In this article, we establish the inequalities of the Redheffer-type involving generalized Fox-Wright function. Furthermore, as a consequence, new Redheffer-type inequalities for generalized hypergeometric functions and the four-parametric generalized Mittag-Leffler functions are also discussed by using the suitable values of exponents in generalized inequalities.
Citation: Saima Naheed, Shahid Mubeen, Gauhar Rahman, M. R. Alharthi, Kottakkaran Sooppy Nisar. Some new inequalities for the generalized Fox-Wright functions[J]. AIMS Mathematics, 2021, 6(6): 5452-5464. doi: 10.3934/math.2021322
[1] | Khaled Mehrez, Abdulaziz Alenazi . Bounds for certain function related to the incomplete Fox-Wright function. AIMS Mathematics, 2024, 9(7): 19070-19088. doi: 10.3934/math.2024929 |
[2] | Gauhar Rahman, Shahid Mubeen, Kottakkaran Sooppy Nisar . On generalized $\mathtt{k}$-fractional derivative operator. AIMS Mathematics, 2020, 5(3): 1936-1945. doi: 10.3934/math.2020129 |
[3] | Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565 |
[4] | Miguel Vivas-Cortez, Muhammad Zakria Javed, Muhammad Uzair Awan, Artion Kashuri, Muhammad Aslam Noor . Generalized $ (p, q) $-analogues of Dragomir-Agarwal's inequalities involving Raina's function and applications. AIMS Mathematics, 2022, 7(6): 11464-11486. doi: 10.3934/math.2022639 |
[5] | Saima Naheed, Shahid Mubeen, Thabet Abdeljawad . Fractional calculus of generalized Lommel-Wright function and its extended Beta transform. AIMS Mathematics, 2021, 6(8): 8276-8293. doi: 10.3934/math.2021479 |
[6] | Hari M. Srivastava, Artion Kashuri, Pshtiwan Othman Mohammed, Abdullah M. Alsharif, Juan L. G. Guirao . New Chebyshev type inequalities via a general family of fractional integral operators with a modified Mittag-Leffler kernel. AIMS Mathematics, 2021, 6(10): 11167-11186. doi: 10.3934/math.2021648 |
[7] | Sabir Hussain, Rida Khaliq, Sobia Rafeeq, Azhar Ali, Jongsuk Ro . Some fractional integral inequalities involving extended Mittag-Leffler function with applications. AIMS Mathematics, 2024, 9(12): 35599-35625. doi: 10.3934/math.20241689 |
[8] | Xiuzhi Yang, G. Farid, Waqas Nazeer, Muhammad Yussouf, Yu-Ming Chu, Chunfa Dong . Fractional generalized Hadamard and Fejér-Hadamard inequalities for m-convex functions. AIMS Mathematics, 2020, 5(6): 6325-6340. doi: 10.3934/math.2020407 |
[9] | Maryam Saddiqa, Ghulam Farid, Saleem Ullah, Chahn Yong Jung, Soo Hak Shim . On Bounds of fractional integral operators containing Mittag-Leffler functions for generalized exponentially convex functions. AIMS Mathematics, 2021, 6(6): 6454-6468. doi: 10.3934/math.2021379 |
[10] | Ye Yue, Ghulam Farid, Ayșe Kübra Demirel, Waqas Nazeer, Yinghui Zhao . Hadamard and Fejér-Hadamard inequalities for generalized $ k $-fractional integrals involving further extension of Mittag-Leffler function. AIMS Mathematics, 2022, 7(1): 681-703. doi: 10.3934/math.2022043 |
In this article, we establish the inequalities of the Redheffer-type involving generalized Fox-Wright function. Furthermore, as a consequence, new Redheffer-type inequalities for generalized hypergeometric functions and the four-parametric generalized Mittag-Leffler functions are also discussed by using the suitable values of exponents in generalized inequalities.
In mathematical analysis and its applications, the hypergeometric function plays a vital role. Various special functions which are used in different branches of science are special cases of hypergeometric functions. Numerous extensions of special functions have introduced by many authors (see [1,2,3,4]). The generalized Gamma k-function and its properties are broadly discussed in [5,6,7,8]. Later on, the researchers [9] motivated by the above idea and presented the k-fractional integral and its applications. The integral representation of generalized confluent hypergeometric and hypergeometric k-functions is presented by Mubeen and Habibullah [10]. The series solution of k-hypergeometric differential equation is proposed by Mubeen et al. [11,12,13]. Li and Dong [14] established the hypergeometric series solutions for the second-order non-homogeneous k-hypergeometric differential equation. The Generalized Wright k-function and its different indispensable properties are briefly discussed in [15,16]. A class of Whittaker integral transforms involving confluent hypergeometric function and Fox H-function as kernels are discussed in [17,18]. An extension of some variant of Meijer type integrals in the class of Bohemians is elaborated in [19].
Generalization of Gr¨uss-type and Hermite-Hadamard type inequalities concerning with k-fractional integrals are explored in [20,21]. Many researchers have derived the generalized forms of the Riemann-Liouville k-fractional integrals and established several inequalities by considering various generalized fractional integrals. The readers may confer with [22,23,24,25,26] for details.
