5(1+t^{2})}, |
f_{2}(t,u_{1},u_{2},u_{3},u_{4}) = t^{-5}+\frac{e^{-3t}|u_{1}|}{1+(\log t)^{0.8}} +\frac{e^{-4t}|u_{2})|}{[1+(\log t)^{0.5}]} +\frac{t|u_{3}|}{5(1+t^{2})} + \frac{t|u_{4}|}{(9+t)^{2}}. |
Same to example (4.1), it is easy to verify that assumption (C1) hods.
Observing that
\begin{aligned} &|f_{1}(t,u_{1},u_{2},u_{3},u_{4})-f_{1}(t,\overline{u}_{1},\overline{u}_{2},\overline{u}_{3},\overline{u}_{4})|\\ \leq& \frac{e^{-t}}{1+(\log t)^{0.8}}|u_{1}-\overline{u}_{1}| +\frac{e^{-2t}}{1+(\log t)^{0.5}}|u_{2}-\overline{u}_{2}|+\frac{t}{2(4+t)^{2}}|u_{3}-\overline{u}_{3}|+\frac{t}{5(1+t^{2})}|u_{4}-\overline{u}_{4}|\\ = &b_{11}(t)|u_{1}-\overline{u}_{1}|+b_{12}(t)|u_{2}-\overline{u}_{2}|+b_{13}(t)|u_{3}-\overline{u}_{3}| +b_{14}(t)|u_{4}-\overline{u}_{4}|,\\ &|f_{2}(t,u_{1},u_{2},u_{3},u_{4})-f_{2}(t,\overline{u}_{1},\overline{u}_{2},\overline{u}_{3},\overline{u}_{4})|\\ \leq& \frac{e^{-3t}}{1+(\log t)^{0.8}}|u_{1}-\overline{u}_{1}| +\frac{e^{-4t}}{1+(\log t)^{0.5}}|u_{2}-\overline{u}_{2}|+\frac{t}{5(1+t^{2})}|u_{3}-\overline{u}_{3}| +\frac{t}{(9+t)^{2}}|u_{4}-\overline{u}_{4}|\\ = &b_{21}(t)|u_{1}-\overline{u}_{1}|+b_{22}(t)|u_{2}-\overline{u}_{2}|+b_{23}(t)|u_{3}-\overline{u}_{3}| +b_{24}(t)|u_{4}-\overline{u}_{4}|, \end{aligned} |
by a same computation as example (4.1), one can obtain
\begin{aligned} b_{11}^{\ast}& = \int_{1}^{+\infty}b_{11}(t)[1+(\log t)^{0.8}]\frac{\rm{d}t}{t} \leq\frac{1}{e} < \infty,\ b_{12}^{\ast} = \int_{1}^{+\infty}b_{12}(t)[1+(\log t)^{0.5}]\frac{\rm{d}t}{t}\leq\frac{1}{2e^{2}} < \infty,\\ b_{13}^{\ast}& = \int_{1}^{+\infty}b_{13}(t)\frac{\rm{d}t}{t} = \frac{1}{10} < \infty, b_{14}^{\ast} = \int_{1}^{+\infty}a_{14}(t)\frac{\rm{d}t}{t} = \frac{\pi}{10} < \infty,\\ b_{21}^{\ast}& = \int_{1}^{+\infty}b_{21}(t)[1+(\log t)^{0.8}]\frac{\rm{d}t}{t} \leq\frac{1}{3e^{3}} < \infty, b_{22}^{\ast} = \int_{1}^{+\infty}b_{22}(t)[1+(\log t)^{0.5}]\frac{\rm{d}t}{t}\leq\frac{1}{4e^{4}} < \infty,\\ b_{23}^{\ast}& = \int_{1}^{+\infty}b_{13}(t)\frac{\rm{d}t}{t}\leq\frac{\pi}{10} < \infty, b_{24}^{\ast} = \int_{1}^{+\infty}b_{14}(t)\frac{\rm{d}t}{t}\leq\frac{1}{10} < \infty,\\ \lambda_{1}& = \int_{1}^{+\infty}f_{1}(t,0,0,0,0)dt = \int_{1}^{+\infty}e^{-2t}\frac{\rm{d}t}{t} \leq\frac{1}{2e^{2}} < \infty,\\ \lambda_{2}& = \int_{1}^{+\infty}f_{2}(t,0,0,0,0)dt = \int_{1}^{+\infty}t^{-5}\frac{\rm{d}t}{t} = \frac{1}{5} < \infty, \end{aligned} |
which show that assumption (C4) holds. By direct computation, one can obtain that \Lambda_{1} = 1.125161, \ \ \Lambda_{2} = 1.143496, \ \ \Xi_{1} = 1.051490, \ \ \Xi_{2} = 1.015251, \ \ \Upsilon = 1.143496,
m = \Upsilon\max\Big\{\sum\limits_{k = 1}^{4}b_{1k}^{\ast},\sum\limits_{k = 1}^{4}b_{2k}^{\ast}\Big\}\leq1.143496\times \max\Big\{0.849706,0.435334\Big\} = 0.971635 < 1. |
Hence all presupposed conditions of Theorem 3.2 are satisfied. Then the system (4.2) has a unique positive solution (x, y) , which can be constructed via the limit of the iterative sequence in (3.16).
