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Abstract: Let µ be a positive Borel measure on the interval [0, 1). The Hankel matrixHµ = (µn+k)n,k≥0

with entries µn,k = µn+k induces the operator

Hµ( f )(z) =

∞∑
n=0

 ∞∑
k=0

µn,kak

 zn

on the space of all analytic functions f (z) =
∑∞

n=0 anzn in the unit disk D. In this paper, we characterize
the boundedness and compactness of Hµ from Bloch type spaces to the BMOA and the Bloch space.
Moreover we obtain the essential norm ofHµ from Bα to B and BMOA.
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1. Introduction

Denote by H(D) the space of all analytic functions on the unit disk D = {z : |z| < 1} in the complex
plane. For 0 < p ≤ ∞, we let Hp denote the classical Hardy space. If f ∈ H(D) and

‖ f ‖BMOA = | f (0)| + sup
a∈D
‖ f ◦ ϕa − f (a)‖H2 < ∞,

we say that f ∈ BMOA. Here ϕa(z) = a−z
1−āz , a ∈ D, is a Möbius transformation of D. Fefferman’s

duality theorem says that BMOA = (H1)∗. We refer to [10] about the theory of BMOA.
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Let 0 < α < ∞. An f ∈ H(D) is said to belong to the Bloch type space (or called the α−Bloch
space), denoted by Bα, if

‖ f ‖Bα = sup
z∈D
| f ′(z)|(1 − |z|2)α < ∞.

The classical Bloch space B is just B1. It is clear that Bα is a Banach space with the norm ‖ f ‖ =

| f (0)| + ‖ f ‖Bα . See [21] for the theory of Bloch type spaces.
For a subarc I ⊂ ∂D, let S (I) be the Carleson box based on I with

S (I) = {z ∈ D : 1 − |I| ≤ |z| < 1 and
z
|z|
∈ I}.

Here |I| = (2π)−1
∫

I
|dξ| is the normalized length of the arc I. If I = ∂D, let S (I) = D. For 0 < s < ∞,

we say that a positive Borel measure µ is an s−Carleson measure on D if (see [7])

‖µ‖ = sup
I⊂∂D

µ(S (I))
|I|s

< ∞.

We say that a positive Borel measure µ is a vanishing s−Carleson measure on D if

lim
|I|→0

µ(S (I))
|I|s

= 0.

Here and henceforth supI⊂∂D indicates the supremum taken over all subarcs I of ∂D. When s = 1, µ is
called a Carleson measure on D. It is well known that, for any f ∈ Hp(0 < p < ∞),∫

D

| f (z)|pdµ(z) ≤ ‖ f ‖p
Hp

if and only if µ is a Carleson measure. See, for example, [8].
A positive Borel measure µ on [0, 1) can be seen as a Borel measure on D by identifying it with

measure µ̃ defined by
µ̃(E) = µ(E ∩ [0, 1))

for any Borel subset E of D. Then a positive Borel measure µ on [0,1) is an s-Carleson measure if there
exists a constant C > 0 such that (see [11])

µ([t, 1)) ≤ C(1 − t)s.

A vanishing s−Carleson measure on [0, 1) can be defined similarly.
Let µ be a finite positive measure on [0, 1) and n = 0, 1, 2, · · · . Denote µn the moment of order n of

µ, that is, µn =
∫

[0,1)
tndµ(t). LetHµ be the Hankel matrix (µn,k)n,k≥0 with entries µn,k = µn+k. The matrix

Hµ induces an operator, denoted also byHµ, on H(D) by its action on the Taylor coefficient:

an →

∞∑
k=0

µn,kak, n = 0, 1, 2, · · · .

More precisely, if f (z) =
∑∞

k=0 akzk ∈ H(D), then

Hµ( f )(z) =

∞∑
n=0

 ∞∑
k=0

µn,kak

 zn,
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whenever the right hand side makes sense and defines an analytic function in D.
As in [9], to obtain an integral representation ofHµ, we write

Iµ( f )(z) =

∫
[0,1)

f (t)
1 − tz

dµ(t), (1.1)

whenever the right hand side makes sense and defines an analytic function in D.
If µ is the Lebesgue measure on [0, 1), then the matrix Hµ is just the classical Hilbert matrix H =( 1

n+k+1

)
n,k≥0, which induces the classical Hilbert operator H. The Hilbert operator H was studied in

[1, 2, 4–6, 14]. A generalized Hilbert operator was studied in [11, 12, 14, 15].
The operator Hµ acting on analytic functions spaces has been studied by many authors.

Galanopoulos and Peláez [9] obtained a characterization that Hµ is bounded or compact on H1.
Chatzifountas, Girela and Peláez [3] described the measure µ for which Hµ is bounded (compact)
operator from Hp into Hq, 0 < p, q < ∞. See [13] about the Hankel matrix acting on the Dirichlet
space.

Let X and Y be two Banach spaces. The essential norm of a continuous linear operator T between
normed linear spaces X and Y is the distance to the set of compact operators K, that is, ‖T‖X→Y

e =

inf{‖T − K‖ : K is compact}, where ‖ · ‖ is the operator norm. It is easy to see that ‖T‖X→Y
e = 0 if and

only if T is compact. See [16, 19] for the study of essential norm of some operators.
In [11, 12], Girela and Merchán studied the operator Hµ acting on spaces of analytic functions on

D such as the Bloch space, BMOA, the Besov space and Hardy spaces. The paper generalizes some
results of [11]. Moreover we also characterize the essential norm ofHµ from Bα to B and BMOA. We
first acknowledge that the proof of part result are suggested by the technique of [11].

In this paper, C denotes a constant which may be different in each case.

2. The operatorHµ : Bα → BMOA (B), 0 < α < 1

In this section, we characterize the boundedness ofHµ fromBα into the BMOA and the Bloch space
when 0 < α < 1. For this purpose, we need some auxiliary results.

Lemma 2.1. [21] If 0 < α < 1, then f ∈ Bα are bounded. If α > 1, then f ∈ Bα if and only if there
exists some constant C such that

| f (z)| ≤
C

(1 − |z|2)α−1 .

The following lemma can be found in [18] (see Corollary 3.3.1 in [18]).

Lemma 2.2. If an ↓ 0 , then f (z) =
∑∞

n=0 anzn ∈ B if and only if supn nan < ∞.

Theorem 2.3. Let µ be a positive measure on [0, 1) and 0 < α < 1. Then the following statements are
equivalent.

(1) The operatorHµ is bounded from Bα into B.
(2) The operatorHµ is compact from Bα into B.
(3) The operatorHµ is bounded from Bα into BMOA.
(4) The operatorHµ is compact from Bα into BMOA.
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(5) The measure µ is a Carleson measure.

Proof. (1)⇒ (5). Assume that the operatorHµ is bounded from Bα into B. Let f (z) = 1 ∈ Bα. Then

Hµ( f )(z) =

∞∑
n=0

 ∞∑
k=0

µn,kak

 zn =

∞∑
n=0

µn,0zn ∈ B.

Note that µn,0 is positive and decreasing. For any 0 < λ < 1, we choose n such that 1− 1
n ≤ λ < 1− 1

n+1 .
Lemma 2.2 gives that

∞ > nµn,0 = n
∫ 1

0
tndµ(t) ≥ nλn

∫ 1

λ

dµ(t) ≥
µ([λ, 1))
e(1 − λ)

.

The above estimate gives that µ is a Carleson measure.
(5)⇒(3). Assume that µ is a Carleson measure. Lemma 2.1 implies that Bα is a subspace of H1

for 0 < α < 1. Then Hµ( f ) is an analytic function for any f ∈ Bα by Proposition 1 in [9]. Moreover,
Hµ( f ) = Iµ( f ) for any f ∈ Bα.

For any given f ∈ Bα, ∫
[0,1)
| f (t)|dµ(t) ≤ ‖ f ‖Bα

∫
[0,1)

dµ(t) < ∞.

Then we have ∫ 2π

0

∫
[0.1)

∣∣∣∣∣∣ f (t)g(eiθ)
1 − rteiθ

∣∣∣∣∣∣ dµ(t)dθ < ∞

for any f ∈ Bα, g ∈ H1 and 0 < r < 1. It is easy to obtain that∫ 2π

0
Iµ( f )(reiθ)g(eiθ)dθ =

∫
[0.1)

f (t)g(rt)dµ(t) (2.1)

whenever f ∈ Bα and g ∈ H1. The reader can refer to the proof of Theorem 2.2 in [11]. Using (2.1),
we have ∣∣∣∣∣∣

∫ 2π

0
Iµ( f )(reiθ)g(eiθ)dθ

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫

[0.1)
f (t)g(rt)dµ(t)

∣∣∣∣∣∣
≤‖ f ‖Bα

∫
[0.1)
|g(rt)|dµ(t)

≤‖µ‖‖ f ‖Bα
∫ 2π

0
|g(reiθ)|dθ

≤‖µ‖‖ f ‖Bα‖g‖H1 .

We obtainHµ( f ) = Iµ( f ) ∈ BMOA for any f ∈ Bα by Fefferman’s duality Theorem.
(5)⇒(4). Assume that µ is a Carleson measure. Then Hµ is bounded from Bα to BMOA and

Hµ( f ) = Iµ( f ) for any f ∈ Bα, 0 < α < 1. Let { fn} be any sequence with supn ‖ fn‖Bα ≤ 1 and
limn→∞ fn(z) = 0 on any compact subset of D. Then we have supz∈D | fn(z)| → 0 as n → ∞ by Lemma
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3.2 in [20]. Applying (2.1) again, we have∣∣∣∣∣∣
∫ 2π

0
Iµ( fn)(reiθ)g(eiθ)dθ

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫

[0.1)
fn(t)g(rt)dµ(t)

∣∣∣∣∣∣
≤ sup

0<t<1
| fn(t)|

∫
[0.1)
|g(rt)|dµ(t)

≤ sup
0<t<1
| fn(t)|‖µ‖‖g‖H1 .

Then

lim
n→∞

∫ 2π

0
Iµ( fn)(reiθ)g(eiθ)dθ = 0.

This prove that limn→∞Hµ( fn) = limn→∞ Iµ( fn) = 0. SoHµ is compact.
The other cases are trivial. The proof is complete. �

Corollary 2.4. Let µ be a positive Borel measure on [0, 1). If Hµ is bounded from Bα to B for any
0 < α < 1, then

‖Hµ‖
Bα→B
e = ‖Hµ‖

Bα→BMOA
e = 0.

3. The operatorHµ : Bα → BMOA (B), α > 1

In this section, we will give the essential norm of the operator Hµ from Bα to BMOA and B when
α > 1. The following lemma will be needed in the proof of the main results.

Lemma 3.1. Let µ be a positive Borel measure on [0, 1) and α > 1. Then the following conditions are
equivalent.

(1)
∫

[0,1)
(1 − t)1−αdµ(t) < ∞.

(2) For any given f ∈ Bα, the integral in (1.1) converges for all z ∈ D and the resulting function Iµ( f )
is analytic on D.

Proof. (1)⇒(2). We assume that (1) holds. Lemma 2.1 gives∫
[0,1)
| f (t)|dµ(t) ≤ C‖ f ‖Bα

∫
[0,1)

(1 − t2)1−αdµ(t) ≤ C‖ f ‖Bα . (3.1)

This implies that ∫
[0,1)

| f (t)|
|1 − tz|

dµ(t) ≤ C
‖ f ‖Bα
1 − |z|

for any f ∈ Bα and z ∈ D. By (3.1) we have

sup
n≥0

∣∣∣∣∣∣
∫

[0,1)
tn f (t)dµ(t)

∣∣∣∣∣∣ < ∞. (3.2)

(3.2) and Fubini’s Theorem give that the integral
∫

[0,1)
f (t)

1−tzdµ(t) converges absolutely for any fixed
z ∈ D. Then we have ∫

[0,1)

f (t)
1 − tz

dµ(t) =

∞∑
n=0

(∫
[0,1)

tn f (t)dµ(t)
)

zn, z ∈ D.
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Hence Iµ( f ) is a well defined analytic function in D and

Iµ( f )(z) =

∞∑
n=0

(∫
[0,1)

tn f (t)dµ(t)
)

zn, z ∈ D.

(2)⇒(1). Let f (z) = (1 − z)1−α. Then f belongs to Bα. So Iµ( f ) is well defined for every z ∈ D. In
particular,

Iµ( f )(0) =

∫
[0,1)

(1 − t)1−αdµ(t)

is a complex number. Since µ is a positive Borel measure on [0, 1), we get the desired result. The proof
is complete. �

Lemma 3.2. Let µ be a positive measure on [0, 1) and α > 1. Let v be the positive measure on [0, 1)
defined by

dv(t) = (1 − t)1−αdµ(t).

Then the following conditions are equivalent.

(1) µ is an α-Carleson measure.
(2) v is a Carleson measure.

Proof. (2)⇒(1) Note that v([t, 1) . (1 − t) and dµ(t) = (1 − t)α−1dv(t). We have

µ([t, 1)) =

∫ 1

t
(1 − s)α−1dv(s) ≤ (1 − t)α−1

∫ 1

t
dv(s) . (1 − t)α.

(1)⇒(2) Note that µ([t, 1)) . (1 − t)α. Integrating by parts, we obtain

v([t, 1)) =

∫ 1

t
(1 − s)1−αdµ(s)

=(1 − t)1−αµ([t, 1)) + (α − 1)
∫ 1

t
(1 − s)−αµ([s, 1))ds

.(1 − t) + (α − 1)
∫ 1

t
ds

.(1 − t).

The proof is complete. �

Lemma 3.3. Let f (z) =
∑∞

n=0 anzn ∈ Bα for any α > 0. Then

sup
n

2n+1∑
k=2n+1

∣∣∣∣∣ ak

kα−1

∣∣∣∣∣2 < C‖ f ‖2Bα . (3.3)

Proof. For any 0 < r < 1 and f (z) =
∑∞

k=0 akzk ∈ Bα, we have

(1 − r)2α
∫ 2π

0
| f ′(reiθ)|2dθ ≤ ‖ f ‖2Bα .
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This gives that
∞∑

k=1

k2|ak|
2r2k ≤ ‖ f ‖2Bα(1 − r)−2α.

Choosing r = 1 − 2−n for any fixed n, we obtain

2n+1∑
k=2n+1

k2|ak|
2(1 − 2−n)2k ≤ ‖ f ‖2Bα2

2αn. (3.4)

Then (3.3) follows by (3.4). �

A complex sequence {λn}
∞
n=0 is a multiplier from l(2,∞) to l1 if and only if there exists a positive

constant C such that whenever {an}
∞
n=0 ∈ l(2,∞), we have

∑∞
n=0 |λnan| ≤ C‖{an}‖l(2,∞). l(2,∞) consists

all the sequences {bk}
∞
k=0 for which 

 2n+1∑
k=2n+1

|bk|
2


1/2

∞

n=0

∈ l∞.

The following result can be found in [17].

Lemma 3.4. A complex sequence {λn}
∞
n=0 is a multiplier from l(2,∞) to l1 if and only if

∞∑
n=1

 2n+1∑
k=2n+1

|λk|
2


1/2

< ∞.

Theorem 3.5. Let µ be a positive measure on [0, 1) and α > 1. Then the following statements are
equivalent.

(1) The measure µ is an α-Carleson measure.
(2) The operatorHµ is bounded from Bα into B.
(3) The operatorHµ is bounded from Bα into BMOA.

Proof. (3)⇒ (2). It is trivial.
(2)⇒(1). We suppose thatHµ is bounded from Bα into B for α > 1. For any 0 < λ < 1, let

fλ(z) =
1 − λ2

(1 − λz)α
=

∞∑
k=0

ak,λzn, (3.5)

where ak,λ = O((1 − r2)kα−1λk). It is easy to see that fλ ∈ Bα. Then

Hµ( f )(z) =

∞∑
n=0

 ∞∑
k=0

µn,kak

 zn ∈ B.
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Lemma 2.2 gives that

∞ > sup
n

n
∞∑

k=0

µn,kak,λ

= sup
n

n(1 − λ2)
∞∑

k=0

kα−1λk
∫ 1

0
tn+kdµ(t)

≥ sup
n

n(1 − λ2)
∞∑

k=0

kα−1λk
∫ 1

λ

tn+kdµ(t)

≥ sup
n

n(1 − λ2)λnµ([λ, 1))
∞∑

k=0

kα−1λ2k

= sup
n

nλn 1 − λ2

(1 − λ2)α
µ([λ, 1)).

We choose n such that 1 − 1
n ≤ λ < 1 − 1

n+1 . We have

∞ >
1

e(1 − λ2)α
µ([λ, 1)). (3.6)

So µ is an α−Carleson measure.

(1)⇒(3). Assume that the condition (1) holds. Lemma 3.1 shows that Iµ( f ) is analytic on D. Let
f (z) =

∑∞
n=0 anzn ∈ Bα. By Lemma 3.3 we have that the sequence {ak/kα−1} ∈ l(2,∞). Since µ is an

α-Carleson measure, we have µk ≤
C
kα by Lemma 2.7 in [11]. There exists a constant C such that

∞∑
n=1

 2n+1∑
k=2n+1

(µkkα−1)2


1/2

.
∞∑

n=1

 2n+1∑
k=2n+1

1
k2


1/2

.
∞∑

n=1

1
2n/2 < ∞.

This shows that the sequence {µkkα−1} is a multiplier from l(2,∞) to l1 by Lemma 3.4. Note that {µn}
∞
n=1

is a decreasing sequence of positive numbers. Given any f (z) =
∑∞

n=0 anzn ∈ Bα for α > 1, we have

∞∑
k=1

|µn+kak| ≤

∞∑
k=1

|µkak| ≤

∞∑
k=1

µk

k1−α

|ak|

kα−1

≤ C sup
n

2n+1−1∑
k=2n

|ak|
2

k2(α−1)


1/2

< C‖ f ‖Bα .

This implies thatHµ( f )(z) is well defined for all z ∈ D andHµ( f ) is an analytic function inD. Applying
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Fubini’s Theorem, we get

Hµ( f )(z) =

∞∑
n=0

 ∞∑
k=0

µn+kak

 zn =

∞∑
k=0

ak

 ∞∑
n=0

µn+kzn


=

∞∑
k=0

ak

 ∞∑
n=0

∫
[0,1)

tn+kzndµ(t)


=

∞∑
k=0

∫
[0,1)

 ∞∑
n=0

tnzn

 aktkdµ(t)

=

∫
[0,1)

∞∑
k=0

aktk

1 − tz
dµ(t) = Iµ( f )(z).

Note that | f (t)| . (1 − t)1−α by Lemma 2.1. Applying (2.1) and Lemma 3.2, we have∣∣∣∣∣∣
∫ 2π

0
Iµ( f )(reiθ)g(eiθ)dθ

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫

[0.1)
f (t)g(rt)dµ(t)

∣∣∣∣∣∣
≤‖ f ‖Bα

∫
[0.1)
|g(rt)|(1 − t)1−αdµ(t)

≤‖µ‖‖ f ‖Bα
∫ 2π

0
|g(reiθ)|dθ

≤‖µ‖‖ f ‖Bα‖g‖H1 .

We obtain Hµ( f ) = Iµ( f ) ∈ BMOA by Fefferman’s duality Theorem for any f ∈ Bα. The proof is
complete. �

Theorem 3.6. Let µ be a positive measure on [0, 1) and α > 1. Then the following statements are
equivalent.

(1) The measure µ is a vanishing α-Carleson measure.
(2) The operatorHµ is compact from Bα spaces into B.
(3) The operatorHµ is compact from Bα spaces into BMOA.

Proof. (3)⇒(2). It is trivial.
(2)⇒(1). Suppose thatHµ : Bα → B is compact. Let fλ be defined by (3.5). Then { fλ} is a bounded

sequence in Bα and limr→1 fλ(z) = 0 on any compact subset of D. Then we have

lim
λ→1
‖Hµ( fλ)‖Bα = 0.

The proof of Theorem 3.5 gives that

‖Hµ( fλn)‖Bα ≥
µ([λ, 1))

e(1 − λ2)α
.