The Hadamard k-fractional integrals and Hadamard-type inequalities for k-fractional Riemann-Liouville integrals are presented by Farid et al. [27,28]. In [29,30], the authors have established inequalities by employing Hadamard-type inequalities for k-fractional integrals. Nisar et al. [31] discussed Gronwall type inequalities by considering Riemann-Liouville k and Hadamard k-fractional derivatives. Hadamard k-fractional derivative and its properties are disscussed in [32]. Rahman et al. [33] described generalized k-fractional derivative operator.
The Mittag-Leffler function naturally occurs in the solutions of fractional integrodifferential equations having an arbitrary order that is similar to that of the exponential function. The Mittag-Leffler functions have acquired significant recognition due to their wide applications in assorted fields. The Mittag-Leffler stability of fractional-order nonlinear dynamic systems is studied in [34]. Dos Santos discussed the Mittag-Leffler function in the diffusion process in [35]. The noteworthy role of the Mittag-Leffler function and its generalizations in fractional modelling is explored by Rogosin [36]. We suggest the readers to study the literature [37,38,39] for more details.
Now, we present some basic definitions and results.
The normalized Wright function is defined as
Wγ,δ(z)=Γ(δ)∞∑n=0znΓ(δ+nγ)n!,γ>−1,δ∈C. | (1.1) |
Fox [40] and Wright [41] defined the Fox-Wright hypergeometric function uψv as:
uψv[(γ1,C1),.....,(γu,Cu)(δ1,D1)),.....,(δv,Dv)|z]=∞∑n=0∏ui=1Γ(γi+nCi)zn∏vi=1Γ(δi+nDi)n!, | (1.2) |
where Ci≥0,i=1,...,u;Di≥0,i=1,...,v. The function uψv is the generalized form of the well-known hypergeometric function uFv with u and v number of parameters in numerator and denominator respectively. It is given in [42] as:
uFv[γ1,.....,γuδ1,.....,δv|z]=∞∑n=0∏ui=1 (γi)nzn∏vi=1 (δi)nn!, | (1.3) |
where (κ)n is called the Pochhammer symbol and is defined by Petojevic [43] as:
(κ)0=1,and(κ)n=κ(κ+1).....(κ+n−1)=Γ(κ+n)Γ(κ),n∈N. |
From definitions (1.2) and (1.3), we have the following relation
uψv[(γ1,1),.....,(γu,1)(δ1,1),.....,(δv,1)|z]=Γ(γ1).....Γ(γu)Γ(δ1).....Γ(δv)uFv[γ1,.....,γuδ1,.....,δv|z]. | (1.4) |
The Mittag-Leffler function with 2m parameters [44] is defined as follows:
E(δ,D)m(z)=∞∑n=0zn∏mi=1Γ(δi+nDi),z∈C | (1.5) |
and in the form of Fox-Wright function it can be expressed as:
E(δ,D)m(z)=1ψm[(1,1)(δ1,D1),.....,(δv,Dv)|z],z∈C. | (1.6) |
The function ϕ(δ1,D1)(γ1,δ2):(0,∞)→R is defined in [45] as
ϕ(δ1,D1)(γ1,δ2)(z)=Γ(δ1)Γ(δ2)Γ(γ1)1ψ2[(γ1,1)(δ1,D1),(δ2,D2)|z],z∈C, | (1.7) |
where γ1,δ1,δ2 and D1>0.
Diaz and Pariguan [46] proposed the following Pochhammer's k-symbol (z)n,k and the generalized Gamma k-function by
(u)n,k=u(u+k)(u+2k)....(u+(n−1)k);u∈C,k∈R,n∈N+ |
Γk(u)=limn→∞=n!kn(nk)uk−1u)n,k,k>0,u∈C−kZ, |
respectively. They also introduced the generalized hypergeometric k-function in [46] as follows:
uFv,k[(γ1,k),.....,(γu,k)(δ1,k),.....,(δv,k)|z]=∞∑n=0∏ui=1 (γi)n,k z n∏vi=1 (δi)n,k n!. | (1.8) |
Now, we define the normalized Wright k-function as follows:
Wγ,δ,k(z)=Γk(δ)∞∑n=0znΓk(δ+knγ)n!,γ>−1,δ∈C |
and the Fox -Wright type k-function is as follows:
uψv[(γ1,kC1),.....,(γu,kCu)(δ1,kD1)),.....,(δv,kDv)|z]=∞∑n=0∏ui=1 Γk (γi+nkCi)zn∏vi=1 Γk (δi+nkDi)n!, | (1.9) |
So from Eqs (1.9) and (1.8), we have
uψv,k[(γ1,k),.....,(γu,k)(δ1,k),.....,(δv,k)|z]=Γk(γ1).....Γk(γu)Γk(δ1).....Γk(δv)uFv,k[(γ1,k),.....,(γu,k)(δ1,k),.....,(δv,k)|z] | (1.10) |
and (1.5) takes the form
E(δ,D)m,k(z)=∞∑n=0zn∏mi=1Γk(δi+nkDi),z∈C. | (1.11) |
The function E(δ,D)m,k(z) in terms of the function uψv,k is expressed as
E(δ,D)m,k(z)=1ψm,k[(1,k)(δ1,kD1),.....,(δv,kDv)|z]z∈C. | (1.12) |
So the function (1.7) is given by
ϕ(δ1,D1)γ1,δ2,k(z)=Γk(δ1)Γk(δ2)Γk(γ1)1ψ2,k[(γ1,k)(δ1,kD1),(δ2,k)|z]z∈C. | (1.13) |
Redheffer [47] presented the following inequality in 1969,
π2−x2π2+x2≤sinxx. | (1.14) |
In the same year, Redheffer and Williams [48] proved the above inequality. Zhu and Sun [49] used the hyperbolic functions sinhx and coshx and proved the following Redheffer-type inequalities
(r2+x2r2−x2)γ≤sinhxx≤(r2+x2r2−x2)δ | (1.15) |
and
(r2+x2r2−x2)γ≤coshx≤(r2+x2r2−x2)δ1, | (1.16) |
where 0<x<r,γ≤0,δ≥r212 and δ1≥r24. By using the inequalities (1.15) and (1.16), Mehrez proved the following Theorem (see[50]).
Theorem 1.1. The following inequalities
(s+zs−z)σγ,δ≤Wγ,δ(z)≤(s+zs−z)ργ,δ | (1.17) |
holds true for all s>0, γ,δ>0, 0<z<s, where σγ,δ=0 and ργ,δ=sΓ(δ)2Γ(δ+γ) are the best possible constants and Wγ,δ is the normalized Wright function defined by (1.1).
Recently, the same author has proved the following inequality (see[45]).
Theorem 1.2. Suppose that r,γ1,δ1,δ2,D1>0. Then the subsequent inequalities
(r+zr−z)λ(δ1 ,D1)γ1,δ2≤ϕ(δ1,D1)γ1,δ2(z)≤(r+zr−z)μ(δ1 ,D1)γ1,δ2 | (1.18) |
are true for all z∈(0,r), where λ(δ1,D1)γ1,δ2=0 and μ(δ1,D1)γ1,δ2=rγ1Γ(δ1)2δ2Γ(δ1+D1) are the best possible constants. Where ϕ(δ1,D1)γ1,δ2(z) is defined in (1.7).
In this article, we extend the Redheffer-type inequality (1.18) for the normalized Fox-Wright k-functions ϕ(δ1,D1)γ1,δ2,k(z) and establish new Redheffertype inequalities for the hypergeometric k-function 1F2,k and for the four parametric Mittag-Leffler k-function ˜Eδ1,D1;δ2,1,k(z)=Γk(δ1)Γk(δ2)Eδ1,D1;δ2,1,k(z).
In this section, we first state the two lemmas which are helpful for proving the main results. The first lemma from [51] describes the monotonicity of two power series, and the second lemma is the monotone form of the L'Hospitals' rule [52]. The two lemmas are stated below.
Lemma 2.1. Suppose that the two sequences {un}n≥0 and {vn}n≥0 of real numbers, and let the power series f(x)=∑n≥0unxn and g(x)=∑n≥0vnxn be convergent for |x|<r. If vn>0 for n≥0 and if the sequence {unvn}n≥0 is (strictly) increasing (decreasing), then the function x→f(x)g(x) is (strictly) increasing (decreasing) on (0,r).
Lemma 2.2. Suppose that the two functions f1,g1:[a,b]→R be continuous and differentiable on (a,b). Assume that g′1≠0 on (a,b). If f′1g′1 is increasing (decreasing) on (a,b), then the functions
x↦f1(x)−f1(a)g1(x)−g1(a)andx↦f1(x)−f1(b)g1(x)−g1(b) |
are also increasing (decreasing) on (a,b).
Theorem 2.3. Letr>0γ1,δ1,δ2,D1>0. Then the following inequalities holds
(r+zr−z)λ(δ1 ,D1)γ1,δ2≤ϕ(δ1 ,D1)γ1,δ2,k(z)≤(r+zr−z)μ(δ1 ,D1)γ1,δ2, | (2.1) |
where z∈(0,r), λ(δ1,D1)γ1,δ2=0 and μ(δ1,D1)γ1,δ2=rγ1Γk(δ1)2δ2Γk(δ1+kD1) are the appropriate constants.