In this paper, we consider a class of Hadamard type fractional differential system. By the aid of monotone iterative technique and Banach's contraction mapping principle, under certain nonlinear and linear increasing conditions, we construct some explicit monotone iterative sequences for approximating the extreme positive solutions and the unique positive solutions. Our results generalize iterative solution of a single equation to the case of a system, and the nonlinear term contains Hadamard type fractional derivative which can be used more widely. Further work is still needed including discussions on iterative solution for Hadamard type fractional differential system with coupling integral condition and additional studies on iterative solution for impulsive Hadamard type fractional differential system.
This work is supported by Foundation of Anhui Provincial Education Department (Grant No. KJ2020A0735 and 2020jxtd286), the Foundation of Suzhou University (Grant No. 2019XJZY02, 2019XJSN03 and szxy2020xxkc03), the China Postdoctoral Science Foundation (Grant No. 2019M652348), Natural Science Foundation of Chongqing (Grant No. cstc2020jcyj-msxmX0123), Technology Research Foundation of Chongqing Educational Committee (Grant No. KJQN201900539 and KJQN202000528) and the Key Laboratory Open Issue of School of Mathematical Science, Chongqing Normal University (Grant No. CSSXKFKTM202003).
The authors declare no conflict of interest.
[1] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Volume 204 of North-Holland Mathematics Studies, Amsterdam, The Netherlands: Elsevier, 2006. |
[2] | Y. Zhou, J. Wang, L. Zhang, Basic Theory of Fractional Differential Equations, Singapore: World Scientific, 2014. |
[3] |
Y. Wang, H. Wang, Triple positive solutions for fractional differential equation boundary value problems at resonance, Appl. Math. Lett., 106 (2020), 106376. doi: 10.1016/j.aml.2020.106376
![]() |
[4] |
Y. Li, J. Liu, D. O'Regan, J. Xu, Nontrivial solutions for a system of fractional q-difference equations involving q-integral boundary conditions, Mathematics, 8 (2020), 828. doi: 10.3390/math8050828
![]() |
[5] | B. Liu, Y. Liu, Positive solutions of a two-point boundary value problem for singular fractional differential equations in Banach space, J. Funct. Space Appl., 2013 (2013), 585639. |
[6] | Y. Liu, H. Yu, Bifurcation of positive solutions for a class of boundary value problems of fractional differential inclusions, Abstr. Appl. Anal., 2013 (2013), 942831. |
[7] | Y. Liu, Positive solutions using bifurcation techniques for boundary value problems of fractional differential equations, Abstr. Appl. Anal., 2013 (2013), 162418. |
[8] | T. Qi, Y. Liu, Y. Cui, Existence of solutions for a class of coupled fractional differential systems with nonlocal boundary conditions, J. Funct. Space Appl., 2017 (2017), 6703860. |
[9] |
T. Qi, Y. Liu, Y. Zou, Existence result for a class of coupled fractional differential systems with integral boundary value conditions, J. Nonlinear Sci. Appl., 10 (2017), 4034–4045. doi: 10.22436/jnsa.010.07.52
![]() |
[10] | Y. Wang, Y. Liu, Y. Cui, Multiple solutions for a nonlinear fractional boundary value problem via critical point theory, J. Funct. Space Appl., 2017 (2017), 8548975. |
[11] |
Y. Wang, Y. Liu, Y. Cui, Multiple sign-changing solutions for nonlinear fractional Kirchhoff equations, Bound. Value Probl., 2018 (2018), 193. doi: 10.1186/s13661-018-1114-8
![]() |
[12] | Y. Liu, Bifurcation techniques for a class of boundary value problems of fractional impulsive differential equations, J. Nonlinear Sci. Appl., 8 (2015), 340–353. |
