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1. Introduction

In mathematical analysis and its applications, the hypergeometric function plays a vital role. Various
special functions which are used in different branches of science are special cases of hypergeometric
functions. Numerous extensions of special functions have introduced by many authors (see [1-4]).
The generalized Gamma k-function and its properties are broadly discussed in [5—8]. Later on, the
researchers [9] motivated by the above idea and presented the k-fractional integral and its applications.
The integral representation of generalized confluent hypergeometric and hypergeometric k-functions
is presented by Mubeen and Habibullah [10]. The series solution of k-hypergeometric differential
equation is proposed by Mubeen et al. [11-13]. Li and Dong [14] established the hypergeometric
series solutions for the second-order non-homogeneous k-hypergeometric differential equation. The
Generalized Wright k-function and its different indispensable properties are briefly discussed in [15,
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16]. A class of Whittaker integral transforms involving confluent hypergeometric function and Fox
H-function as kernels are discussed in [17, 18]. An extension of some variant of Meijer type integrals
in the class of Bohemians is elaborated in [19].

Generalization of Griiss-type and Hermite-Hadamard type inequalities concerning with k-fractional
integrals are explored in [20,21]. Many researchers have derived the generalized forms of the Riemann-
Liouville k-fractional integrals and established several inequalities by considering various generalized
fractional integrals. The readers may confer with [22-26] for details.

The Hadamard k-fractional integrals and Hadamard-type inequalities for k-fractional
Riemann-Liouville integrals are presented by Farid et al. [27,28]. In [29, 30], the authors have
established inequalities by employing Hadamard-type inequalities for k-fractional integrals. Nisar
et al. [31] discussed Gronwall type inequalities by considering Riemann-Liouville £ and Hadamard
k-fractional derivatives. Hadamard k-fractional derivative and its properties are disscussed in [32].
Rahman et al. [33] described generalized k-fractional derivative operator.

The Mittag-Leffler function naturally occurs in the solutions of fractional integrodifferential
equations having an arbitrary order that is similar to that of the exponential function. The
Mittag-Lefller functions have acquired significant recognition due to their wide applications in
assorted fields. The Mittag-Leffler stability of fractional-order nonlinear dynamic systems is studied
in [34]. Dos Santos discussed the Mittag-Leffler function in the diffusion process in [35]. The
noteworthy role of the Mittag-Leffler function and its generalizations in fractional modelling is
explored by Rogosin [36]. We suggest the readers to study the literature [37-39] for more details.

Now, we present some basic definitions and results.

The normalized Wright function is defined as

n

- z
Wys(2) = T(6) Y Tormm? > hoec (1.1)
n=0 '

Fox [40] and Wright [41] defined the Fox-Wright hypergeometric function i, as:

ulﬁv[ Y1, C1)s oo (Yu, Cu) ] _ i [T< T(yi + nC)" (1.2)

|l = s
01, Dy)), ..., (6y, D)) ~ [T, T'(6; + nDy)n!

where C; > 0,i = 1,..,u; D; > 0,i = 1,...,v. The function ¥, is the generalized form of the well-
known hypergeometric function ,F, with u and v number of parameters in numerator and denominator
respectively. It is given in [42] as:

PATRIT ) 7u = 1(71)nz
uFy 1.3
[ 81y ] Z 1L, G’ (1.3)
where (k), is called the Pochhammer symbol and is defined by Petojevic [43] as:
I'(k +n)

(K)o =1, and (k), = k(k + 1)...(k + n = 1) = € N.

Tw "

From definitions (1.2) and (1.3), we have the following relation

(71’ 1)7 """ ’ ()/u’ 1) ] _ F()’l) ----- F(YM) |: PATRIND s Yu |Z] ‘

(61,1), ..... ,(6v,1) = 1"(61) ..... F(é‘,)u v (14)

uy
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The Mittag-Leffler function with 2m parameters [44] is defined as follows:

n

- Z
Esp),(2) = - ,z€eC (1.5)
o 2; [17, T(6; + nD;)

and in the form of Fox-Wright function it can be expressed as:

(1, 1)

.......