Proof. From definition of the function ϕ(δ1,D1)γ1,δ2,k(z) from Eq (1.13), we have
ddz(ϕ(δ1 ,D1)γ1,δ2,k(z))=Γk(δ1)Γk(δ2)Γk(γ1)×∞∑n=0Γk(γ1+(n+1)k)znΓk(δ1+D1(n+1)k)Γk(δ2+(n+1)k)n!. | (2.2) |
Let
M(z)=logϕ(δ 1, D 1)γ 1 ,δ 2 ,k (z)log(r+zr−z)=g(z)h(z), |
where g(z)=log(ϕ(δ1,D1)γ1,δ2,k(z)) and h(z)=log(r+zr−z). Now we will find g′(z)h′(z) as given below
g′(z)h′(z)=(r2−z2)ddz(ϕ(δ 1, D 1)γ 1 ,δ 2 ,k (z))2rϕ(δ 1 ,D 1)γ 1 ,δ 2 ,k (z)=G(z)2rH(z), |
where G(z)=(r2−z2)ddz(ϕ(δ1,D1)γ1,δ2,k) and H(z)=ϕ(δ1,D1)γ1,δ2,k(z)
Using 2.2, we have
G(z)=Γk(δ1)Γk(δ2)Γk(γ1)(r2−z2)×∞∑n=0Γk(γ1+(n+1)k)znΓk(δ1+D1(n+1)k)Γk(δ2+(n+1)k)n!=Γk(δ1)Γk(δ2)Γk(γ1)(r2−z2)(∞∑n=0Γk(γ1+(n+1)k)znΓk(δ1+D1(n+1)k)Γk(δ2+(n+1)k)n!−∞∑n=2Γk(γ1+(n−1)k)znΓk(δ1+D1(n−1)k)Γk(δ2+(n−1)k)(n−2)!)=r2Γk(δ1)Γk(δ2)Γk(γ1+k)Γk(γ1)Γk(δ1+D1k)Γk(δ2+k)+r2Γk(δ1)Γk(δ2)Γk(γ1+2k)Γk(γ1)Γk(δ1+2D1k)Γk(δ2+2k)+Γk(δ1)Γk(δ2)Γk(γ1)∞∑n=2(r2Γk(γ1+(n+1)k)znΓk(δ1+D1(n−+)k)Γk(δ2+(n+1)k)n!−Γk(γ1+(n−1)k)znΓk(δ1+D1(n−1)k)Γk(δ2+(n−1)k)(n−2)!)zn=∞∑n=0vnzn, |
where b0, b1 and vn are as follows:
b0=r2Γk(δ1)Γk(δ2)Γk(γ1+k)Γk(γ1)Γk(δ1+D1k)Γk(δ2+k),b1=r2Γk(δ1)Γk(δ2)Γk(γ1+2k)Γk(γ1)Γk(δ1+2D1k)Γk(δ2+2k) |
and for n≥2, we have
vn=Γk(δ1)Γk(δ2)Γk(γ1)∞∑n=2(r2Γk(γ1+(n+1)k)Γk(δ1+D1(n−+)k)Γk(δ2+(n+1)k)n! |
−Γk(γ1+(n−1)k)znΓk(δ1+D1(n−1)k)Γk(δ2+(n−1)k)(n−2)!). |
Similarly, we can write H(z) as
H(z)=∞∑n=0dnzn, |
where
dn=Γk(δ1)Γk(δ2)Γk(γ1+nk)Γk(γ1)Γk(δ1+nkD1)Γk(δ2+nk). |
Next, we consider the sequence wn=vndn such that w0=a0 and w1=b1d1 and so on.
Now, we have
w1−w0=r2Γk(δ2+k)Γk(γ1+2k)Γk(δ1+kD1)Γk(δ2+2k)Γk(δ1+2kD1)Γk(γ1+k)−r2Γk(δ1)Γk(δ2)Γk(γ1+k)Γk(γ1)Γk(δ1+D1k)Γk(δ2+k)=r2(γ1+k)Γk(δ1+kD1)(δ2+k)Γk(δ1+2D1k)−r2Γk(δ1)δ2)Γk(δ1+D1k)≤γ1δ2[Γk(δ1+kD1))Γk(δ1+2kD1)−Γk(δ1)Γk(δ1+kD1)]≤0. | (2.3) |
Since γ1≥δ2 and employing the log-convexity property of Γk function, the ratio z↦Γk(z+c)Γk(z) is increasing on (0,∞) for c>0. This shows that the inequality stated below
Γk(z+c)Γk(z)≤Γk(z+c+d)Γk(z+d) | (2.4) |
holds for all z,c,d>0. Using (2.4) in (2.3) by letting z=δ1 and c=d=kD1, we observed that w1≤w0. Likely, we have
w2−w1=r2Γk(γ1+3k)Γk(δ2+2k)Γk(δ1+2kD1)Γk(δ2+3k)Γk(δ1+3kD1)Γk(γ1+2k)−r2Γk(δ2+k)Γk(δ1+kD1)Γk(γ1+2k)Γk(δ2+2k)Γk(δ1+2kD1)Γk(γ1+k)−2Γk(δ2+2k)Γk(δ1+2kD1)Γk(γ1+k)Γk(δ2+k)Γk(δ1+kD1)Γk(γ1+2k)=r2(γ1+2k)Γk(γ1+2k)(δ2+k)Γk(δ2+k)Γk(δ1+2kD1)(δ2+2k)Γk(δ2+2k)Γk(δ1+3kD1)(γ1+k)Γk(γ1+k)−r2Γk(δ2+k)Γk(δ1+kD1)Γk(γ1+2k)Γk(δ2+2k)Γk(δ1+2kD1)Γk(γ1+k)−2Γk(δ2+2k)Γk(δ1+2kD1)Γk(γ1+k)Γk(δ2+k)Γk(δ1+kD1)Γk(γ1+2k) |
=r2Γk(γ1+2k)Γk(δ2+k)Γk(δ2+2k)Γk(γ1+k)[(γ1+2k)(δ2+k)Γk(δ1+2kD1)(γ1+k)(δ2+2k)Γk(δ1+3kD1)−Γk(δ1+kD1)Γk(δ1+2kD1)]−2Γk(δ2+2k)Γk(δ1+2kD1)Γk(γ1+k)Γk(δ2+k)Γk(δ1+kD1)Γk(γ1+2k)≤0. | (2.5) |
Since by using Eq (2.4), when z=δ1+kD1 and c=d=kD1, we have w2≤w1.
