Research article

Essential norm of generalized Hilbert matrix from Bloch type spaces to BMOA and Bloch space

  • Received: 09 November 2020 Accepted: 06 January 2021 Published: 18 January 2021
  • MSC : 47B38, 30H30

  • Let $ \mu $ be a positive Borel measure on the interval $ [0, 1) $. The Hankel matrix $ {\mathcal H}_\mu = (\mu_{n+k})_{n, k\geq 0} $ with entries $ \mu_{n, k} = \mu_{n+k} $ induces the operator $ {\mathcal H}_\mu(f)(z) = \sum\limits_{n = 0}^\infty\left(\sum\limits_{k = 0}^\infty\mu_{n,k}a_k\right)z^n $ on the space of all analytic functions $ f(z) = \sum^\infty_{n = 0}a_nz^n $ in the unit disk $ {\mathbb{D}} $. In this paper, we characterize the boundedness and compactness of $ {\mathcal H}_\mu $ from Bloch type spaces to the BMOA and the Bloch space. Moreover we obtain the essential norm of $ {\mathcal H}_\mu $ from $ {\mathcal{B}}^\alpha $ to $ {\mathcal{B}} $ and BMOA.

    Citation: Songxiao Li, Jizhen Zhou. Essential norm of generalized Hilbert matrix from Bloch type spaces to BMOA and Bloch space[J]. AIMS Mathematics, 2021, 6(4): 3305-3318. doi: 10.3934/math.2021198

    Related Papers:

  • Let $ \mu $ be a positive Borel measure on the interval $ [0, 1) $. The Hankel matrix $ {\mathcal H}_\mu = (\mu_{n+k})_{n, k\geq 0} $ with entries $ \mu_{n, k} = \mu_{n+k} $ induces the operator $ {\mathcal H}_\mu(f)(z) = \sum\limits_{n = 0}^\infty\left(\sum\limits_{k = 0}^\infty\mu_{n,k}a_k\right)z^n $ on the space of all analytic functions $ f(z) = \sum^\infty_{n = 0}a_nz^n $ in the unit disk $ {\mathbb{D}} $. In this paper, we characterize the boundedness and compactness of $ {\mathcal H}_\mu $ from Bloch type spaces to the BMOA and the Bloch space. Moreover we obtain the essential norm of $ {\mathcal H}_\mu $ from $ {\mathcal{B}}^\alpha $ to $ {\mathcal{B}} $ and BMOA.


    加载中


    [1] A. Aleman, A. Montes-Rodríguez, A. Sarafoleanu, The eigenfunctions of the Hilbert matrix, Constr. Approx., 36 (2012), 353–374. doi: 10.1007/s00365-012-9157-z
    [2] G. Bao, H. Wulan, Hankel matrices acting on Dirichlet spaces, J. Math. Anal. Appl., 409 (2014), 228–235. doi: 10.1016/j.jmaa.2013.07.006
    [3] Ch. Chatzifountas, D. Girela, J. Pelaéz, A generalized Hilbert matrix acting on Hardy spaces, J. Math. Anal. Appl., 413 (2014), 154–168. doi: 10.1016/j.jmaa.2013.11.046
    [4] E. Diamantopoulos, Hilbert Matrix on Bergman spaces, Illinois. J. Math., 48 (2004), 1067–1078. doi: 10.1215/ijm/1258131071
    [5] E. Diamantopoulos, A. Siskakis, Composition operators and the Hilbert matrix, Studia Math., 140 (2000), 191–198.
    [6] M. Dostanić, M. Jevtić, D. Vukotić, Norm of the Hilbert matrix on Bergman and Hardy spaces and a theorem of Nehari type, J. Funct. Anal., 254 (2008), 2800–2815. doi: 10.1016/j.jfa.2008.02.009
    [7] P. Duren, Extension of a theorem of Carleson, Bull. Amer. Math. Soc., 75 (1969), 143–146. doi: 10.1090/S0002-9904-1969-12181-6
    [8] J. Garnett, Bounded Analytic Functions, New York: Academic Press, 1981.
    [9] P. Galanopoulos, J. Peláez, A Hankel matrix acting on Hardy and Bergman spaces, Studia Math., 200 (2010), 201–220. doi: 10.4064/sm200-3-1
    [10] D. Girela, Analytic functions of bounded mean oscillation, Complex Functions Spaces, Univ. Joensuu Dept. Math. Report Series 4 (2001), 61–170.
    [11] D. Girela, N. Merch$\acute{a}$n, A generalized Hilbert operator acting on conformally invariant spaces, Banach J. Math. Anal., 12 (2016), 374–398.
    [12] D. Girela, N. Merch$\acute{a}$n, A Hankel Matrix acting on spaces of analytic functions, Integral Equations Operator Theory, 89 (2017), 581–594. doi: 10.1007/s00020-017-2409-3
    [13] D. Girela, N. Merch$\acute{a}$n, Hankel Matrix acting on the Hardy space $H^1$ and on Dirichlet spaces, Rev. Mat. Complut., 32 (2019), 799–822. doi: 10.1007/s13163-018-0288-z
    [14] B. Lanucha, M. Nowak, M. Pavlović, Hilbert matrix operator on spaces of analytic functions, Ann. Acad. Sci. Fenn. Math., 37 (2012), 161–174. doi: 10.5186/aasfm.2012.3715
    [15] S. Li, Generalized Hilbert operator on Dirichlet type spaces, Appl. Math. Comput., 214 (2009), 304–309.
    [16] J. Liu, Z. Lou, C. Xiong, Essential norms of integral operators on spaces of analytic functions, Nonlinear Anal., 75 (2012), 5145–5156. doi: 10.1016/j.na.2012.04.030
    [17] C. Kellogg, An extension of the Hausdorff-Yong theorem, Michigan Math. J., 18 (1971), 121–127. doi: 10.1307/mmj/1029000635
    [18] J. Xiao, Holomorphic $Q$ Classes, Berlin: Springer LNM, 2001.
    [19] R. Zhao, Essential norms of composition operators between Bloch type spaces, Proc. Amer. Math. Soc., 138 (2010), 2537–2546. doi: 10.1090/S0002-9939-10-10285-8
    [20] X. Zhang, Weighted cesaro operator on the Dirichlet type spaces and Bloch type spaces of $C^n$, Chin. Ann. Math., 26A (2005), 138–150.
    [21] K. Zhu, Bloch type spaces of analytic functions, Rocky Mountain J. Math., 23 (1993), 1143–1177. doi: 10.1216/rmjm/1181072549
    [22] K. Zhu, Operator Theory in Function Spaces, Second edition. Mathematical Surveys and Monographs, Providence: Amer. Math. Soc, 2007.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2106) PDF downloads(170) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog