Citation: Chunjuan Hou, Zuliang Lu, Xuejiao Chen, Fei Huang. Error estimates of variational discretization for semilinear parabolic optimal control problems[J]. AIMS Mathematics, 2021, 6(1): 772-793. doi: 10.3934/math.2021047
[1] | Chunjuan Hou, Zuliang Lu, Xuejiao Chen, Xiankui Wu, Fei Cai . Superconvergence for optimal control problems governed by semilinear parabolic equations. AIMS Mathematics, 2022, 7(5): 9405-9423. doi: 10.3934/math.2022522 |
[2] | Yuelong Tang . Error estimates of mixed finite elements combined with Crank-Nicolson scheme for parabolic control problems. AIMS Mathematics, 2023, 8(5): 12506-12519. doi: 10.3934/math.2023628 |
[3] | Zuliang Lu, Ruixiang Xu, Chunjuan Hou, Lu Xing . A priori error estimates of finite volume element method for bilinear parabolic optimal control problem. AIMS Mathematics, 2023, 8(8): 19374-19390. doi: 10.3934/math.2023988 |
[4] | Zuliang Lu, Fei Cai, Ruixiang Xu, Chunjuan Hou, Xiankui Wu, Yin Yang . A posteriori error estimates of hp spectral element method for parabolic optimal control problems. AIMS Mathematics, 2022, 7(4): 5220-5240. doi: 10.3934/math.2022291 |
[5] | Changling Xu, Hongbo Chen . A two-grid P20-P1 mixed finite element scheme for semilinear elliptic optimal control problems. AIMS Mathematics, 2022, 7(4): 6153-6172. doi: 10.3934/math.2022342 |
[6] | Tiantian Zhang, Wenwen Xu, Xindong Li, Yan Wang . Multipoint flux mixed finite element method for parabolic optimal control problems. AIMS Mathematics, 2022, 7(9): 17461-17474. doi: 10.3934/math.2022962 |
[7] | Zuliang Lu, Xiankui Wu, Fei Huang, Fei Cai, Chunjuan Hou, Yin Yang . Convergence and quasi-optimality based on an adaptive finite element method for the bilinear optimal control problem. AIMS Mathematics, 2021, 6(9): 9510-9535. doi: 10.3934/math.2021553 |
[8] | Jie Liu, Zhaojie Zhou . Finite element approximation of time fractional optimal control problem with integral state constraint. AIMS Mathematics, 2021, 6(1): 979-997. doi: 10.3934/math.2021059 |
[9] | Cagnur Corekli . The SIPG method of Dirichlet boundary optimal control problems with weakly imposed boundary conditions. AIMS Mathematics, 2022, 7(4): 6711-6742. doi: 10.3934/math.2022375 |
[10] | Zuliang Lu, Xiankui Wu, Fei Cai, Fei Huang, Shang Liu, Yin Yang . Error estimates in L2 and L∞ norms of finite volume method for the bilinear elliptic optimal control problem. AIMS Mathematics, 2021, 6(8): 8585-8599. doi: 10.3934/math.2021498 |
It is generally known that optimal control has an important role in this ever-changing society, such as engineering numerical simulation, economic, atmosphere, petroleum, architecture and scientific, and so on. Meanwhile, optimal control is an important knowledge point not only for science and engineering students, but also for non science and engineering students. for example, it is widely used in economic management disciplines, such as management accounting, dynamic optimization, actuarial, pricing analysis, etc, even in artistic modeling structure analysis. An effective numerical method is necessary for the successful application of optimal control, for optimal control problems (OCP), finite element approximation should be a powerful numerical method in the calculation, and there are many related literatures. Optimal control problems using finite element methods (FEM) for partial differential equations (PDEs) are introduced systematically, which can be found in [1,2,3,4] for elliptic optimal control problems in (see e.g., [2,5,6,7,8,9,10]), for parabolic optimal control problems in [1,3,11,12,13] and for Stokes optimal control problem in [14,15]. A priori error estimates of finite element method was established in [16,17,18], a posteriori error estimates of residual type has been established in [12,15,19], and a posteriori error estimates based on recovery techniques has been derived in [14,20,21]. Some error estimates and superconvergence results of mixed finite element method for optimal control problems can be found in [5,9].
For the optimal control problem with control constraints, the regularity of the general control method is lower than that of the state and the co-state. Therefore, the state and the co-state variables are approached by piecewise linear finite element functions, and the control variable is approached by piecewise constant function, and a projection gradient method with preset conditions is constructed. see [1,3,12,14,15,19,20]. In year 2012, Tang and Chen [22] studied variational discretization for the optimal control problem governed by parabolic equations with control constraints.
In this paper, we discuss a variational discretization for optimal control problems governed by nonlinear parabolic equations with control constraints, and we derive a priori error estimates and a posteriori error estimates of residual type. Some of techniques directly relevant to our work can be found in [16,23,24].
In this paper, the model problem that we shall investigate is the following two dimensional optimal control problem:
{minu(x,t)∈D{12∫T0(‖y(x,t)−yd(x,t)‖2L2(Ω)+‖u(x,t)‖2L2(Ω))dt},yt(x,t)−div(A(x)∇y(x,t))+ϕ(y(x,t))=f(x,t)+u(x,t),x∈Ω,t∈J,y(x,t)=0,x∈∂Ω,t∈J,y(x,0)=y0(x),x∈Ω, | (1.1) |
where D is defined by
D={g(x,t)∈L2(J;L2(Ω)):c≤g(x,t)≤d,a.e.x∈Ω,t∈J}, |
where c and d are two constants.
Ω in Rn(n≤3) is a bounded domain and ∂Ω is a Lipschitz boundary, J=[0,T], 0<T<+∞, n-matrix A(x)=(aij(x))∈(W1,∞(ˉΩ))n×n, and (A(x)ξ)⋅ξ≥c∣ξ∣2, ∀ξ∈Rn. The function ϕ(⋅)∈W2,∞ for any R>0, ϕ′(y)∈L2(Ω) for any y∈H1(Ω), and ϕ′(y)≥0. Here yt(x,t) denotes the partial derivative of y in time, yd(x,t),f(x,t)∈C(J;L2(Ω)), y0(x)∈H10(Ω).
We use the standard notation Wm,p(Ω) for Sobolev spaces on Ω with norm ‖⋅‖Wm,q(Ω) and seminorm |⋅|Wm,p(Ω), when p=2, Wm,2(Ω) can be expressed as Hm(Ω), Wm,20(Ω) can be expressed as Hm0(Ω). Further more, H10(Ω):={g∈H1(Ω):g|∂Ω=0}. We denote by Lk(J;Wm,p(Ω)) the Banach space of all Lk integrable functions from J into Wm,p(Ω) with norm ‖g‖Lk(J;Wm,p(Ω))=(∫T0‖g‖kWm,p(Ω)dt)1k for k∈[1,∞) and the standard modification for k=∞. Similarly, the spaces Hl(J;Wm,p(Ω)) and Cl(J;Wm,p(Ω)) also can be defined, the details can be found in [17]. In addition, c or C denotes a ordinary positive constant.
The research ideas and concrete design of the paper is as follows: we give the backward Euler approximation and variational discretization approximation for our model in Section 2, then gain a prior error estimate in Section 3. After that, we get a posterior error estimate in Section 4. In Section 5, we give conclusion and future works.
In this section, in the light of the model (1.1), we give variational discretization approximation using backward Euler method. We define W=L2(J;V) with V=H10(Ω), ‖⋅‖V=‖⋅‖H10(Ω), and the control space X=L2(J;U) with U=L2(Ω), ‖⋅‖=‖⋅‖L2(Ω). Throughout the paper, (⋅⋅) denotes the inner product in L2(Ω).
Let
a(u,v)=∫Ω(A(x)∇u)⋅∇v,∀u,v∈V,(p,q)=∫Ωp⋅q, ∀p,q∈L2(Ω). |
From Friedriechs' inequality, it produces
a(u,u)≥c‖u‖2V,∀u∈V,|a(u,v)|≤C‖u‖V‖v‖V,∀u,v∈V. |
In order to keep things simple, we suppose the domain Ω is in R2 and is a convex polygon.
Next, we introduce the co-state equation
−pt(x,t)−div(A(x)∇p(x,t))+ϕ′(y(x,t))p(x,t)=y(x,t)−yd, x∈Ω, t∈[0,T), | (2.1) |
p(x,t)=0,x∈∂Ω, t∈[0,T), | (2.2) |
p(x,T)=0,x∈Ω. | (2.3) |
Then a possible weak formula for the state equation reads: For given u, y0, find y(u) such that
(yt,w)+a(y,w)+(ϕ(y),v)=(f+u,w),t∈(0,T], ∀ w∈V,y(x,0)=y0(x),x∈Ω. |
It is well known (see [16]) that the above problem has a unique solution y. It follows from embedding that y∈C(0,T;L2(Ω)). So the above model control problem (1.1) can be rewritten as (QCP):
minu∈D{12∫T0(∥y−yd∥2+∥u∥2)dt}, | (2.4) |
(yt,w)+a(y,v)+(ϕ(y),w)=(f+u,w),t∈(0,T], ∀ w∈V, | (2.5) |
y(x,0)=y0(x),x∈Ω, | (2.6) |
where y∈H1(0,T;U)⋂W.
It is well known (see, e.g., [1]) that the convex control problem (QCP) has a unique solution (y,u), and that a doublet (y,u) is the solution of (QCP) if and only if there exists a co-state p∈H1(J;U)⋂W, such that the triplet (y,p,u) satisfies the following optimal conditions (QCP-OPT) for t∈(0,T]
(yt,w)+a(y,w)+(ϕ(y),w)=(f+u,w),∀ w∈V, | (2.7) |
y(x,0)=y0(x),x∈Ω,−(pt,q)+a(q,p)+(ϕ′(y)p)=(y−yd,q),∀ q∈V, | (2.8) |
p(x,T)=0,x∈Ω,(u+p,˜u−u)≥0,∀ ˜u∈D. | (2.9) |
Now, we introduce the pointwise projection operator as followed:
Π[c,d](h(x,t))=max(c,min(d,−h(x,t))). | (2.10) |
As in [16], it is easy to see that (2.9) can be equivalently read as:
u(x,t)=Π[c,d](p(x,t)). | (2.11) |
Set Γh be a regular triangulations of the polygonal domain Ω, such that ˉΩ=⋃λ∈Γhˉλ. Let h=maxλ∈Γh{hλ}, where hλ denotes the diameter of the element λ. Associated with Γh is a finite dimensional subspace Wh of C(ˉΩ), such that wh|λ is the polynomial of total degree no more than n (n≥1), ∀wh∈Wh. Let Vh=Wh∩V. Then it is easy to see that Vh⊂V.
Suppose N is a positive integer, and we set 0=t0<t1<⋯<tN=T, kl=tl−tl−1,l=1,2,⋅⋅⋅,N, k=maxl∈[1,N]{kl}. Set ql=q(x,tl), we give the discrete time-dependent norms for 1≤p<∞:
|||q(x,t)|||Lp(J;Hl(Ω)):=(N−s∑i=1−ski+s‖qi‖pl)1p, |
when s=0 be the control variable and the state variable u(x,t) and y(x,t), when s=1 be the co-state variable p(x,t), with the standard modification for p=∞.
A possible finite element approximation of (QCP) is to find (yh,uh)∈Uh×Vh, which we shall label (QCP)h
minuh∈Dh{12∫T0(∥yh−yd∥2+∥uh∥2)dt} | (2.12) |
(yh,t,wh)+a(yh,wh)+(ϕ(yh),wh)=(f+uh,wh),∀ wh∈Vh, | (2.13) |
yh(x,0)=yh0(x),x∈Ω, | (2.14) |
where yh∈H1(0;T;Vh), yh0∈Vh is an approximation of y0.
The control problem (QCP)h again has a unique solution (yh,uh) and a doublet (yh,uh)∈Vh×Uh is the solution of (QCP)h if and only if there is a co-state ph, such that the triplet (yh,ph,uh) satisfies the following optimality conditions (QCP−OPT)h for t∈(0,T]:
(yh,t,wh)+a(yh,wh)+(ϕ(yh),wh)=(f+uh,wh),∀ wh∈Vh, | (2.15) |
yh(x,0)=yh0(x),x∈Ω,−(ph,t,qh)+a(qh,ph)+(ϕ′(yh)ph,qh)=(yh−yd,qh),∀ qh∈Vh, | (2.16) |
ph(x,T)=0,x∈Ω,(uh+ph,˜uh−uh)≥0,∀ ˜uh∈Dh. | (2.17) |
Therefore, as we defined, the exact state solution and its approximation can be read as:
(y,p)=(y(u),p(u)),(yh,ph)=(yh(uh),ph(uh)). |
Next we consider the above discrete approximation using the backward Euler scheme to approximate the partial derivative in time t. Then the discrete approximation of (2.4)-(2.6) is the following form:
{minulh∈K{12N∑i=1kl(‖ylh−yld‖2+‖ulh‖2)},(ylh−yl−1hki,vh)+a(ylh,vh)+(ϕ(ylh),vh)=(fl+ulh,wh),∀wh∈Vh,l=1,2,⋅⋅⋅,N,y0h(x,0)=yh0(x),x∈Ω. | (2.18) |
It follows that the control problem (2.18) has a unique solution (ylh,ulh), l=1,2,⋅⋅⋅,N, and (ylh,ulh)∈Vh×D, l=1,2,⋅⋅⋅,N, is the solution of (2.18) if and only if there is a co-state pl−1h∈Vh, l=1,2,⋅⋅⋅,N, such that the triplet (ylh,pl−1h,ulh)∈Vh×Vh×D, l=1,2,⋅⋅⋅,N, satisfies the following variational discretization optimality conditions:
(ylh−yl−1hkl,wh)+a(ylh,wh)+(ϕ(ylh),wh)=(fl+ulh,wh), | (2.19) |
y0h(x)=yh0(x), x∈Ω, l=1,2,⋅⋅⋅,N,(pl−1h−plhkl,qh)+a(qh,pl−1h)+(ϕ′(ylh)pl−1h,qh)=(ylh−yld,qh), | (2.20) |
pNh(x)=0, x∈Ω, l=N,N−1,⋅⋅⋅,1,(ulh+pl−1h,˜uh−ulh)≥0, l=1,2,⋅⋅⋅,N. | (2.21) |
where wh∈Vh, qh∈Vh and ˜uh∈Dh. It is obvious that the variational inequality (2.21) satisfies the result as follows:
ulh=Π(pl−1h),l=1,2,⋯,N. | (2.22) |
According to (2.22), we should solve the numerical solution of the control variable uh after the co-state variable ph.
In this section, we shall derive a priori error estimates for the backward Euler variational discretization approximation scheme. We will start with errors estimation of state and co-state variable. Now, we recall the elliptic projection Rh: V→Vh, for any v∈V, which satisfies:
a(v−Rhv,vh)=0, ∀vh∈Vh. | (3.1) |
We have the approximation property (see [23])
‖v−Rhv‖≤Chs‖v‖s,s=1,2. | (3.2) |
Lemma 3.1. Let (y,p,u) and (yh,ph,uh) be the solutions of (2.7)-(2.9) and (2.19)-(2.21), respectively. Assume y∈H1(J;H2(Ω))∩H2(J;U) and y(x,0)∈H2(Ω). Then there is a constant C independent of h and k such that
|||yh−y|||L∞(J;U)≤C(h2+k+|||uh−u|||2X). | (3.3) |
Proof. We set
ylh−yl=ylh−Rhyl+Rhyl−yl:=θl+ηl, | (3.4) |
a(Rhv,vh)=a(v,vh),∀vh∈Vh. It follows from Lemma 1.1 in [25], we have
‖ηl‖=‖Rhyl−yl‖≤Ch2‖yl‖2≤Ch2(‖y0‖2+∫tl0‖yt(s)‖2ds)≤Ch2. | (3.5) |
It follows from (2.7) and (2.19), noting that ″I″ denotes the unit operator, so we have
(θl−θl−1kl,wh)+a(θl,wh)=−(Rhyl−Rhyl−1kl,wh)−a(Rhyl,wh)−(ϕ(ylh),wh)+(fl+ulh,wh)=−(Rhyl−Ryl−1kl,wh)−a(yl,wh)+(fl+ul,wh)−(ϕ(ylh),wh)+(ulh−ul,wh)=−(Rhyl−Rhyl−1kl,wh)+(ylt,wh)+(ϕ(yl),wh)−(ϕ(ylh),wh)+(ulh−ul,wh)=−((Rh−I)(yl−yl−1)kl,wh)−(yl−yl−1kl−ylt,wh)−(ϕ(ylh)−ϕ(yl),wh)+(Ulh−ul,wh)=−((Rh−I)(yl−yl−1)kl,wh)−(yl−yl−1kl−ylt,wh)−(ϕ′(ylh)(ylh−yl),wh)+(ulh−ul,wh)=−((Rh−I)(yl−yl−1)kl,wh)−(yl−yl−1kl−ylt,wh)−(ϕ′(ylh)(ylh−Rhyl),wh)−(ϕ′(ylh)(Rhyl−yl),wh)+(ulh−ul,wh)≤−((Rh−I)(yl−yl−1)kl,wh)−(yl−yl−1kl−ylt,wh)−(ϕ′(yih)(yih−Rhyl),wh)−(ϕ′(ylh)(Ryl−yl),wh)+(ulh−ul,wh) |
We select wh=θl,
(θl−θl−1kl,θl)+a(θl,θl)≤−((Rh−I)(yl−yl−1)kl,θl)−(yl−yl−1kl−ylt,θl)−(ϕ′(ylh)θl,θl)−(ϕ′(ylh)ηl,θl)+(ulh−ul,θl)≤−((Rh−I)(yl−yl−1)kl,θl)−(yl−yl−1kl−ylt,θl)−(ϕ′(ylh)ηl,θl)+(ulh−ul,θl) | (3.6) |
Note that 0≤c‖θl‖2V≤a(θl,θl), according to Hölder inequality, we obtain
‖θl‖≤‖θl−1‖+‖(Rh−I)(yl−yl−1)‖+‖yl−yl−1−klylt‖+kl‖ϕ′ylh)ηl‖+kl‖ulh−ul‖. |
Summing l from 1 to N∗(1≤N∗≤N), note that y∈H1(J;H2(Ω))∩H2(J;U) and y(x,0)∈H2(Ω), we get
‖θN∗‖≤‖θ0‖+N∗∑l=1‖(Rh−I)(yl−yl−1)‖+N∗∑l=1‖yl−yl−1−klylt‖+N∗∑l=1kl‖ϕ′(ylh)ηl‖+N∗∑l=1kl‖ulh−ul‖≤‖θ0‖+N∗∑l=1∫tltl−1(Rh−I)yt(s)ds+N∗∑l=1‖∫tltl−1(tl−1−s)ytt(s)ds‖+N∗∑l=1kl‖ϕ′(ylh)‖W1,∞‖ηl‖+C|||uh−u|||2X≤‖θ0‖+N∗∑l=1∫tltl−1Ch2‖yt(s)‖2ds+N∗∑l=1∫tltl−1‖(tl−1−s)ytt(s)‖ds+Ch2N∗∑l=1kl‖ϕ′(yih)‖W2,∞+C|||uh−u|||2X≤‖θ0‖+Ch2∫tN∗0‖yt(s)‖2ds+k∫tN∗0‖ytt(s)‖ds+Ch2+C|||uh−u|||2X≤Ch2‖y0‖2+Ch2∫T0‖yt(s)‖2ds+k∫T0‖ytt(s)‖ds+Ch2+C|||uh−u|||2X≤C(h2+k+|||uh−u|||2X). | (3.7) |
Then (3.3) follows from (3.5)-(3.7) and Triangle inequality.
Lemma 3.2. Suppose (y,p,u) and (yh,ph,uh) be the solutions of (2.7)-(2.9) and (2.19)-(2.21), respectively. Let p∈H1(J;H2(Ω))∩H2(J;U), assume yd,y∈H1(J;U), exist a constant C independent of k and h, so that
|||ph−p|||L∞(J;U)≤C(h2+k+|||yh−y|||X). | (3.8) |
Proof. Similarly, we set
plh−pl=plh−Rhpl+Rhpl−pl:=ζl+ξl. | (3.9) |
Note that pN=0, then
‖ξl‖=‖Rhpl−pl‖≤Ch2‖pl‖2≤Ch2∫tlT‖pt(s)‖2ds≤Ch2. | (3.10) |
It follows from (2.8) and (2.20), we have
(ζl−1−ζlkl,qh)+a(qh,ζl−1)+(ϕ′(yih)(pl−1h−Rhpl−1),qh)=−(Rhpl−1−Rplkl,qh)−a(qh,Rhpl−1)+(Ylh−yld,qh)−(ϕ′(ylh)(Rhpl−1),qh)=−(Rhpl−1−Rhplkl,qh)−a(qh,pl−1)+(ylh−yld,qh)−(ϕ′(ylh)(Rhpl−1),qh)=−(Rhpl−1−Rhplkl,qh)−a(qh,pl−1)+(yl−1−yl−1d,qh)+(ylh−yl+yl−yl−1+yl−1d−yld,qh)−(ϕ′(ylh)(Rhpl−1),qh)=−(Rhpl−1−Rhplkl,qh)−(pl−1t,qh)+(ylh−yl+yl−yl−1+yl−1d−yld,qh)+(ϕ′(yl−1)pl−1,qh)−(ϕ′(ylh)(Rhpl−1),qh)=−((Rh−I)(pl−1−pl)kl,qh)−(pl−1−plkl+pl−1t,qh)+(ylh−yl+yl−yl−1+yl−1d−yld,qh)+(ϕ′(yl−1)pl−1,qh)−(ϕ′(ylh)(Rhpl−1),qh)=−((Rh−I)(pl−1−pl)kl,qh)−(pl−1−plkl+pl−1t,qh)+(ylh−yl+yl−yl−1+yl−1d−yld,qh)+(ϕ′(yl−1)(pl−1−Rhpl−1),qh)+((ϕ′(yl−1)−ϕ′(ylh))(Rhpl−1),qh)=−((Rh−I)(pl−1−pl)kl,qh)−(pl−1−plkl+pl−1t,qh)+(ylh−yl+yl−yl−1+yl−1d−yld,qh)+((ϕ′(ylh)−ϕ′(yl−1))(pl−pl−1),qh)−(ϕ′(ylh)(Rhpl−1−pl−1),qh)−((ϕ′(ylh)−ϕ′(yl−1))pl,qh). | (3.11) |
We select qh=ζl−1, note that 0≤c‖ζl−1‖2V≤a(ζl−1,ζl−1), by using Hölder inequality, we obtain
‖ζl−1‖≤‖ζl‖+‖(Rh−I)(pl−1−pl)‖+‖pl−1−pl+klpl−1t‖+kl(‖ylh−yl‖+‖yl−yl−1‖+‖yl−1d−yld‖)+kl(‖(ϕ′(ylh)−ϕ′(yl−1))pl‖+‖ϕ′(ylh)ξl−1‖+‖(ϕ′(ylh)−ϕ′(yl−1))(pl−pl−1)‖). | (3.12) |
Note that ζN=0 and p∈H1(J;H2(Ω))∩H2(J;U), summing l from M∗(0≤M∗≤N) to N, we get
‖ζM∗‖≤N∑l=M∗‖(Rh−I)(pl−1−pl)‖+N∑l=M∗‖pl−1−pl+klpl−1t‖+N∑l=M∗kl(‖ylh−yl‖+‖yl−yl−1‖+‖yl−1d−yld‖)+N∑l=M∗kl(‖(ϕ′(ylh)−ϕ′(yl−1))pl‖+‖ϕ′(ylh)ξl−1‖+‖(ϕ′(ylh)−ϕ′(yl−1))(pl−pl−1)‖)≤N∑l=M∗∫tl−ltl(Rh−I)pt(s)ds+N∑l=M∗‖∫tl−1tl(tl−s)ptt(s)ds‖+N∑l=M∗kl(‖ylh−yl‖+‖yl−yl−1‖+‖yl−1d−yld‖+‖ϕ(ylh)‖W2,∞‖ylh−yl−1‖‖pl‖)+N∑l=M∗kl(‖ϕ(ylh)‖W1,∞‖ξl−1‖+‖ϕ(ylh)‖W2,∞∫tl−1tlpt(s)ds)≤N∑l=M∗∫tl−1tlCh2‖pt(s)‖2ds+N∑l=M∗∫tl−1tl‖(tl−s)ptt(s)‖ds+N∑l=M∗kl(‖ylh−yl‖+‖yl−yl−1‖+‖yl−1d−yld‖+‖ϕ(ylh)‖W1,∞‖ξl−1‖)+Ch2≤Ch2∫TtM∗−1‖pt(s)‖2ds+k∫TtM∗−1‖ptt(s)‖ds+N∑l=M∗kl(‖ylh−yl‖+‖yl−yl−1‖+‖yl−1d−yld‖)+Ch2≤Ch2∫T0‖pt(s)‖2ds+k∫T0‖ptt(s)‖ds+|||yh−y|||2X+Ck2(‖yt‖X+‖ydt‖X)≤C(h2+k+|||Yh−y|||2X). | (3.13) |
Then (3.8) follows from (3.9)-(3.10), (3.13) and the triangle inequality.
Now, we estimate the error of the control variable. We need give two intermediate variables (ylh(u),plh(u))∈Vh×Vh,l=1,2,⋯,N, satisfies the following system:
(ylh(u)−yl−1h(u)kl,wh)+a(ylh(u),wh)+(ϕ(ylh(u)),wh)=(fl+ul,wh),∀wh∈Vh,yh(u)0(x)=y0(x),x∈Ω, | (3.14) |
(pl−1h(u)−plh(u)kl,qh)+a(qh,pl−1h(u))+(ϕ′(ylh(u))pl−1h(u),qh)=(ylh(u)−yld,qh),∀qh∈Vh,pNh(u)(x)=0,x∈Ω. | (3.15) |
For ease of exposition, we set
φl=ylh−ylh(u),ζl=plh−plh(u),l=0,1,⋯,N. |
It is clear that φ0=0 and ζN=0.
Lemma 3.3 Let (y,p,u) and (yh(u),ph(u)) be the solutions of (2.7)-(2.9) and (3.14)-(3.15), respectively. Assume that u,p∈H1(J;U). Then there exists a positive constant C independent of k and h, so the following conclusion holds
|||u−uh|||X≤C(|||ph(u)−p|||X+|||ph−p|||X+k). | (3.16) |
Proof. It follows from variational inequalities (2.9), (2.21) and Hölder inequality that
|||u−uh|||2X=N∑l=1kl(ul−ulh,ul−ulh)=N∑l=1kl(ul+pl,ul−Ulh)−N∑l=1kl(ulh+pl−1h(u),ul−ulh)+N∑l=1kl(pl−1h(u)−pl,ul−ulh)≤N∑l=1kl(ulh+pl−1h(u),ulh−ul)+N∑l=1kl(pl−1h(u)−pl,ul−ulh)=N∑l=1kl(ulh+pl−1h,ulh−ul)+N∑l=1kl(pl−1h(u)−pl−1h,ulh−ul)+N∑l=1kl(pl−1h(u)−pl,ul−ulh)≤N∑l=1kl(pl−1h(u)−pl−1h,ulh−ul)+N∑l=1kl(pl−1h(u)−pl,ul−ulh):=I1+I2. | (3.17) |
Note that φ0=0 and ζN=0, then it follows from (2.19)-(2.20) and (3.14)-(3.15) that
I1=N∑l=1kl(pl−1h(u)−pl−1h,ulh−ul)≤N∑l=1kl(pl−1h(u)−pl−1,ulh−ul)+N∑l=1kl(pl−1−pl−1h,ulh−ul)≤C(δ1)N∑l=1kl‖pl−1h(u)−pl−1‖2+C(δ1)N∑l=1kl‖pl−1h−pl−1‖2+δ1N∑l=1kl‖ul−ulh‖2.≤C(δ1)|||ph(u)−p|||2X+C(δ1)|||ph−p|||2X+C(δ1)|||u−uh|||2X | (3.18) |
For the second term, note that p∈H1(J;U), according to Hölder inequality, we have
I2=N∑l=1kl(pl−1h(u)−pl,ul−ulh)ber=N∑l=1kl(pl−1h(u)−pl−1,ul−ulh)+N∑l=1kl(pl−1−pl,ul−ulh)≤C(δ)N∑l=1kl‖pl−1h(u)−pl−1‖2+C(δ)N∑l=1kl‖pl−1−pl‖2+δN∑l=1kl‖ul−Ulh‖2≤C(δ)|||ph(u)−p|||2X+C(δ)k2||pt||X+δ|||u−uh|||2X≤C(δ)|||ph(u)−p|||2X+Ck2+δ|||u−uh|||2X. | (3.19) |
Let δ be small enough, then (3.16) follows from (3.17)-(3.19).
Lemma 3.4. Let (y,p,u) be the solution of (2.7)-(2.9), (yh(u),ph(u)) is defined in (3.14)-(3.15), the conditions of obedience are the same as the three Lemmas 3.1-3.3, then
|||yh(u)−y|||L∞(J;L2(Ω))≤C(h2+k). | (3.20) |
Proof. We set
ylh(u)−yl=ylh(u)−Rhyl+Rhyl−yl:=θl1+ηl, | (3.21) |
where
‖ηl‖=‖Ryl−yl‖≤Ch2‖yl‖2≤Ch2(‖y0‖2+∫tl0‖yt(s)‖2ds)≤Ch2. | (3.22) |
From (2.7) and (2.19), for ∀wh∈Vh we have
(θl1−θl−11kl,wh)+a(θl,wh)=−(Rhyl−Rhyl−1kl,wh)−a(Rhyl,wh)−(ϕ(ylh),wh)+(fl+ul,wh)=−(Rhyl−Rhyl−1kl,wh)−a(yl,wh)+(fl+ul,wh)−(ϕ(ylh),wh)=−(Rhyl−Rhyl−1kl,wh)+(ylt,wh)+(ϕ(yl),wh)−(ϕ(ylh),wh)=−((Rh−I)(yl−yl−1)kl,wh)−(yl−yl−1kl−ylt,wh)−(ϕ(ylh)−ϕ(yl),wh)=−((Rh−I)(yl−yl−1)kl,wh)−(yl−yl−1kl−ylt,wh)−(ϕ′(ylh)(ylh−yl),wh)=−((Rh−I)(yl−yl−1)kl,wh)−(yl−yl−1kl−ylt,wh)−(ϕ′(ylh)(ylh−Rhyl),wh) |
−(ϕ′(ylh)(Rhyl−yl),wh)≤−((Rh−I)(yl−yl−1)kl,wh)−(yl−yl−1kl−ylt,wh)−(ϕ′(ylh)(ylh−Rhyl),wh)−(ϕ′(ylh)(Rhyl−yl),wh). | (3.23) |
We set wh=θl1, so
(θl1−θl−11kl,θl1)+a(θl1,θl1)≤−((Rh−I)(yl−yl−1)kl,θl1)−(yl−yl−1kl−ylt,θl1)−(ϕ′(ylh)θl1,θl1)−(ϕ′(ylh)ηl,θl1)+(ulh−ul,θl1)≤−((Rh−I)(yl−yl−1)kl,θl1)−(yl−yl−1kl−ylt,θl1)−(ϕ′(ylh)ηl,θl1). | (3.24) |
Note that 0≤c‖θl1‖2V≤a(θl1,θl1), according to Hölder inequality, we obtain
‖θl1‖≤‖θl−1‖+‖(Rh−I)(yl−yl−1)‖+‖yl−yl−1−klylt‖+kl‖ϕ′(ylh)ηl‖. | (3.25) |
Summing i from 1 to N∗(1≤N∗≤N), noting y∈H1(J;H2(Ω))∩H2(J;U) and y(x,0)∈H2(Ω), we get
‖θN∗‖≤‖θ0‖+N∗∑l=1‖(Rh−I)(yl−yl−1)‖+N∗∑l=1‖yl−yl−1−klylt‖+N∗∑l=1kl‖ϕ′(ylh)ηl‖≤‖θ0‖+N∗∑l=1∫tltl−1(Rh−I)yt(s)ds+N∗∑l=1‖∫tltl−1(tl−1−s)ytt(s)ds‖N∗∑l=1kl‖ϕ′(ylh)‖W1,∞‖ηl‖≤‖θ0‖+N∗∑l=1∫tltl−1Ch2‖yt(s)‖2ds+N∗∑l=1∫tltl−1‖(tl−1−s)ytt(s)‖ds+Ch2N∗∑l=1kl‖ϕ′(ylh)‖W2,∞≤‖θ0‖+Ch2∫tN∗0‖yt(s)‖2ds+k∫tN∗0‖ytt(s)‖ds+Ch2≤Ch2‖y0‖2+Ch2∫T0‖yt(s)‖2ds+k∫T0‖ytt(s)‖ds+Ch2≤C(h2+k). | (3.26) |
Then (3.20) follows from (3.21)-(3.22), (3.26) and Triangle inequality.
Lemma 3.5. Let (y,p,u) be the solution of (2.7)-(2.9), (yh(u),yh(u)) is defined in (3.14)-(3.15). Then
|||ph(u)−p|||X≤C(h2+k). | (3.27) |
Proof. By using Lemma 3.2 and Lemma 3.4, we get that
|||yh(u)−y|||X≤C(h2+k), | (3.28) |
and
|||ph(u)−p|||L∞(J;U)≤C(h2+k+|||yh(u)−y|||2X). | (3.29) |
Then from (3.28)-(3.29) and embedding theorem, we have that
|||ph(u)−p|||L∞(J;U)≤C(h2+k). | (3.30) |
Thus,
|||ph(u)−p|||X≤C|||ph(u)−p|||L∞(J;U)≤C(h2+k). | (3.31) |
We obtain (3.27).
Now we combine Lemmas 3.1-3.5 to come up with the following main result.
Theorem 3.1. Let (y,p,u) and (yh,ph,uh) be the solutions of (2.7)-(2.9) and (2.19)-(2.21), respectively. Suppose all the conditions in Lemma 3.1-5 are valid. Then
|||ph−p|||L∞(J;U)+|||uh−u|||X≤C(h2+k+|||yh−y|||X). | (3.32) |
Proof. It is easy to see that (3.32) follows from (3.3), (3.8), (3.16) and (3.27).
In this section, we shall derive a posteriori error estimates for the backward Euler variational discretization approximation scheme.
First of all, we recall two important results:
Lemma 4.1. [6] Let πh be the standard Lagrange interpolation operator. For m=0 or 1, q>n2 and ∀v∈W2,q(Ω), the conclusion is as follows
|v−πhv|Wm,q(Ω)≤Ch2−m|v|W2,q(Ω). |
Lemma 4.2. [26] For all v∈W1,q(Ωh), 1≤q<∞,
‖v‖W0,q(∂τ)≤C(h−1qτ‖v‖W0,q(τ)+h1−1qτ|v|W1,q(τ)). |
If we set
J(u)=12∫T0(‖y−yd‖2+‖u‖2)dt. |
It can be shown that
(J′(u),v)=∫T0(u+p,v)dt,(J′(uh),v)=∫T0(uh+p(uh),v)dt, |
where y(uh), p(uh) satisfies the system as follows:
(yt(uh),w)+a(y(uh),w)+(ϕ(y(uh)),w)=(f+uh,w),t∈J,∀w∈V, | (4.1) |
y(uh)(x,0)=y0(x),x∈Ω,−(pt(uh),q)+a(q,p(uh))+(ϕ′(y(uh))p(uh),q)=(y(uh)−yd,q),t∈J,∀q∈V, | (4.2) |
p(uh)(x,T)=0,x∈Ω. |
For the needs of the paper, now we give two Lemmas and prove them.
