Loading [MathJax]/jax/output/SVG/jax.js
Research article

Error estimates of variational discretization for semilinear parabolic optimal control problems

  • Received: 14 May 2020 Accepted: 09 July 2020 Published: 02 November 2020
  • MSC : 49J20, 65N30

  • In this paper, variational discretization directed against the optimal control problem governed by nonlinear parabolic equations with control constraints is studied. It is known that the a priori error estimates is |||uuh|||L(J;L2(Ω))=O(h+k) using backward Euler method for standard finite element. In this paper, the better result |||uuh|||L(J;L2(Ω))=O(h2+k) is gained. Beyond that, we get a posteriori error estimates of residual type.

    Citation: Chunjuan Hou, Zuliang Lu, Xuejiao Chen, Fei Huang. Error estimates of variational discretization for semilinear parabolic optimal control problems[J]. AIMS Mathematics, 2021, 6(1): 772-793. doi: 10.3934/math.2021047

    Related Papers:

    [1] Chunjuan Hou, Zuliang Lu, Xuejiao Chen, Xiankui Wu, Fei Cai . Superconvergence for optimal control problems governed by semilinear parabolic equations. AIMS Mathematics, 2022, 7(5): 9405-9423. doi: 10.3934/math.2022522
    [2] Yuelong Tang . Error estimates of mixed finite elements combined with Crank-Nicolson scheme for parabolic control problems. AIMS Mathematics, 2023, 8(5): 12506-12519. doi: 10.3934/math.2023628
    [3] Zuliang Lu, Ruixiang Xu, Chunjuan Hou, Lu Xing . A priori error estimates of finite volume element method for bilinear parabolic optimal control problem. AIMS Mathematics, 2023, 8(8): 19374-19390. doi: 10.3934/math.2023988
    [4] Zuliang Lu, Fei Cai, Ruixiang Xu, Chunjuan Hou, Xiankui Wu, Yin Yang . A posteriori error estimates of hp spectral element method for parabolic optimal control problems. AIMS Mathematics, 2022, 7(4): 5220-5240. doi: 10.3934/math.2022291
    [5] Changling Xu, Hongbo Chen . A two-grid P20-P1 mixed finite element scheme for semilinear elliptic optimal control problems. AIMS Mathematics, 2022, 7(4): 6153-6172. doi: 10.3934/math.2022342
    [6] Tiantian Zhang, Wenwen Xu, Xindong Li, Yan Wang . Multipoint flux mixed finite element method for parabolic optimal control problems. AIMS Mathematics, 2022, 7(9): 17461-17474. doi: 10.3934/math.2022962
    [7] Zuliang Lu, Xiankui Wu, Fei Huang, Fei Cai, Chunjuan Hou, Yin Yang . Convergence and quasi-optimality based on an adaptive finite element method for the bilinear optimal control problem. AIMS Mathematics, 2021, 6(9): 9510-9535. doi: 10.3934/math.2021553
    [8] Jie Liu, Zhaojie Zhou . Finite element approximation of time fractional optimal control problem with integral state constraint. AIMS Mathematics, 2021, 6(1): 979-997. doi: 10.3934/math.2021059
    [9] Cagnur Corekli . The SIPG method of Dirichlet boundary optimal control problems with weakly imposed boundary conditions. AIMS Mathematics, 2022, 7(4): 6711-6742. doi: 10.3934/math.2022375
    [10] Zuliang Lu, Xiankui Wu, Fei Cai, Fei Huang, Shang Liu, Yin Yang . Error estimates in L2 and L norms of finite volume method for the bilinear elliptic optimal control problem. AIMS Mathematics, 2021, 6(8): 8585-8599. doi: 10.3934/math.2021498
  • In this paper, variational discretization directed against the optimal control problem governed by nonlinear parabolic equations with control constraints is studied. It is known that the a priori error estimates is |||uuh|||L(J;L2(Ω))=O(h+k) using backward Euler method for standard finite element. In this paper, the better result |||uuh|||L(J;L2(Ω))=O(h2+k) is gained. Beyond that, we get a posteriori error estimates of residual type.