[13] |
Y. Wang, Y. Liu, Y. Cui, Infinitely many solutions for impulsive fractional boundary value problem with p-Laplacian, Bound. Value Probl., 2018 (2018), 94. doi: 10.1186/s13661-018-1012-0
![]() |
[14] | W. Cheng, J. Xu, D. O'Regan, Y. Cui, Positive solutions for a nonlinear discrete fractional boundary value problems with a p-Laplacian operator, J. Appl. Anal. Comput., 9 (2019), 1959–1972. |
[15] |
P. Bedi, A. Kumar, T. Abdeljawad, A. Khan, Existence of mild solutions for impulsive neutral Hilfer fractional evolution equations, Adv. Differ. Equations, 2020 (2020), 155. doi: 10.1186/s13662-020-02615-y
![]() |
[16] |
P. Bedi, A. Kumar, T. Abdeljawad, A. Khan, Existence and approximate controllability of Hilfer fractional evolution equations with almost sectorial operators, Adv. Differ. Equations, 2020 (2020), 615. doi: 10.1186/s13662-020-03074-1
![]() |
[17] |
P. Bedi, A. Kumar, T. Abdeljawad, A. Khan, Study of Hilfer fractional evolution equations by the properties of controllability and stability, Alex. Eng. J., 60 (2021), 3741–3749. doi: 10.1016/j.aej.2021.02.014
![]() |
[18] |
A. Devi, A. Kumar, T. Abdeljawad, A. Khan, Stability analysis of solutions and existence theory of fractional Lagevin equation, Alex. Eng. J., 60 (2021), 3641–3647. doi: 10.1016/j.aej.2021.02.011
![]() |
[19] | J. Hadamard, Essai surletude des fonctions donnees parleur developpmentde Taylor, J. Mat. Pure Appl. Ser., 8 (1892), 101–186. |
[20] |
P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Compositions of Hadamard-type fractional integration operators and the semigroup property, J. Math. Anal. Appl., 269 (2002), 387–400. doi: 10.1016/S0022-247X(02)00049-5
![]() |
[21] |
P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Fractional calculus in the Mellin setting and Hadamard-type fractional integrals, J. Math. Anal. Appl., 269 (2002), 1–27. doi: 10.1016/S0022-247X(02)00001-X
![]() |
[22] |
P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Mellin transform analysis and integration by parts for Hadamard-type fractional integrals, J. Math. Anal. Appl., 270 (2002), 1–15. doi: 10.1016/S0022-247X(02)00066-5
![]() |
[23] |
H. Huang, W. Liu, Positive solutions for a class of nonlinear Hadamard fractional differential equations with a parameter, Adv. Differ. Equations, 2018 (2018), 96. doi: 10.1186/s13662-018-1551-9
![]() |
[24] |
W. Yang, Y. Qin, Positive solutions for nonlinear Hadamard fractional differential equations with integral boundary conditions, Scienceasia, 43 (2017), 201–206. doi: 10.2306/scienceasia1513-1874.2017.43.201
![]() |
[25] |
J, Jiang, D. O'Regan, J. Xu, Z. Fu, Positive solutions for a system of nonlinear Hadamard fractional differential equations involving coupled integral boundary conditions, J. Inequal. Appl., 2019 (2019), 18. doi: 10.1186/s13660-019-1963-4
![]() |
[26] | H. Zhang, Y. Li, J. Xu, Positive solutions for a system of fractional integral boundary value problems involving Hadamard-type fractional derivatives, Complexity, 2019 (2019), 204. |
[27] | X. Du, Y. Meng, H. Pang, Iterative positive solutions to a coupled Hadamard-type fractional differential system on infinite domain with the multistrip and multipoint mixed boundary conditions, J. Funct. Spaces, 2020 (2020), 6508075. |
[28] |
J. Xu, J. Jiang, D. O'Regan, Positive solutions for a class of p-Laplacian Hadamard fractional-order three-point boundary value problems, Mathematics, 8 (2020), 308. doi: 10.3390/math8030308
![]() |
[29] | B. Ahmad, S. K. Ntouyas, A fully Hadamard type integral boundary value problem of a coupled system of fractional differential equations, Fract. Calc. Appl. Anal., 17 (2014), 348–360. |
[30] |
W. Yang, Monotone iterative technique for a coupled system of nonlinear Hadamard fractional differential equations, J. Appl. Math. Comput., 59 (2019), 585–596. doi: 10.1007/s12190-018-1192-x
![]() |
[31] |
G. Wang, K. Pei, D. Baleanu, Explicit iteration to Hadamard fractional integro-differential equations on infinite domain, Adv. Differ. Equations, 2016 (2016), 11. doi: 10.1186/s13662-015-0737-7
![]() |
[32] |
P. Thiramanus, S. K. Ntouyas, J. Tariboon, Positive solutions for Hadamard fractional differential equations on infinite domain, Adv. Differ. Equations, 2016 (2016), 18. doi: 10.1186/s13662-016-0752-3
![]() |
[33] | K, Pei, G. Wang, Y. Sun, Successive iterations and positive extremal solutions for a Hadamard type fractional integro-differential equations on infinite domain, Appl. Math. Comput., 312 (2017), 158–168. |
[34] |
G. Wang, K. Pei, R. P. Agarwal, L. H. Zhang, B. Ahmad, Nonlocal Hadamard fractional boundary value problem with Hadamard integral and discrete boundary conditions on a half-line, J. Comput. Appl. Math., 343 (2018), 230–239. doi: 10.1016/j.cam.2018.04.062
![]() |
[35] |
W. Zhang, W. Liu, Existence of solutions for several higher-order Hadamard-type fractional differential equations with integral boundary conditions on infinite interval, Bound. Value Probl., 2018 (2018), 27. doi: 10.1186/s13661-018-0947-5
![]() |
[36] |
S. Li, C. Zhai, Positive solutions for a new class of Hadamard fractional differential equations on infinite intervals, J. Inequal. Appl., 2019 (2019), 9. doi: 10.1186/s13660-019-1960-7
![]() |
[37] |
J. Tariboon, S. K. Ntouyas, S. Asawasamrit, C. Promsakon, Positive solutions for Hadamard differential systems with fractional integral conditions on an unbounded domain, Open Math., 15 (2017), 645–666. doi: 10.1515/math-2017-0057
![]() |
[38] |
W. Zhang, W. Liu, Existence, uniqueness, and multiplicity results on positive solutions for a class of Hadamard-type fractional boundary value problem on an infinite interval, Math. Meth. Appl. Sci., 43 (2020), 2251–2275. doi: 10.1002/mma.6038
![]() |
[39] |
X. Li, X. Liu, M. Jia, L. Zhang, The positive solutions of infinite-point boundary value problem of fractional differential equations on the infinite interval, Adv. Differ. Equations, 2017 (2017), 126. doi: 10.1186/s13662-017-1185-3
![]() |
[40] |
L. Zhang, B. Ahmad, G. Wang, Successive iterations for positive extremal solutions of nonlinear fractional differential equations on a half-line, Bull. Aust. Math. Soc., 91 (2015), 116–128. doi: 10.1017/S0004972714000550
![]() |
[41] |
L. Zhang, B. Ahmad, G. Wang, Monotone iterative method for a class of nonlinear fractional differential equations on unbounded domains in Banach spaces, Filomat, 31 (2017), 1331–1338. doi: 10.2298/FIL1705331Z
![]() |
[42] | G. Wang, Z. Bai, L. Zhang, successive iterations for the unique positive solution of a nonlinear fractional q-integral boundary problem, J. Appl. Anal. Comput., 9 (2019), 1204–1215. |
1. | Weiwei Liu, Lishan Liu, Properties of Hadamard Fractional Integral and Its Application, 2022, 6, 2504-3110, 670, 10.3390/fractalfract6110670 | |
2. | Yaohong Li, Shikun Bai, Donal O'Regan, MONOTONE ITERATIVE POSITIVE SOLUTIONS FOR A FRACTIONAL DIFFERENTIAL SYSTEM WITH COUPLED HADAMARD TYPE FRACTIONAL INTEGRAL CONDITIONS, 2023, 13, 2156-907X, 1556, 10.11948/20220359 | |
3. | Sabbavarapu Nageswara Rao, Abdullah Ali H. Ahmadini, Multiple positive solutions for system of mixed Hadamard fractional boundary value problems with (p_{1}, p_{2}) -Laplacian operator, 2023, 8, 2473-6988, 14767, 10.3934/math.2023755 |