Z], z€C. (1.6)

E.p),(2) =1 ‘ﬁm[ (61, D1)

Vs

The function </>E‘51 ? 1)) (0, 00) — R is defined in [45] as

@61.00,~ _ L(O1)'(d2) (y1,1)

20 =S| 5, oy ] 2 40

where 1, 01,0, and D; > 0.
Diaz and Pariguan [46] proposed the following Pochhammer’s k-symbol (z),x and the generalized
Gamma k-function by

Wy = u(u + k)W +2k)... . u+ (n— Dk);ueC, keR, ne N*

‘Vl
Fi(w) = lim = o0 %k>0,ue©—kz,
un,k

respectively. They also introduced the generalized hypergeometric k-function in [46] as follows:

(YI’k)’ ----- 7()’1“ k) i= 1(71)nkz
”F“"[ (61, K), s (8, K) ] Z 1, Gl (1.8)

Now, we define the normalized Wright k-function as follows:

n

= Z
W,54(2) = T'k(6) Z W,y >-1,0€eC
n=0 :

and the Fox -Wright type k-function is as follows:

v V1, kC1),s evee, Vs kC) | | o Ty Talyi + nkCy)2Z" (1.9)
(61,kD1)); -...., (6, L1, T, + nkDyn!’ '
So from Eqgs (1.9) and (1.8), we have
w (Y1 s k)’ """ (YM’ k)
AN (51,5, s (00, K) [F
_ rk(71) **** rk(7u) (71’k), """ (YM’k) (1 10)
TG 00" R 01,6, s (00 ) [ '
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and (1.5) takes the form

I’l

E e C. 1.11
(6D)mk(z) Z I—Im Fk(6 + nkD) ( )
The function Ep),,(z) in terms of the functlon «Wv i 18 expressed as
_ (1,k)
E(67D))71,k(z) —1 wm,k [ (6], kD]) ....... " Z:| Z c C- (1.12)
So the function (1.7) is given by
L(0)I(62) [ (y1, k) ]
(01,D1) KO 1
D= ——— z| ze C. 1.13
Proek @ =TGNV (510kD). (60, (13
Redhefter [47] presented the following inequality in 1969,
n?—x*  sinx (1.14)

m+x2 T x
In the same year, Redheffer and Williams [48] proved the above inequality. Zhu and Sun [49] used the
hyperbolic functions sinh x and cosh x and proved the following Redheffer-type inequalities

2+ x2\ sinhx (P +22)
< <
(rz—xz) T X _(rz—xz) (1.15)
and s
2+ 22\ 2+ x*\"
( 5 —x2) < coshx < (r2 —xz) , (1.16)

where 0 < x <r, y <0, 6 > {2 and 6; > 2. By using the inequalities (1.15) and (1.17), Mehrez

proved the following Theorem (see [50]).

Theorem 1.1. The following inequalities

(1.17)

(s+z

s+z)P%6
S —2

)m < W,4(2) < (

sT(5)
2C(6+7)

holds true for all s > 0, y,6 > 0,0 <z < s, where 0,5 = 0 and p, s =
constants and W, is the normalized Wright function defined by (1.1).

are the best possible

Recently, the same author has proved the following inequality (see [45]).

Theorem 1.2. Suppose that r,y,,0,,02, D1 > 0. Then the subsequent inequalities

r+ 2\ Ft 2\
Z\ 102 (61,D1) T\ 102
( ) <¢, 5 )_( ) (1.18)
r—z ’ -z
(51 Dl) (01,D1) _ _ryl(6n) :
are true for all 7 € (0,r), where A0 = 0 and My'5" = 316,100 @€ the best possible constants.

Where ¢(5‘ Dl)(z) is defined in (1 .7).

In this article, we extend the Redheffer-type inequality (1.18) for the normalized Fox-Wright k-
functions ¢;‘51";5[2{}<)(z) and establish new Redheffertype inequalities for the hypergeometric k-function

1 F> and for the four parametric Mittag-Leffler k-function E’(SI,DI;(;Z, 14(2) = T DT (02)Es, by :6,.1.4(2)-
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2. Main results

In this section, we first state the two lemmas which are helpful for proving the main results. The
first lemma from [51] describes the monotonicity of two power series, and the second lemma is the
monotone form of the L'Hospitals’ rule [52]. The two lemmas are stated below.