    It is generally known that optimal control has an important role in this ever-changing society, such as engineering numerical simulation, economic, atmosphere, petroleum, architecture and scientific, and so on. Meanwhile, optimal control is an important knowledge point not only for science and engineering students, but also for non science and engineering students. for example, it is widely used in economic management disciplines, such as management accounting, dynamic optimization, actuarial, pricing analysis, etc, even in artistic modeling structure analysis. An effective numerical method is necessary for the successful application of optimal control, for optimal control problems (OCP), finite element approximation should be a powerful numerical method in the calculation, and there are many related literatures. Optimal control problems using finite element methods (FEM) for partial differential equations (PDEs) are introduced systematically, which can be found in [1,2,3,4] for elliptic optimal control problems in (see e.g., [2,5,6,7,8,9,10]), for parabolic optimal control problems in [1,3,11,12,13] and for Stokes optimal control problem in [14,15]. A priori error estimates of finite element method was established in [16,17,18], a posteriori error estimates of residual type has been established in [12,15,19], and a posteriori error estimates based on recovery techniques has been derived in [14,20,21]. Some error estimates and superconvergence results of mixed finite element method for optimal control problems can be found in [5,9].

    For the optimal control problem with control constraints, the regularity of the general control method is lower than that of the state and the co-state. Therefore, the state and the co-state variables are approached by piecewise linear finite element functions, and the control variable is approached by piecewise constant function, and a projection gradient method with preset conditions is constructed. see [1,3,12,14,15,19,20]. In year 2012, Tang and Chen [22] studied variational discretization for the optimal control problem governed by parabolic equations with control constraints.

    In this paper, we discuss a variational discretization for optimal control problems governed by nonlinear parabolic equations with control constraints, and we derive a priori error estimates and a posteriori error estimates of residual type. Some of techniques directly relevant to our work can be found in [16,23,24].

    In this paper, the model problem that we shall investigate is the following two dimensional optimal control problem:

    {minu(x,t)D{12T0(y(x,t)yd(x,t)2L2(Ω)+u(x,t)2L2(Ω))dt},yt(x,t)div(A(x)y(x,t))+ϕ(y(x,t))=f(x,t)+u(x,t),xΩ,tJ,y(x,t)=0,xΩ,tJ,y(x,0)=y0(x),xΩ, (1.1)

    where D is defined by

    D={g(x,t)L2(J;L2(Ω)):cg(x,t)d,a.e.xΩ,tJ},

    where c and d are two constants.

    Ω in Rn(n3) is a bounded domain and Ω is a Lipschitz boundary, J=[0,T], 0<T<+, n-matrix A(x)=(aij(x))(W1,(ˉΩ))n×n, and (A(x)ξ)ξcξ2, ξRn. The function ϕ()W2, for any R>0, ϕ(y)L2(Ω) for any yH1(Ω), and ϕ(y)0. Here yt(x,t) denotes the partial derivative of y in time, yd(x,t),f(x,t)C(J;L2(Ω)), y0(x)H10(Ω).

    We use the standard notation Wm,p(Ω) for Sobolev spaces on Ω with norm Wm,q(Ω) and seminorm ||Wm,p(Ω), when p=2, Wm,2(Ω) can be expressed as Hm(Ω), Wm,20(Ω) can be expressed as Hm0(Ω). Further more, H10(Ω):={gH1(Ω):g|Ω=0}. We denote by Lk(J;Wm,p(Ω)) the Banach space of all Lk integrable functions from J into Wm,p(Ω) with norm gLk(J;Wm,p(Ω))=(T0gkWm,p(Ω)dt)1k for k[1,) and the standard modification for k=. Similarly, the spaces Hl(J;Wm,p(Ω)) and Cl(J;Wm,p(Ω)) also can be defined, the details can be found in [17]. In addition, c or C denotes a ordinary positive constant.

    The research ideas and concrete design of the paper is as follows: we give the backward Euler approximation and variational discretization approximation for our model in Section 2, then gain a prior error estimate in Section 3. After that, we get a posterior error estimate in Section 4. In Section 5, we give conclusion and future works.

    In this section, in the light of the model (1.1), we give variational discretization approximation using backward Euler method. We define W=L2(J;V) with V=H10(Ω), V=H10(Ω), and the control space X=L2(J;U) with U=L2(Ω), =L2(Ω). Throughout the paper, () denotes the inner product in L2(Ω).

    Let

    a(u,v)=Ω(A(x)u)v,u,vV,(p,q)=Ωpq,    p,qL2(Ω).

    From Friedriechs' inequality, it produces

    a(u,u)cu2V,uV,|a(u,v)|CuVvV,u,vV.

    In order to keep things simple, we suppose the domain Ω is in R2 and is a convex polygon.

    Next, we introduce the co-state equation

    pt(x,t)div(A(x)p(x,t))+ϕ(y(x,t))p(x,t)=y(x,t)yd,  xΩ, t[0,T), (2.1)
    p(x,t)=0,xΩ, t[0,T), (2.2)
    p(x,T)=0,xΩ. (2.3)

    Then a possible weak formula for the state equation reads: For given u, y0, find y(u) such that

    (yt,w)+a(y,w)+(ϕ(y),v)=(f+u,w),t(0,T],   wV,y(x,0)=y0(x),xΩ.

    It is well known (see [16]) that the above problem has a unique solution y. It follows from embedding that yC(0,T;L2(Ω)). So the above model control problem (1.1) can be rewritten as (QCP):

    minuD{12T0(yyd2+u2)dt}, (2.4)
    (yt,w)+a(y,v)+(ϕ(y),w)=(f+u,w),t(0,T],   wV, (2.5)
    y(x,0)=y0(x),xΩ, (2.6)

    where yH1(0,T;U)W.

    It is well known (see, e.g., [1]) that the convex control problem (QCP) has a unique solution (y,u), and that a doublet (y,u) is the solution of (QCP) if and only if there exists a co-state pH1(J;U)W, such that the triplet (y,p,u) satisfies the following optimal conditions (QCP-OPT) for t(0,T]

    (yt,w)+a(y,w)+(ϕ(y),w)=(f+u,w), wV, (2.7)
    y(x,0)=y0(x),xΩ,(pt,q)+a(q,p)+(ϕ(y)p)=(yyd,q), qV, (2.8)
    p(x,T)=0,xΩ,(u+p,˜uu)0, ˜uD. (2.9)

    Now, we introduce the pointwise projection operator as followed:

    Π[c,d](h(x,t))=max(c,min(d,h(x,t))). (2.10)

    As in [16], it is easy to see that (2.9) can be equivalently read as:

    u(x,t)=Π[c,d](p(x,t)). (2.11)

    Set Γh be a regular triangulations of the polygonal domain Ω, such that ˉΩ=λΓhˉλ. Let h=maxλΓh{hλ}, where hλ denotes the diameter of the element λ. Associated with Γh is a finite dimensional subspace Wh of C(ˉΩ), such that wh|λ is the polynomial of total degree no more than n (n1), whWh. Let Vh=WhV. Then it is easy to see that VhV.

    Suppose N is a positive integer, and we set 0=t0<t1<<tN=T, kl=tltl1,l=1,2,,N, k=maxl[1,N]{kl}. Set ql=q(x,tl), we give the discrete time-dependent norms for 1p<:

    |||q(x,t)|||Lp(J;Hl(Ω)):=(Nsi=1ski+sqipl)1p,

    when s=0 be the control variable and the state variable u(x,t) and y(x,t), when s=1 be the co-state variable p(x,t), with the standard modification for p=.

    A possible finite element approximation of (QCP) is to find (yh,uh)Uh×Vh, which we shall label (QCP)h

    minuhDh{12T0(yhyd2+uh2)dt} (2.12)
    (yh,t,wh)+a(yh,wh)+(ϕ(yh),wh)=(f+uh,wh), whVh, (2.13)
    yh(x,0)=yh0(x),xΩ, (2.14)

    where yhH1(0;T;Vh), yh0Vh is an approximation of y0.

    The control problem (QCP)h again has a unique solution (yh,uh) and a doublet (yh,uh)Vh×Uh is the solution of (QCP)h if and only if there is a co-state ph, such that the triplet (yh,ph,uh) satisfies the following optimality conditions (QCPOPT)h for t(0,T]:

    (yh,t,wh)+a(yh,wh)+(ϕ(yh),wh)=(f+uh,wh), whVh, (2.15)
    yh(x,0)=yh0(x),xΩ,(ph,t,qh)+a(qh,ph)+(ϕ(yh)ph,qh)=(yhyd,qh), qhVh, (2.16)
    ph(x,T)=0,xΩ,(uh+ph,˜uhuh)0, ˜uhDh. (2.17)

    Therefore, as we defined, the exact state solution and its approximation can be read as:

    (y,p)=(y(u),p(u)),(yh,ph)=(yh(uh),ph(uh)).

    Next we consider the above discrete approximation using the backward Euler scheme to approximate the partial derivative in time t. Then the discrete approximation of (2.4)-(2.6) is the following form:

    {minulhK{12Ni=1kl(ylhyld2+ulh2)},(ylhyl1hki,vh)+a(ylh,vh)+(ϕ(ylh),vh)=(fl+ulh,wh),whVh,l=1,2,,N,y0h(x,0)=yh0(x),xΩ. (2.18)

    It follows that the control problem (2.18) has a unique solution (ylh,ulh), l=1,2,,N, and (ylh,ulh)Vh×D, l=1,2,,N, is the solution of (2.18) if and only if there is a co-state pl1hVh, l=1,2,,N, such that the triplet (ylh,pl1h,ulh)Vh×Vh×D, l=1,2,,N, satisfies the following variational discretization optimality conditions:

    (ylhyl1hkl,wh)+a(ylh,wh)+(ϕ(ylh),wh)=(fl+ulh,wh), (2.19)
    y0h(x)=yh0(x), xΩ, l=1,2,,N,(pl1hplhkl,qh)+a(qh,pl1h)+(ϕ(ylh)pl1h,qh)=(ylhyld,qh), (2.20)
    pNh(x)=0, xΩ, l=N,N1,,1,(ulh+pl1h,˜uhulh)0, l=1,2,,N. (2.21)

    where whVh, qhVh and ˜uhDh. It is obvious that the variational inequality (2.21) satisfies the result as follows:

    ulh=Π(pl1h),l=1,2,,N. (2.22)

    According to (2.22), we should solve the numerical solution of the control variable uh after the co-state variable ph.

    In this section, we shall derive a priori error estimates for the backward Euler variational discretization approximation scheme. We will start with errors estimation of state and co-state variable. Now, we recall the elliptic projection Rh: VVh, for any vV, which satisfies:

    a(vRhv,vh)=0,   vhVh. (3.1)

    We have the approximation property (see [23])

    vRhvChsvs,s=1,2. (3.2)

    Lemma 3.1. Let (y,p,u) and (yh,ph,uh) be the solutions of (2.7)-(2.9) and (2.19)-(2.21), respectively. Assume yH1(J;H2(Ω))H2(J;U) and y(x,0)H2(Ω). Then there is a constant C independent of h and k such that

    |||yhy|||L(J;U)C(h2+k+|||uhu|||2X). (3.3)

    Proof. We set

    ylhyl=ylhRhyl+Rhylyl:=θl+ηl, (3.4)

    a(Rhv,vh)=a(v,vh),vhVh. It follows from Lemma 1.1 in [25], we have

    ηl=RhylylCh2yl2Ch2(y02+tl0yt(s)2ds)Ch2. (3.5)

    It follows from (2.7) and (2.19), noting that I denotes the unit operator, so we have

    (θlθl1kl,wh)+a(θl,wh)=(RhylRhyl1kl,wh)a(Rhyl,wh)(ϕ(ylh),wh)+(fl+ulh,wh)=(RhylRyl1kl,wh)a(yl,wh)+(fl+ul,wh)(ϕ(ylh),wh)+(ulhul,wh)=(RhylRhyl1kl,wh)+(ylt,wh)+(ϕ(yl),wh)(ϕ(ylh),wh)+(ulhul,wh)=((RhI)(ylyl1)kl,wh)(ylyl1klylt,wh)(ϕ(ylh)ϕ(yl),wh)+(Ulhul,wh)=((RhI)(ylyl1)kl,wh)(ylyl1klylt,wh)(ϕ(ylh)(ylhyl),wh)+(ulhul,wh)=((RhI)(ylyl1)kl,wh)(ylyl1klylt,wh)(ϕ(ylh)(ylhRhyl),wh)(ϕ(ylh)(Rhylyl),wh)+(ulhul,wh)((RhI)(ylyl1)kl,wh)(ylyl1klylt,wh)(ϕ(yih)(yihRhyl),wh)(ϕ(ylh)(Rylyl),wh)+(ulhul,wh)