Lemma 4.3. Let (y,p,u) and (yh,ph,uh) be the solutions of (2.7)-(2.9) and (2.19)-(2.21), respectively. Then there is a constant C independent of k and h, it reduces that
‖u−uh‖2X≤C‖˜ph−p(uh)‖2X. | (4.3) |
Proof. It follows from δ-Cauchy inequality, the variational inequality in (2.9) and (2.21), we have that
‖u−uh‖2X≤(J′(u)−J′(uh),u−uh)=∫T0(u+p,u−uh)dt−∫T0(uh+p(uh),u−uh)dt≤∫T0[−(uh+˜ph,u−uh)+(˜ph−p(uh),u−uh)]dt≤C(δ)‖˜ph−p(uh)‖2X+δ‖u−uh‖. | (4.4) |
Let δ be small enough, then (4.3) follows from (4.4). For any function w∈C(J;L2(Ω)), we let
ˆw(x,t)|(tl−1,tl]=w(x,tl),˜w(x,t)|(tl−1,tl]=w(x,tl−1). |
For l=1,2,⋅⋅⋅,N, we set
yh|(tl−1,tl]=((tl−t)yl−1h+(t−tl−1)ylh)/kl,ph|(tl−1,tl]=((tl−t)pl−1h+(t−tl−1)plh)/kl,uh|(tl−1,tl]=ulh. |
Then the optimality conditions (2.19)-(2.21) can be rewritten as:
(yht,wh)+a(ˆyh,wh)+(ϕ(ˆyh),wh)=(ˆf+uh,wh),∀wh∈Vh,t∈(tl−1,tl], | (4.5) |
yh(x,0)=yh0(x),x∈Ω,−(pht,qh)+a(qh,˜ph)+(ϕ′(ˆyh)˜ph,qh)=(ˆyh−ˆyd,qh),∀qh∈Vh,t∈(tl−1,tl], | (4.5) |
ph(x,T)=0,x∈Ω,(uh+˜ph,˜uh−uh)≥0,∀˜uh∈Dh. | (4.7) |
Lemma 4.4. Let (yh,ph,uh) be the solution of (4.5)-(4.7), and (y(uh),p(uh)) as defined in (4.1)-(4.2), so there is a constant C independent of k and h, it holds that
‖y(uh)−yh‖2X+‖p(uh)−ph‖2X≤C8∑l=1η2l, | (4.8) |
where
η21=N∑l=1∫tltl−1∑λh2λ∫λ(ˆyh−ˆyd+div(A∗∇˜ph)+pht)2dxdt,η22=N∑l=1∫tltl−1∑l∩∂Ω=∅hl∫l[A∗∇˜ph⋅n]2dsdt,η23=N∑l=1∫tltl−1∫Ω|A∗∇(˜ph−ph)|2dxdt,η24=N∑l=1∫tltl−1∑λh2λ∫λ(ˆf+uh+div(A∇ˆyh)−yht)2dxdt,η25=N∑l=1∫tltl−1∑s∩∂Ω=∅hs∫s[A∇ˆyh⋅n]2drdt,η26=N∑l=1∫tltl−1‖f−ˆf‖2dt,η27=N∑l=1∫tltl−1∫Ω|A∇(ˆyh−yh)|2dxdt,η28=‖y0(x)−yh(x,0)‖2, |
where hs is the size of the face s=ˉλ1s∩ˉλ2s, with λ1s, λ2s are two neighboring elements in Γh, [A∇ˆyh⋅n]s and [A∗∇˜ph⋅n]s are the A−normal and A∗−normal derivative jumps over the interior face s, respectively, defined by
[A∇ˆyh⋅n]s=(A∇ˆyh|λ1s−A∇ˆyh|λ2s)⋅n,[A∗∇˜ph⋅n]s=(A∗∇˜ph|λ1s−A∗∇˜ph|λ2s)⋅n, |
where n is the normal vector on s=λ1s∩λ2s outwards λ1s. Then we define [A∇ˆyh⋅n]s=0 and [A∗∇˜ph⋅n]s=0 when s⊂∂Ω.
Proof. Let ep=p(uh)−uh, and epI=ˆπhep, where ˆπh is the interpolation defined in Lemma 4.1. Note that p(uh)(x,T)=0 and ph(x,T)=0, using integration by parts, we have
∫T0−(pt(uh)−pht,ep)dt=−∫Ω∫T0(pt(uh)−pht)⋅epdtdx=12∫Ω[(p(uh)−ph)(x,0)]2dx≥0. |
It follows from a(u,u)≥c‖u‖2V,∀v∈V, combining equations (4.2) and (4.6), we have
c‖p(uh)−ph‖2L2(J;H1(Ω))≤∫T0[(A∇ep,∇(p(uh)−ph))−(pt(uh)−pht,ep)+(ϕ′(y(uh))(p(uh)−ph),ep)]dt=∫T0(∇(ep−epI),A∗∇(p(uh)−˜ph))dt−∫T0(pt(uh)−pht,ep−epI)dt+∫T0(∇ep,A∗∇(˜ph−ph))dt+∫T0[(∇epI,A∗∇(p(uh)−˜ph))−(pt(uh)−pht,epI)]dt+∫T0[(ϕ′(y(uh))p(uh)−ϕ′(ˆyh)˜ph,epI)+(ϕ′(y(uh))p(uh)−ϕ′(ˆyh)˜ph,ep−epI)]dt+∫T0((ϕ′(ˆyh)˜ph−ϕ′(y(uh))ph),ep)dt=∫T0(y(uh)−ˆyd+div(A∗∇˜ph)+pht,ep−epI)dt+∫T0∑λ∫∂λ(A∗∇˜ph⋅n)(ep−epI)dsdt+∫T0[(y(uh)−ˆyh,epI)+(∇ep,A∗∇(˜ph−ph))]dt+∫T0[(ϕ′(ˆyh)˜ph,epI)−(ϕ′(y(uh))ph,ep)]dt=∫T0(ˆyh−ˆyd+div(A∗∇˜ph)+pht,ep−epI)dt+∫T0∑λ∫∂λ(A∗∇˜ph⋅n)(ep−epI)dsdt+∫T0(y(Uh)−ˆYh,ep)dt+∫T0(∇ep,A∗∇(˜ph−ph))dt+∫T0[(ϕ′(ˆyh)˜ph,epI)−(ϕ′(y(uh))ph,ep)]dt:=I1+I2+I3+I4+I5. | (4.9) |
For the first term, by using δ-Cauchy inequality, Lemma 4.1 and Lemma 4.2, we get
I1=∫T0(ˆyh−ˆyd+div(A∗∇˜ph)+pht,ep−epI)dt=∫T0∫Ω(ˆyh−ˆyd+div(A∗∇˜ph)+pht)(ep−epI)dxdt=∫T0∑λ∫λ(ˆyh−ˆyd+div(A∗∇˜ph)+pht)(ep−epI)dxdt≤C(δ)∫T0∑λh2λ∫λ(ˆyh−ˆyd+div(A∗∇˜ph)+pht)2dxdt+δ∫T0h−2λ∑λ∫λ|ep−epI|2dxdt≤C(δ)∫T0∑λh2λ∫λ(ˆyh−ˆyd+div(A∗∇˜ph)+pht)2dxdt+δ∫T0‖ep‖2H1(Ω)dt≤C(δ)η21+δ‖p(uh)−ph‖2L2(J;H1(Ω)). | (4.10) |
From δ-Cauchy inequality, Lemma 4.1 and Lemma 4.2, we obtain
I2=∫T0∑λ∫∂λ(A∗∇˜ph⋅n)(ep−epI)dsdt≤C(δ)∫T0∑s∩∂Ω=∅hs∫s[A∗∇˜ph⋅n]2drdt+δ∫T0‖ep‖2H1(Ω)dt=C(δ)η22+δ‖p(uh)−ph‖2L2(J;H1(Ω)). | (4.11) |
Using δ-Cauchy inequality, we get
I3=∫T0(y(uh)−ˆyh,ep)dt=∫T0(y(uh)−Yh+yh−ˆyh,ep)dt≤C(δ)‖ˆyh−yh‖2L2(J;L2(Ω))+C(δ)‖y(uh)−yh‖2X+δ‖ep‖2L2(J;H1(Ω))≤C(δ)‖ˆyh−yh‖2X+C(δ)‖y(uh)−yh‖2X+δ‖ep‖2X. | (4.12) |
It yields from Friedriechs inequality and δ-Cauchy inequality, so we have
I4=∫T0(∇ep,A∗(∇˜ph−ph))dt≤C(δ)∫T0∫Ω|A∗∇(˜ph−ph)|2dxdt+δ∫T0∫Ω|∇ep|2dxdt≤C(δ)η23+Cδ‖p(uh)−ph‖2L2(J;H1(Ω)). | (4.13) |
I5=∫T0[(ϕ′(ˆyh)˜ph,epI)−(ϕ′(y(uh))ph,ep)]dt=∫T0[(ϕ′(ˆyh)˜ph−ϕ′(y(uh))˜ph,ep)+(ϕ′(ˆyh)˜ph,ep−epI)+(ϕ′(y(uh))˜ph−ϕ′(y(uh))ph,ep)]dt=∫T0[((ϕ′(ˆyh)−ϕ′(y(uh)))˜ph,ep)+(ϕ′(ˆyh)˜ph,ep−epI)+(ϕ′(y(uh))(˜ph−ph),ep)]dt | (4.14) |
≤C(δ)∫T0‖˜ph‖0,4‖ϕ′(ˆyh)−ϕ′(y(uh))‖⋅‖ep‖0,4dt+C(δ)∫T0[‖˜ph‖0,4‖ϕ′(ˆyh)‖⋅‖ep−epI‖0,4+‖˜ph−ph‖0,4‖ϕ′(y(uh))‖⋅‖ep‖0,4]dt≤C(δ)∫T0‖˜ph‖1‖ϕ‖2,∞‖ˆyh−(y(uh))‖⋅‖ep‖1dt+C(δ)∫T0[‖˜ph‖1‖ϕ(ˆyh)‖1,∞⋅‖ep−epI‖1+‖˜ph−ph‖1‖ϕ‖1,∞⋅‖ep‖1]dt≤C(δ)‖ˆyh−(y(uh))‖2X+C(δ)∫T0[‖˜ph‖1‖ϕ(ˆyh)‖1,∞⋅‖ep−epI‖1+‖˜ph−ph‖1‖ϕ(y(uh))‖1,∞⋅‖ep‖1]dt. | (4.15) |
Let δ be small enough, we obtain
‖p(uh)−ph‖2W≤C3∑l=1η2l+C(δ)‖ˆyh−yh‖2X+C(δ)‖y(uh)−yh‖2X. |
Similarly, assume ey=y(uh)−yh, and its average interpolation is eyI. It holds from integration by parts that
∫T0(yt(uh)−yht,ey)dt=∫Ω∫T0ey⋅(yt(uh)−yht)dtdx=12∫Ω[(y(uh)−yh)(x,T)]2dx−12‖y0(x)−yh(x,0)‖2. |
It follows from δ-Cauchy inequality, Lemmas 4.1, Lemma 4.2, (4.1) and (4.5), we obtain
c‖y(uh)−yh‖2L2(J;H1(Ω))≤∫T0[(A∇(y(uh)−yh),∇ey)+(yt(uh)−yht,ey)]dt+12‖y0(x)−yh(x,0)‖2=∫T0[(A∇(y(uh)−ˆyh),∇(ey−eyI))+(yt(uh)−yht,ey−eyI)]dt+∫T0[(A∇(ˆyh−yh),∇ey)+(yt(uh)−yht,eyI)]dt+∫T0(A∇(y(uh)−ˆyh),∇eyI)dt+12‖y0(x)−yh(x,0)‖2=∫T0(ˆf+uh+div(A∇ˆyh)−yht,ey−eyI)dt+∫T0∑λ∫∂λ(A∇ˆyh⋅n)(ey−eyI)dsdt+∫T0[(f−ˆf,ey)+(A∇(ˆyh−yh),∇ey)]dt+12‖y0(x)−yh(x,0)‖2≤C(δ)∫T0∑λh2λ∫λ(ˆf+uh+div(A∇ˆyh)−yht)2dxdt+C(δ)∫T0∑s∩∂Ω=∅hs∫s[A∇ˆyh⋅n]2drdt+C(δ)‖f−ˆf‖2X+C(δ)∫T0∫Ω|A∇(ˆyh−yh)|2dxdt+12‖y0(x)−yh(x,0)‖2+C(δ)‖yh−ˆyh‖2L2(J;H1(Ω))+δ‖ey‖2L2(J;H1(Ω))=C(δ)8∑l=4η2l+C(δ)‖yh−ˆyh‖2X+δ‖ey‖2L2(J;H1(Ω)). |
Let δ be small enough, we have
‖y(uh)−yh‖2L2(J;H1(Ω))≤C(δ)8∑l=4η2l+C(δ)‖yh−ˆyh‖2X. | (4.16) |
It follows from the assumptions on A(x) and Friedriechs inequality, we obtain
‖ˆyh−yh‖2X≤‖ˆyh−yh‖2W≤C∫T0∫Ω|A∇(ˆyh−yh)|2dxdt. |
From (4.9)-(4.16), (4.8) is derived.
Theorem 4.1. Let (y,p,u) and (yh,ph,uh) be the solutions of (2.7)-(2.9) and (2.19)-(2.21), respectively. Assume that all the conditions in Lemmas 4.1-4.4 are valid. Then there exists a constant C independent h and k, it yields the result as follows
‖yh−y‖2L2(J;H1(Ω))+‖ph−p‖2L2(J;H1(Ω))+‖uh−u‖2X≤C8∑i=1η2l, | (4.17) |
where η1, η2⋅⋅⋅,η8 are defined in Lemma 4.4.