Consequently, µ is a vanishing α-Carleson measure.
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(1)⇒(3). Assume that µ is a vanishing α-Carleson measure. The proof of the sufficiency for the
boundedness gives thatHµ( f ) = Iµ( f ) and∣∣∣∣∣∣

∫ 2π

0
Hµ( f )(eiθ)g(reiθ)dθ

∣∣∣∣∣∣ ≤
∫

[0.1)
| f (t)g(rt)|dµ(t)

for all f ∈ Bα and g ∈ H1. Let { fn} be any sequence with supn ‖ fn‖Bα ≤ 1 and limn→∞ fn(z) = 0 on any
compact subset of D. Then we have

lim
n→∞

∫
[0,r)
| fn(t)g(rt)|dµ(t) = 0. (3.7)

Since v is a vanishing Carleson measure, where v is defined by dv(t) = (1 − t)1−αdµ(t). We obtain∫
[r,1)
| fn(t)g(rt)|dµ(t) ≤

∫
[0,1)
|g(rt)|dvr(t) < ‖v − vr‖‖g‖H1 , (3.8)

where dvr(t) = χ0<t<rdv(t). It is well known that v is a vanishing Carleson measure if and only if

‖v − vr‖ → 0, r → 1.

See p. 283 of [22]. Combining (3.7) and (3.8), then

lim
n→∞

(
lim
r→1

∫
[0,1)
| fn(t)g(rt)|dµ(t)

)
= 0.

This prove that limn→∞Hµ( fn) = 0. SoHµ is compact. The proof is complete. �

Theorem 3.7. Let µ be a positive measure on [0, 1). IfHµ is bounded from Bα to B for any α > 1, then

‖Hµ‖
Bα→B
e ≈ ‖Hµ‖

Bα→BMOA
e ≈ lim sup

r→1−

µ([r, 1))
(1 − r)α

. (3.9)

Proof. For any f ∈ Bα, we have

‖Hµ( f )‖B
α→B . ‖Hµ( f )‖B

α→BMOA.

This gives that
‖Hµ‖

Bα→B
e . ‖Hµ‖

Bα→BMOA
e .

We now give the upper estimate of Hµ from Bα to BMOA. Since Hµ is bounded from Bα to B, then
the operatorHµ from Bα to BMOA is bounded and µ is an α−Carleson measure by Theorem 3.5. For
any 0 < r < 1, the positive measure µr is defined by

µr(t) =

µ(t), 0 ≤ t ≤ r,

0, r < t < 1.
(3.10)

It is easy to check that µr is a vanishing α-Carleson measure. We have thatHµr is compact from Bα to
BMOA by Theorem 3.6. Then

‖Hµ −Hµr‖
Bα→BMOA = inf

‖ f ‖Bα=1
‖Hµ−µr ( f )‖BMOA. (3.11)
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By (2.1) we have ∣∣∣∣∣∣
∫ 2π

0
Hµ−µr ( f )(reiθ)g(eiθ)dθ

∣∣∣∣∣∣ ≤
∫

[0.1)

∣∣∣g(rt)
∣∣∣ (1 − t)1−αd(µ − µr)(t)

≤‖v − vr‖‖g‖H1 ,

for any g ∈ H1, where dv(t) = (1 − t)1−αdµ(t) and dvr(t) = (1 − t)1−αdµr(t). The above estimate gives

‖Hµ‖
Bα→BMOA
e . lim sup

r→1−

µ([r, 1))
(1 − r)α

.

We now give the lower estimate ofHµ from Bα to B. For any 0 < λ < 1, let fλ be defined by (3.5).
Then fλ ∈ Bα. Since fλ → 0 weakly in Bα, we have that ‖K fλ‖ → 0 as λ→ 1 for any compact operator
K on Bα. Moreover

‖Hµ − K‖B
α→B ≥ ‖(Hµ − K) fλ‖B ≥ ‖Hµ fλ‖B − ‖K fλ‖B.

By the proof of Theorem 3.5 we have

‖Hµ( fλ)‖B ≥ sup
n

n
∞∑

k=0

µn,kak,λ ≥ sup
n

nrn 1 − λ2

(1 − rλ)α
µ([r, 1)).

Let r = λ and we choose n such that 1 − 1
n+1 ≤ λ < 1 − 1

n . We have

‖Hµ( fλ)‖B >
1

e(1 − λ2)α
µ([λ, 1)). (3.12)

Then
‖Hµ‖

Bα→B
e ≥ lim sup

λ→1−
‖Hµ fλ‖B & lim sup

r→1−

µ([r, 1))
(1 − r)α

.