Now, for n≥2, we have
wn+1−wn=r2Γk(γ1+(n+2)k)Γk(δ2+(n+1)k)Γk(δ1+(n+1)kD1)Γk(γ1+(n+1)k)Γk(δ2+(n+1)k)Γk(δ1+(n+2)kD1)−(n+1)!Γk(γ1+nk)Γk(δ2+(n+1)k)Γk(δ1+(n+1)kD1)(n−1)!Γk(γ1+(n+1)k)Γk(δ2+nk)Γk(δ1+nkD1)−r2Γk(γ1+(n+1)k)Γk(δ2+nk)Γk(δ1+nkD1)Γk(γ1+nk)Γk(δ2+(n+1)k)Γk(δ1+(n+1)kD1)+n!Γk(γ1+(n−1)k)Γk(δ2+nk)Γk(δ1+nkD1)(n−2)!Γk(γ1+nk)Γk(δ2+(n11)k)Γk(δ1+(n−1)kD1)=r2[(γ1+(n+1)k)Γk(δ1+(n+1)kD1)(δ2+(n+1)k)Γk(δ1+(n+2)kD1)−(γ1+n)k)Γk(δ1+nkD1)(δ2+nk)Γk(δ1+(n+1)kD1)]+n!(n−2)![(δ2+(n−1)k)Γk(δ1+nkD1)(γ1+(n−1)k)Γk(δ1+(n−2)kD1)−(n+1)(δ2+n)k)Γk(δ1+(n+1)kD1)(n−1)(γ1+nk)Γk(δ1+nkD1)]≤r2(γ1+nk)(δ2+nk)[Γk(δ1+(n+1)kD1)Γk(δ1+(n+2)kD1)−Γk(δ1+nkD1)Γk(δ1+(n+1)kD1)]+n!(δ2+(n−1)k)(n−2)!(γ+(n−1)k)[Γk(δ1+nkD1)Γk(δ1+(n−1)kD1)−Γk(δ1+(n+1)kD1)Γk(δ1+nkD1)] | (2.6) |
Using z=δ1+nkD1 and c=d=kD1, we have the inequality (2.4) in the following form
Γk(δ1+(n+2)kD1)Γk(δ1+nkD1)−Γ2k(δ1+(n+1)kD1)≥0 | (2.7) |
and similarly for using z=δ1+(n−1)kD1 and c=d=kD1, we have from (2.4)
Γk(δ1+(n+2)kD1)Γk(δ1+nkD1)−Γ2k(δ1+(n+1)kD1)≥0 | (2.8) |
so by using (2.7) and (2.8) in (2.6), we have
wn+1≤wn. | (2.9) |
Now from Eqs (2.3), (2.10) and (2.9), we conclude that the sequence {wn}n≥0 is a decreasing sequence.
From Lemma (2.1), we deduce that g′h′ is decreasing on (0,r) and accordingly the function M(z) is also decreasing on (0,r). Alternatively, using the Bernoulli-L'Hospital's rule we get
limz→0M(z)=rγ1Γk(δ1)2δ2Γk(δ1+kD1)andlimz→0M(z)=0. |
It is essential to reveal that there is another proof of this theorem which is described as following.