Proof. It follows from Friedriechs inequality and the conditions on A(x), we have
‖˜ph−ph‖2L2(J;H1(Ω))≤C∫T0∫Ω|A∗∇(˜ph−ph)|2dxdt. | (4.18) |
Note that
‖yh−y‖2L2(J;H1(Ω))≤‖yh−y(uh)‖2L2(J;H1(Ω))+‖y(uh)−y‖2L2(J;H1(Ω)), | (4.19) |
‖ph−p‖2L2(J;H1(Ω))≤‖ph−p(uh)‖2L2(J;H1(Ω))+‖p(uh)−p‖2L2(J;H1(Ω)). | (4.20) |
From the regularity estimation of (2.7)-(2.8) minus (4.1)-(4.2), we have
‖p(uh)−p‖2L2(J;H1(Ω))≤‖y(uh)−y‖2L2(J;H1(Ω))≤C‖uh−u‖2X. | (4.21) |
Then (4.17) follows from (4.3), (4.8) and (4.18)-(4.21).
In this paper we discuss the variational discretization for the nonlinear parabolic OCP. We derive a priori error estimates where |||u−uh|||L∞(J;L2(Ω))=O(h2+k) and a posteriori error estimates of residual type. The results for these error estimates by variational discretization be an extension of the linear parabolic problems.
In our future work, we shall use this method to deal with fourth order parabolic optimal control problems, including linear and nonlinear styles.
This work is supported by National Science Foundation of China (11201510), China Postdoctoral Science Foundation (2017T100155, 2015M580197), Youth Innovative Talents Project (Natural Science) of Research on Humanities and Social Sciences in Guangdong Normal University (2017KQNCX265), General Scientific Research Project of "Innovation and Strengthening School Engineering" of Guangdong Education Department (2016GXJK227), Innovation Team Building at Institutions of Higher Education in Chongqing (CXTDX201601035), and Chongqing Research Program of Basic Research and Frontier Technology (cstc2019jcyj-msxmX0280), and School projects of Huashang College Guangdong University of Finance and Economics(2020HSDS02).
The authors declare no conflict of interest in this paper.
[1] | P. Neittaanmaki, D. Tiba, Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications, Dekker, New Nork, 1994. |
[2] | D. Tiba, Lectures on The Optimal Control of Elliptic Equations, University of Jyvaskyla Press, Finland, 1995. |
[3] | W. Liu, N. Yan, Adaptive Finite Element Methods For Optimal Control Governed by PDEs, Science Press, Beijing, 2008. |
[4] | Y. Chen, Z. Lu, W. Liu, Numerical solution of partial differential equation, Science Press, Beijing, 2015. |
[5] |
T. Hou, C. Liu, Y. Yang, Error estimates and superconvergence of a mixed finite element method for elliptic optimal control problems, Comput. Math. Appl., 74 (2017), 714-726. doi: 10.1016/j.camwa.2017.05.021
![]() |
[6] | P. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amstterdam, 1978. |
[7] |
Y. Chen, N. Yi, W. Liu, A legendre galerkin spectral method for optimal control problems governed by elliptic equations, SIAM J. Numer. Anal., 46 (2008), 2254-2275. doi: 10.1137/070679703
![]() |
[8] |
Y. Chen, Y. Dai, Superconvergence for optimal control problems gonverned by semi-linear elliptic equations, J. Sci. Comput., 39 (2009), 206-221. doi: 10.1007/s10915-008-9258-9
![]() |
[9] | X. Xing, Y. Chen, L∞-error estimates for general optimal control problem by mixed finite element methods, Int. J. Numer. Anal. Model., 5 (2008), 441-456. |
[10] |
R. Li, W. Liu, H. Ma, T. Tang, Adaptive finite element approximation for distributed elliptic optimal control problems, SIAM J. Control Optim., 41 (2002), 1321-1349. doi: 10.1137/S0363012901389342
![]() |
[11] |
P. Philip, Optimal control of partial differential equations, SIAM J. Control Optim., 50 (2012), 943-963. doi: 10.1137/100815037
![]() |
[12] |
W. Liu, N. Yan, A posteriori error estimates for optimal control problems governed by parabolic equations, Numer. Math., 93 (2003), 497-521. doi: 10.1007/s002110100380
![]() |
[13] | B. I. Ananyev, A control problem for parabolic systems with incomplete information, Mathematical Optimization Theory and Operations Research, Springer, Cham, 2019. |
[14] |
H. Liu, N. Yan, Recovery type superconvergence and a posteriori error estimates for control problems governed by Stokes equations, J. Comput. Appl. Math., 209 (2007), 187-207. doi: 10.1016/j.cam.2006.10.083
![]() |
[15] |
W. Liu, N. Yan, A posteriori error estimates for control problems governed by Stokes equations, SIAM J. Numer. Anal., 40 (2002), 1850-1869. doi: 10.1137/S0036142901384009
![]() |
[16] | J. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin, 1971. |
[17] | J. Lions, E. Magenes, Non Homogeneous Boundary Value Problems and Applications, Springer-verlag, Berlin, 1972. |
[18] |
H. Fu, H. Rui, A priori error estimates for optimal problems governed by transient advection-diffusion equations, J. Sci. Comput., 38 (2009), 290-315. doi: 10.1007/s10915-008-9224-6
![]() |
[19] |
W. Liu, N. Yan, A posteriori error estimates for distributed convex optimal control problems, Adv. Comput. Math., 15 (2001), 285-309. doi: 10.1023/A:1014239012739
![]() |
[20] |
R. Li, W. B. Liu, N. N. Yan, A posteriori error estimates of recovery type for distributed convex optimal control problems, J. Sci. Comput., 33 (2007), 155-182. doi: 10.1007/s10915-007-9147-7
![]() |
[21] |
N. Yan, postriori error estimators of gradient recovery type for FEM of a model optimal control problem, Adv. Comp. Math., 19 (2003), 323-336. doi: 10.1023/A:1022800401298
![]() |
[22] |
Y. Tang, Y. Chen, Variational discretization for parabolic optimal control problems with control constraints, J. Systems Sci. Compl., 25 (2012), 880-895. doi: 10.1007/s11424-012-0279-y
![]() |
[23] |
M. Hinze, A variational discretization concept in cotrol constrained optimization: the linear-quadratic case, Comput. Optim. Appl., 30 (2005), 45-63. doi: 10.1007/s10589-005-4559-5
![]() |
[24] | M. Hinze, N. Yan, Z. Zhou, Variational discretization for optimal control governed by convection dominated diffusion equations, J. Comput. Math., 27 (2009), 237-253. |
[25] | M. Huang, Numerical Methods for Evelution Equations, Secience Press, Beijing, 2004. |
[26] | A. Kufner, O. John, S. Fuck, Function Spaces, Nordhoff, Leiden, The Netherlands, 1997. |
1. | Mengya Feng, Tongjun Sun, Stochastic perturbation method for optimal control problem governed by parabolic PDEs with small uncertainties, 2023, 185, 01689274, 483, 10.1016/j.apnum.2022.12.008 | |
2. | 美玲 丁, Error Estimate for the Crank-Nicolson Finite Element Scheme Approximation of Nonlinear Parabolic Optimal Control Problems, 2023, 13, 2163-1476, 4147, 10.12677/ORF.2023.134415 | |
3. | Liuping Huang, Hai Zhao, Tongjun Sun, An iterative proper orthogonal decomposition method for a parabolic optimal control problem, 2024, 70, 1598-5865, 47, 10.1007/s12190-023-01961-w | |
4. | Yuchun Hua, Yuelong Tang, Error estimates of characteristic finite elements for bilinear convection–diffusion optimal control problems, 2024, 22, 25900374, 100445, 10.1016/j.rinam.2024.100445 |