Lemma 2.1. Suppose that the two sequences {u,},>0 and {v,},s0 of real numbers, and let the power
series f(x) = )50 UnX" and g(x) = )50 vaX" be convergent for |x| < r. If v, > 0 for n > 0 and if the
sequence {-*},5 is (strictly) increasing (decreasing), then the function x — i g; is (strictly) increasing
( decreasing}} on (0, r).

Lemma 2.2. Suppose that the two functlons fi.&1 : la,b] — R be continuous and differentiable
on (a,b). Assume that g, # 0 on (a, b). If is increasing (decreasing) on (a, b), then the functions

filx) - fila) Sfi(x) = fi(b)
S IV and JUA7 JU
o -g@ T g - gi®)
are also increasing (decreasing) on (a, b).

Theorem 2.3. Letr > Oyy,01,0,, D > 0. Then the following inequalities holds

r+z 0P 61.D1) (5101>
(e <02 < (= Y, 2.1)
(61,.D1) _ 61,D1) _ _ (D) :
where z € (0,r), L) 's"" =0and p,,'5" = 3 5o, ko 4re the appropriate constants.

Proof. From definition of the function ¢°"”"(z) from Eq (1.13), we have

1,02,k
d o0,y _ L6DI(62)
dz(d)”"”’k @)= Li(y1)
i Ly + (n+ DR 02

e I['v(01 + Di(n+ DI (0, + (n + 1k)n! '
Let 61.01)
0g ¢711,;52,Ik (@) _ 8(2)
log(:£) h(z)’

where g(z) = log(qﬁ(fl‘,(’;; "k)(z)) and h(z) = log(:—fi). Now we will find ii—g as given below

M(z) =

d@  P-DE@0)@) 6w

W@ 2P 2rHQ@)

where G(2) = (% = 2)£(@y,;7})) and H@) = 4570
Using 2.2, we have

Gle) = A2 - )
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y i Li(yr + (n + Dk)Z"
oy (67 + Di(n+ DRI (02 + (n + Dk)n!

YO VCHPFRES i (1 + (n + D"
Iv(y1) s ['v(61 + Di(n+ DI (62 + (n + 1k)n!

(o)

B Z Li(y1 + (n— Dk)Z"
— I'v(61 + Di(n — DROI(02 + (n — Dk)(n — 2)!
PTGy + k)
" Tu(yD)Tk(S1 + Dik)T(6s + k)
T 6)k(62) ey + 2k)
Le(yDlr(61 + 2D1 k)i (62 + 2k)

)

INCDIVCORS ( rTi(yr + (n + k)"
Le(y)  &N(61 + Di(n = H)RI(62 + (n + Dion!
B Li(yr + (n = Dk )Zn
w81 + Di(n— DRI (02 + (n — Dk)(n - 2)!

(o)
n=0
where by, b; and v,, are as follows:

PSSk (yr + k) b P06k (y1 + 2k)

O Ty)Tk(Sy + DTS, + k) ' Ti(y)T(81 + 2D1k)Ci(8, + 2K)

and for n > 2, we have

_— [ (01)(02) ( Ty + (n+ Dk)
! Lty &6 + Di(n = H)RT(62 + (n + Dion!

B L'i(y1 + (n = Dk)z" )
(6, + Di(n — D8, + (n— Dk)(n —2)!/"
Similarly, we can write H(z) as

HO = Y42
n=0

_ [0 DT (0T (y1 + nk)
" Ti(y)D(S) + nkD)Ti(S, + nk)

) ., b
Next, we consider the sequence w, = ;— such that wy = ag and w; = j and so on.
Now, we have

where

rTu(02 + KT u(yy + 268, + kD))
['v(02 + 2)11(01 + 2kD )i (v + k)
3 P DTy + k)

Fi(y DT (61 + D1k (62 + k)

Wi —Wwp =
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_ 2y + Tk(61 + kD) r*Ti(61)
T (62 + TSy +2Dik)  6)T4(8y + Dik)
< ﬂ[rk(él + kDy)) _ ['v(61) ]
52 Fk(61 + 2kD1) Fk(51 + le)
<0. (2.3)