For this, we define a function Υ:(0,r)→R by
Υ(z)=rγ1Γk(δ1)2δ2Γk(δ1+D1)log(r+zr−z)−log(ϕ(δ1,kD1)γ1,δ2,k(z)). |
Consequently,
ϕ(δ1,kD1)γ1,δ2,k(z)Υ′(z)=r2γ1Γk(δ1)δ2Γk(δ1+D1)(r2−z2)ϕ(δ1,D1)γ1,δ2,k(z)−ddz(ϕ(δ1,D1)γ1,δ2,k(z))=Γk(δ1)Γk(δ2)Γk(γ1)[r2γ1Γk(δ1)δ2Γk(δ1+kD1)(r2−z2)∞∑n=0Γk(γ1+nk)znΓk(δ1+D1nk)Γk(δ2+nk)n!−∞∑n=0Γk(γ1+(n+1)k)znΓk(δ1+D1(n+1)k)Γk(δ2+(n+1)k)n!]≥Γk(δ1)Γk(δ2)Γk(γ1)[γ1Γk(δ1)δ2Γk(δ1+kD1)∞∑n=0Γk(γ1+nk)znΓk(δ1+D1nk)Γk(δ2+nk)n!−∞∑n=0Γk(γ1+(n+1)k)znΓk(δ1+D1(n+1)k)Γk(δ2+(n+1)k)n!]=Γk(δ1)Γk(δ2)Γk(γ1)∞∑n=0Γk(γ1+nk)znΓk(δ2+nk)n![γ1Γk(δ1)δ2Γk(δ1+kD1)−(γ1+nk)(δ2+nk)Γk(δ1+D1(n+1)k)]. | (2.10) |
Since γ1≥δ2, therefore γ1δ2≥γ1+nkδ2+nk for every n≥0 and resultantly
ϕ(δ1,D1)γ1,δ2,k(z)Υ′(z)≥Γk(δ1)Γk(δ2)Γk(γ1)∞∑n=0Γk(γ1+nk)znΓk(δ2+nk)n![Γk(δ1)Γk(δ1+kD1)−1Γk(δ1+kD1(n+1))]. |
Now, using the values z=δ1,c=kD1 and d=nkD1 in (2.4), function Υ(z) is increasing on (0,r) and consequently Υ(z)≥Υ(0)=0. This completes the proof of right hand side of the inequality 2.1. For proving the left hand side of (2.1), we conclude from Eq (2.2) that the function ϕ(δ1,D1)γ1,δ2,k(z) is increasing on (0,∞) and finally
ϕ(δ1,D1)γ1,δ2,k(z)≥ϕ(δ1,D1)γ1,δ2,k(0)=1. |
This ends the proof process of theorem 2.3.
Corollary 2.4. Let r,γ1,δ1,δ2>0. Then inequalities
(r+zr−z)λ(δ1,1)γ1,δ2≤1F2,k(γ1;δ1,δ2;z)≤(r+zr−z)μ(δ1,1)γ1,δ2, |
are true for all z∈(0,r), where λ(δ1,1)γ1,δ2=0 and μ(δ1,1)γ1,δ2=rγ12δ2δ1 are the suitable values of constants.
Proof. This inequality can be proved by using D1=1 in (2.1).
Corollary 2.5. Let r,δ1,D1>0. If 0<δ2≤1, then the following inequalities
(r+zr−z)λ(δ1,D1)1,δ2≤˜Eδ1,D1;δ2,1,k(z)≤(r+zr−z)μ(δ1,D1)1,δ2, |
hold for all z∈(0,r), where λ(δ1,D1)1,δ2=0 and μ(δ1,D1)1,δ2=rΓk(δ1)2δ2Γk(δ1+kD1) are the suitable values of constants.
Proof. This inequality can be proved by using γ1=1 in (2.1).
Remark 2.6. The particular cases of the inequalities in Corollaries 2.4 and 2.5 for k=1 are reduce to the results in [45,Corollaries 1.2 and 1.3] respectively.
This article deals with the Redheffer-type inequalities by using the more general Fox-Wright function. Moreover, from the newly established inequalities, the results for generalized hypergeometric functions and the four-parametric generalized Mittag-Leffler functions are also obtained by using the appropriate values of exponents in generalized inequalities. The obtained results are more general, as shown by relating the special cases with the existing literature. The idea we used in this article attracts scientists' attention, and they may stimulate further research in this direction.
Taif University Researchers Supporting Project number (TURSP-2020/275), Taif University, Taif, Saudi Arabia.
The authors declares that there is no conflict of interests regarding the publication of this paper.