The proof is complete. �

4. Essential norm ofHµ on B

The reader can refer to [11, 12] for the results of Hµ : B → BMOA and Hµ : B → B. In this
section, we characterize the essential of norm ofHµ on B. The following results will be needed in the
proof of the main result.

Lemma 4.1. [11] Let µ be a positive Borel measure on [0, 1). Let v be the Borel measure on [0, 1)
defined by

dv(t) = log
e

1 − t
dµ(t)

Then the following statements are equivalent.

(1) v is a Carleson measure.
(2) µ is a 1−logarithmic 1−Carleson measure.
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Lemma 4.2. [11] Let µ be a positive Borel measure on [0, 1). Then the following statements are
equivalent.

(1) The measure µ is a vanishing 1−logarithmic 1−Carleson measure.
(2) The operatorHµ is compact on B.
(3) The operatorHµ is compact from B to BMOA.

Theorem 4.3. Let µ be an 1−logarithmic 1−Carleson measure on [0, 1). Then

‖Hµ‖
B→B
e ≈ ‖Hµ‖

B→BMOA
e ≈ lim sup

r→1−

µ([r, 1)) log e
1−r

1 − r
. (4.1)

Proof. For any f ∈ B, we have

‖Hµ( f )‖B→B . ‖Hµ( f )‖B→BMOA.

This gives that
‖Hµ‖

B→B
e . ‖Hµ‖

B→BMOA
e .

We now give the upper estimate of Hµ from B to BMOA. Since µ is an 1−logarithmic 1−Carleson
measure on [0, 1), the operator Hµ from B to BMOA is bounded by Theorem 2.8 of [11]. For any
0 < r < 1, let the positive measure µr defined by (3.10). It is easy to check that µr is a vanishing
1−logarithmic 1−Carleson measure. We have that Hµr is compact from B to BMOA by Lemma 4.2.
Then

‖Hµ‖
B→BMOA
e ≤ ‖Hµ −Hµr‖

B→BMOA = inf
‖ f ‖B=1

‖Hµ−µr ( f )‖BMOA. (4.2)

By (2.1) we have ∣∣∣∣∣∣
∫ 2π

0
Hµ−µr ( f )(reiθ)g(eiθ)dθ

∣∣∣∣∣∣ ≤
∫

[0.1)

∣∣∣ f (t)g(rt)
∣∣∣ d(µ − µr)(t)

≤

∫
[0.1)

∣∣∣g(rt)
∣∣∣ log

e
1 − t

d(µ − µr)(t)

.‖v − vr‖‖g‖H1 ,

where dv(t) = log e
1−t dµ(t) and dvr(t) = log e

1−t dµr(t). The positive measure v−vr is a Carleson measure
by Lemma 4.1. The above estimate gives

‖Hµ‖
B→BMOA
e . lim sup

λ→1−

µ([λ, 1)) log e
1−λ

1 − λ
.

We will give the lower estimate forHµ. Let 0 < λ < 1 and

fλ(z) = βλ log2 e
1 − λz

, (4.3)

where βλ = log−1 e
1−λ2 . Then { fλ} is a bounded sequence in B and limλ→1− fλ(z) = 0 on any compact

subset of D. Since fλ → 0 weakly in B, we have that ‖K fλ‖ → 0 as λ→ 1 for any compact operator K
on B. Moreover

‖Hµ − K‖B→B ≥ ‖(Hµ − K) fλ‖B ≥ ‖Hµ fλ‖B − ‖K fλ‖B.
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Note thatHµ( fλ) = Iµ( fλ). We have

‖Hµ( fλ)‖B ≥(1 − λ2)
∣∣∣∣(Iµ( fλ)

)′
(λ)

∣∣∣∣
≥(1 − λ2)

∫ 1

λ

fλ(t)
(1 − tλ)2 dµ(t)

≥ log
e

1 − λ2

µ([λ, 1))
1 − λ2 .

The above estimate shows that

‖Hµ − K‖B→Be ≥ lim sup
λ→1−

‖Hµ fλ‖B & lim sup
λ→1−

µ([λ, 1)) log e
1−λ

1 − λ
.

The proof is complete. �
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