Since y; > ¢, and employing the log-convexity property of I'y function, the ratio z + %&;) is

increasing on (0, o) for ¢ > 0. This shows that the inequality stated below
Fk(z + C) < Fk(z +c+ d)
@ — Twz+d)

holds for all z,c¢,d > 0. Using (2.4) in (2.3) by letting z = 6, and ¢ = d = kD;, we observed that
wy < wy. Likely, we have

(2.4)

rZFk()/l + 3k (62 + 2K)1(6, + 2kD,)
Fk(52 + 3k)Fk(51 + 3kD1)Fk(y1 + 2k)
_ rzl"k(cSz + k)rk(51 + le)Fk(’)/l + 2k)
[ (62 + 2k)13(61 + 2kD1)i(yy + k)
_ 2Fk(62 + 2k)Fk((51 + 2kD1)Fk()/1 + k)
[ (62 + Ok (61 + kDU (y1 + 2k)
_ 1’2(71 + 2k)Fk(y1 + 2]()((52 + k)Fk(éz + k)rk(61 + Zle)
(62 + 2K)[4(62 + 26)[4(61 + 3kD1)(y1 + DIi(y1 + k)
_ rZFk(éz + k)rk(61 + kD])Fk(’}/] + 2]()
[ (62 + 20)I(61 + 2kD)k(y1 + k)
_ 2Fk(62 + 2k)Fk(51 + 2kD1)Fk(’yl + k)
[ (62 + K)(01 + kD)i(y1 + 2k)

Wy — Wi =

B rTu(y1 + 2)(6, + k)[()/l + 2k)(02 + K)I'1(61 + 2kDy)
L6 + 20T (y1 + k) Ly + k)62 + 2018y + 3kDy)
_ Fk(61 + kD]) ]
Fk(él + 2kD1)
_ 2Fk(62 + 2k)Fk(61 + Zle)Fk()/l + k) <
L'(62 + Tk(61 + kDD)Ui(y1 + 2k)

(2.5)

Since by using Eq (2.4), when z = §; + kD, and ¢ = d = kD, we have w, < wy.
Now, for n > 2, we have

Ty + (n+ 26, + (n + DTS + (n + DkDy)
[i(y1 + (n+ DO (02 + (n + D61 + (n + 2)kDy)
(n+ D'Ti(yq + nk)Ci(62 + (n+ DO (6, + (n + 1)kDy)
- (n— D'Ti(yq + (n + D62 + nk) (61 + nkDy)
Ty + (n+ D, + nk)[k (8, + nkDy)
- (v + nk)C (62 + (n+ DO (61 + (n+ 1)kDy)

Wpel — Wy =
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n!l(yy + (n — D02 + nk)Ti(01 + nkDy)
(n — 2)!Tx(yy + nk)Ii(6> + (m1 D61 + (n — 1)kDy)
_ rz[()’l + (n+ DROTw(61 + (n + kD)
(6, + (n+ D61 + (n + 2)kDy)
0 +mR(6, + nkD,) ]
(62 + nk)I' (61 + (n + 1)kDy)
N n! [ (62 + (n — DK (61 + nkDy)
(n =2 (y1 + (n = DOL(61 + (n = 2)kDy)
_ (n+ D62 + W61 + (n + l)le)]
(n = 1)(y1 + nk)['(61 + nkD)
< r(y; + nk)[Fk(él + (n+ 1)kD,) B Iw(6, + nkDy) ]

(02 + nk) Iy + (n+2)kDy) Ty(6) + (n+ DkDy)
n!(6; + (n — 1)k) [ I +nkDy) — Tw(éi +(n+ 1)kD1)] 2.6)
(n =2y (n = Dk)T'(61 + (n — DkDy) I'w(61 + nkDy)
Using z = 0; + nkD; and ¢ = d = kD,, we have the inequality (2.4) in the following form
[:(0) + (n + 2)kD)T4(8) + nkD;) — T(6; + (n + 1)kD;) > 0 (2.7)
and similarly for using z = 6, + (n — 1)kD, and ¢ = d = kD;, we have from (2.4)
[(0) + (n + 2)kD)T4(8; + nkDy) = T7(6; + (n + 1)kD;) > 0 (2.8)
so by using (2.7) and (2.8) in (2.6), we have
Wpel < Wy (2.9)

Now from Eqgs (2.3), (2.10) and (2.9), we conclude that the sequence {w,},so is a decreasing sequence.
From Lemma (2.1), we deduce that i—, is decreasing on (0, r) and accordingly the function M(z) is
also decreasing on (0, 7). Alternatively, using the Bernoulli-L’Hospital’s rule we get

ryil'e(61)
262Fk(6] + kD])

lim M(z) = and lim M(z) = 0.
z—0 =0

It is essential to reveal that there is another proof of this theorem which is described as following.
For this ,we define a function T : (0,r) — R by

T(z) =

ryil'v(61) o (r+z
2§2Fk(51 + Dl) Z

=)~ l0g(@y,5,"@).
Consequently,

PPV ()T (2)

Y1,02.k

r*y1Tk(61) @1.D1) d 6.y
:62Fk(61 + Dl)(l"z — Z2)¢711952,1k (Z) - d_z(qsy]l,ﬁz’lk (Z))

RECYOY AN i (1 +nk)"
Fk(’)/l) 52Fk(61 + I(D])(l"2 - Zz) = Fk(d] + Dlnk)Fk(dz + I’lk)l’l'
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_ i (1 + (1 + D) ]
o w01 + Di(n + DI (6, + (n + 1k)n!

>Fk(51)rk(52)[ Y1Ik(61) i Ly (y1 + nk)z"
- Fk(yl) 62Fk(61 + kD]) = Fk(dl + Dlnk)Fk(62 + nk)n'

_ Z Li(yr + (n + DR ]
ey (01 + Di(n+ D0, + (n + Dk)n!
_ T (62) o Dy + ﬂk)Z"[ Y1l'e(61)
L(r)) 4 TSz + nk)n!t6,1(61 + kD)

3 (y1 + nk) ]
(52 + nk)Fk(61 + Dl(l’l + l)k) '

(2.10)

y1+nk
0r+nk

Since y; > 65, therefore g—; > for every n > 0 and resultantly

¢(61,D|)(Z)T/(Z)

Y1,02.k
>rk(51)rk(52) o Ty +nk)z”[ (6D 1 ]
Fk(’yl) p— Fk(52 + l’lk)l’l' Fk(61 + le) rk(51 + kD](l’l + 1)) ’

Now, using the values z = 61, ¢ = kD and d = nkD, in (2.4), function Y(z) is increasing on (0, r)
and consequently Y(z) > Y(0) = 0. This completes the proof of right hand side of the inequality 2.1.
For proving the left hand side of (2.1), we conclude from Eq (2.2) that the function ¢(y‘51"£,'k)(z) is
increasing on (0, o) and finally

¢(61’D1)(Z) > ¢(517D1)(0) = 1.

Y1,02,k Y1,02,k
This ends the proof process of theorem 2.3.

Corollary 2.4. Let r,7y,,01,0, > 0. Then inequalities

r 42z 0 r+2z o
) o < Fop(y1501,02;2) < ( ) o,
r—z r—z

(

are true for all z € (0, r), where /l(fl' ’512) =0and ,uffll ;512) = 2(?;—161 are the suitable values of constants.

Proof. This inequality can be proved by using D; = 1 in (2.1).
Corollary 2.5. Let r,01,D, > 0. If 0 < 6, < 1, then the following inequalities
r+z 0rPo ~ r+z ,Cbo
(—)" < By prpa@) < (—)e
r—z r—z

hold for all 7 € (0, r), where /l(fé’zD‘) = 0and y(l‘f;;D]) = % are the suitable values of constants.
Proof. This inequality can be proved by using y; = 1 in (2.1).

Remark 2.6. The particular cases of the inequalities in Corollaries 2.4 and 2.5 for k = 1 are reduce
to the results in [45, Corollaries 1.2 and 1.3] respectively.
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3. Conclusions

This article deals with the Redheffer-type inequalities by using the more general Fox-Wright
function. Moreover, from the newly established inequalities, the results for generalized
hypergeometric functions and the four-parametric generalized Mittag-Leffler functions are also
obtained by using the appropriate values of exponents in generalized inequalities. The obtained results
are more general, as shown by relating the special cases with the existing literature. The idea we used
in this article attracts scientists’ attention, and they may stimulate further research in this direction.
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