[1] |
S. Araci, G. Rahman, A. Ghaffar, Azeema, K. S. Nisar, Fractional calculus of extended Mittag-Leffler function and its applications to statistical distribution, Mathematics, 7 (2019), 248. doi: 10.3390/math7030248
![]() |
[2] |
M. A. Chaudhry, S. M. Zubair, Generalized incomplete gamma functions with applications, J. Comput. Appl. Math., 55 (1994), 99–123. doi: 10.1016/0377-0427(94)90187-2
![]() |
[3] |
M. A. Chaudhry, S. M. Zubair, On the decomposition of generalized incomplete gamma functions with applications to Fourier transforms, J. Comput. Appl. Math., 59 (1995), 253–284. doi: 10.1016/0377-0427(94)00026-W
![]() |
[4] |
M. A. Chaudhry, S. M. Zubair, Extended incomplete gamma functions with applications, J. Math. Anal. Appl., 274 (2002), 725–745. doi: 10.1016/S0022-247X(02)00354-2
![]() |
[5] | M. Mansour, Determining the k-generalized gamma function Γk(x) by functional equations, Int. J. Contemp. Math. Sci., 4 (2019), 1037–1042. |
[6] | C. G. Kokologiannaki, Properties and inequalities of generalized k-gamma, beta and zeta functions, Int. J. Contemp. Math. Sci., 5 (2010), 653–660. |
[7] | V. Krasniqi, A limit for the k-gamma and k-beta function, Int. Math. Forum., 5 (2010), 1613–1617. |
[8] | F. Merovci, Power product inequalities for the Γk function, Int. J. Math. Anal., 4 (2010), 1007–1012. |
[9] |
S. Mubeen, Solution of some integral equations involving confluent k-hypergeometric functions, Appl. Math., 4 (2013), 9–11. doi: 10.4236/am.2013.47A003
![]() |
[10] | S.Mubeen, G. M. Habibullah, An integral representation of some k-hypergeometric functions, Int. Math. Forum., 7 (2012), 203–207. |
[11] |
S. Mubeen, Solution of some integral equations involving confluent k-hypergeometric functions, Appl. Math., 4 (2013), 9–11. doi: 10.4236/am.2013.47A003
![]() |
[12] | S. Mubeen, A. Rehman, A Note on k-Gamma function and Pochhammer k-symbol, J. Inf. Math. Sci., 6 (2014), 93–107. |
[13] | S. Mubeen, M. Naz, A. Rehman, G. Rahman, Solutions of k-hypergeometric differential equations, J. Appl. Math., 2014 (2014), 1–13. |
[14] |
S. Li, Y. Dong, k-hypergeometric series solutions to one type of non-homogeneous k-hypergeometric equations, Symmetry, 11 (2019), 262. doi: 10.3390/sym11020262
![]() |
[15] | G. Rahman, M. Arshad, S. Mubeen, Some results on generalized hypergeometric k-functions, Bull. Math. Anal. Appl., 8 (2016), 66–77. |
[16] |
S. Mubeen, C. G. Kokologiannaki, G. Rahman, M. Arshad, Z. Iqbal, Properties of generalized hypergeometric k-functions via k-fractional calculus, Far East J. Appl. Math., 96 (2017), 351–372. doi: 10.17654/AM096060351
![]() |
[17] | S. K. Q. Al-Omari, Boehmian spaces for a class of Whittaker integral transformations, Kuwait J. Sci., 43 (2016), 32–38. |
[18] | S. K. Q. Al-Omari, On some Whittaker transform of a special function kernel for a class of generalized functions, Nonlinear Stud., 26 (2019), 435–443. |
[19] |
P. Agarwal, S. K. Q. Al-Omari, J. Park, An extension of some variant of Meijer type integrals in the class of Boehmian, J. Inequal. Appl., 2016 (2016), 1–11. doi: 10.1186/s13660-015-0952-5
![]() |
[20] | S. Mubeen, S. Iqbal, Gr¨uss type integral inequalities for generalized Riemann-Liouville k-fractional integrals, J. Inequal. Appl., 2016 (2016), 109. Available from: https://doi.org/10.1186/s13660-016-1052-x. |
[21] | P. Agarwal, M. Jleli, M. Tomar, Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals, J. Inequal. Appl., 2017 (2017), 55. Available from: https://doi.org/10.1186/s13660-017-1318-y. |
[22] | E. Set, M. A. Noor, M. U. Awan, A. G¨ozpinar, Generalized Hermite-Hadamard type inequalities involving fractional integral operators, J. Inequal. Appl., 2017 (2017), 169. Available from: https://doi.org/10.1186/s13660-017-1444-6. |
[23] | C. J. Huang, G. Rahman, K. S. Nisar, A. Ghaffar, F. Qi, Some inequalities of the Hermite-Hadamard type for k-fractional conformable integrals, Austral. J. Math. Anal. Appl., 16 (2019), 9. |
[24] |
F. Qi, G. Rahman, S. M. Hussain, W. S. Du, K. S. Nisar, Some inequalities of Chebyˇsev type for conformable k-fractional integral operators, Symmetry, 10 (2018), 614. doi: 10.3390/sym10110614
![]() |
[25] | S. Habib, S. Mubeen, M. N. Naeem, F. Qi, Generalized k-fractional conformable integrals and related inequalities, AIMS Math., 4 (2018), 343–358. |
[26] | G. Rahman, K. S. Nisar, A. Ghaffar, F. Qi, Some inequalities of the Gr¨uss type for conformable k-fractional integral operators, RACSAM, 114 (2020), 9. Available from: https://doi.org/10.1007/s13398-019-00731-3. |
[27] |
G. Farid, G. M. Habullah, An extension of Hadamard fractional integral, Int. J. Math. Anal., 9 (2015), 471–482. doi: 10.12988/ijma.2015.5118
![]() |
[28] | G. Farid, A. U. Rehman, M. Zahra, On Hadamard-type inequalities for k-fractional integrals, Konuralp J. Math., 4 (2016), 79–86. |
[29] | S. Iqbal, S. Mubeen, M. Tomar, On Hadamard k-fractional integrals, J. Fract. Calc. Appl., 9 (2018), 255–267. |
[30] |
M. Tomar, S. Mubeen, J. Choi, Certain inequalities associated with Hadamard k-fractional integral operators, J. Inequal. Appl., 2016 (2016), 234. doi: 10.1186/s13660-016-1178-x
![]() |
[31] | K. S. Nisar, G. Rahman, J. Choi, S. Mubeen, Certain Gronwall type inequalities associated with Riemann-Liouville k- and hadamard k-fractional derivatives and their applications, East Asian Math. J., 34 (2018), 249–263. |
[32] | M. Samraiz, E. Set, M. Hasnain, G. Rahman, On an extension of Hadamard fractional derivative, J. Inequal. Appl., 2019 (2019), 263. |
[33] | G. Rahman, S. Mubeen, K. S. Nisar, On generalized k-fractional derivative operator, AIMS Math., 5 (2019), 1936–1945. |
[34] |
Y. Li, Y. Chen, I. Podlubny, Mittag-Leffler stability of fractional order nonlinear dynamic systems, Automatica, 45 (2009), 1965–1969. doi: 10.1016/j.automatica.2009.04.003
![]() |
[35] |
M. A. F. Dos Santos, Fractional Prabhakar derivative in diffusion equation with non-static stochastic resetting, Physics, 1 (2019), 40–58. doi: 10.3390/physics1010005
![]() |
[36] |
S. Rogosin, The role of the Mittag-Leffler function in fractional modeling, Mathematics, 3 (2015), 368–381. doi: 10.3390/math3020368
![]() |
[37] |
D. Baleanu, A. Fernandezon, Some new properties of fractional derivatives with Mittag-Leffler kernel, Commun. Nonlinear Sci. Numer. Simul., 59 (2018), 444–462. doi: 10.1016/j.cnsns.2017.12.003
![]() |
[38] |
S. Mubeen, R. S. Ali, Fractional operators with generalized Mittag-Leffler k-function, Adv. Differ. Equations, 2019 (2019), 520. doi: 10.1186/s13662-019-2458-9
![]() |
[39] | J. F. Gomez, L. Torres, R. F. Escobar, Fractional Derivatives with Mittag-Leffler Kernel: Trends and Applications in Science and Engineering, Switzerland: Springer International Publishing, 2019. |
[40] | C. Fox, The asymptotic expansion of integral functions defined by generalized hypergeometric series, Proc. London Math. Soc., 27 (1928), 389–400. |
[41] | E. M. Wright, The asymptotic expansion of the generalized hypergeometric function, J. London Math. Soc., 10 (1935), 286–293. |
[42] | A. Erdelyi, W. Magnus, F. Oberhettinger, F. G. Tricomi H. Bateman, Higher Transcendental Functions, New York: McGraw-Hill, 1953. |
[43] | A. Petojevic, A note about the Pochhammer symbols, Math. Morav., 12 (2008), 37–42. |
[44] | M. A. Al-Bassam, Y. F. Luchko, On generalized fractional calculus and its application to the solution of integro-differential equations, J. Fract. Calc., 7 (1995), 69–88. |
[45] | K. Mehrez, Redheffer-type inequalities for the Fox-Wright functions, Commun. Korean Math. Soc., 34 (2019), 203–211. |
[46] | R. Diaz, E. Pariguan, On hypergeometric functions and Pochhammer k-symbol, Divulg. Mat., 15 (2007), 179–192. |
[47] | E. C. Jones, P. M. Cohn, O. Wyler, R. E. Shafer, S. Rabinowitz, R. Redheffer, S. Raymond, Problems and solutions: Advanced problems: 5636–5643, Amer. Math. Monthly, 75 (1968), 1124–1125. |
[48] | R. Redheffer, J. P. Williams, Problems and solutions: Solutions of advanced problems: 5642, Amer. Math. Monthly, 76 (1969), 1153–1154. |
[49] |
L. Zhu, J. Sun, Six new Redheffer-type inequalities for circular and hyperbolic functions, Comput. Math. Appl., 56 (2008), 522–529. doi: 10.1016/j.camwa.2008.01.012
![]() |
[50] |
K. Mehrez, Functional inequalities for the Wright functions, Integr. Transforms Spec. Funct., 28 (2017), 130–144. doi: 10.1080/10652469.2016.1254628
![]() |
[51] |
S. Ponnusamy, M. Vuorinen, Asymptotic expansions and inequalities for hypergeometric functions, Mathematika, 44 (1997), 278–301. doi: 10.1112/S0025579300012602
![]() |
[52] |
G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Inequalities for quasiconformal mappings in space, Pacific J. Math., 160 (1993), 1–18. doi: 10.2140/pjm.1993.160.1
![]() |
1. | Khaled Mehrez, Positivity of certain classes of functions related to the Fox H-functions with applications, 2021, 11, 1664-2368, 10.1007/s13324-021-00553-w | |
2. | Ravi Kumar Jain, Alok Bhargava, Mohd. Rizwanullah, Certain New Integrals Including Generalized Bessel-Maitland Function and M-Series, 2022, 8, 2349-5103, 10.1007/s40819-021-01202-3 |