    We select wh=θl,

    (θlθl1kl,θl)+a(θl,θl)((RhI)(ylyl1)kl,θl)(ylyl1klylt,θl)(ϕ(ylh)θl,θl)(ϕ(ylh)ηl,θl)+(ulhul,θl)((RhI)(ylyl1)kl,θl)(ylyl1klylt,θl)(ϕ(ylh)ηl,θl)+(ulhul,θl) (3.6)

    Note that 0cθl2Va(θl,θl), according to Hölder inequality, we obtain

    θlθl1+(RhI)(ylyl1)+ylyl1klylt+klϕylh)ηl+klulhul.

    Summing l from 1 to N(1NN), note that yH1(J;H2(Ω))H2(J;U) and y(x,0)H2(Ω), we get

    θNθ0+Nl=1(RhI)(ylyl1)+Nl=1ylyl1klylt+Nl=1klϕ(ylh)ηl+Nl=1klulhulθ0+Nl=1tltl1(RhI)yt(s)ds+Nl=1tltl1(tl1s)ytt(s)ds+Nl=1klϕ(ylh)W1,ηl+C|||uhu|||2Xθ0+Nl=1tltl1Ch2yt(s)2ds+Nl=1tltl1(tl1s)ytt(s)ds+Ch2Nl=1klϕ(yih)W2,+C|||uhu|||2Xθ0+Ch2tN0yt(s)2ds+ktN0ytt(s)ds+Ch2+C|||uhu|||2XCh2y02+Ch2T0yt(s)2ds+kT0ytt(s)ds+Ch2+C|||uhu|||2XC(h2+k+|||uhu|||2X). (3.7)

    Then (3.3) follows from (3.5)-(3.7) and Triangle inequality.

    Lemma 3.2. Suppose (y,p,u) and (yh,ph,uh) be the solutions of (2.7)-(2.9) and (2.19)-(2.21), respectively. Let pH1(J;H2(Ω))H2(J;U), assume yd,yH1(J;U), exist a constant C independent of k and h, so that

    |||php|||L(J;U)C(h2+k+|||yhy|||X). (3.8)

    Proof. Similarly, we set

    plhpl=plhRhpl+Rhplpl:=ζl+ξl. (3.9)

    Note that pN=0, then

    ξl=RhplplCh2pl2Ch2tlTpt(s)2dsCh2. (3.10)

    It follows from (2.8) and (2.20), we have

    (ζl1ζlkl,qh)+a(qh,ζl1)+(ϕ(yih)(pl1hRhpl1),qh)=(Rhpl1Rplkl,qh)a(qh,Rhpl1)+(Ylhyld,qh)(ϕ(ylh)(Rhpl1),qh)=(Rhpl1Rhplkl,qh)a(qh,pl1)+(ylhyld,qh)(ϕ(ylh)(Rhpl1),qh)=(Rhpl1Rhplkl,qh)a(qh,pl1)+(yl1yl1d,qh)+(ylhyl+ylyl1+yl1dyld,qh)(ϕ(ylh)(Rhpl1),qh)=(Rhpl1Rhplkl,qh)(pl1t,qh)+(ylhyl+ylyl1+yl1dyld,qh)+(ϕ(yl1)pl1,qh)(ϕ(ylh)(Rhpl1),qh)=((RhI)(pl1pl)kl,qh)(pl1plkl+pl1t,qh)+(ylhyl+ylyl1+yl1dyld,qh)+(ϕ(yl1)pl1,qh)(ϕ(ylh)(Rhpl1),qh)=((RhI)(pl1pl)kl,qh)(pl1plkl+pl1t,qh)+(ylhyl+ylyl1+yl1dyld,qh)+(ϕ(yl1)(pl1Rhpl1),qh)+((ϕ(yl1)ϕ(ylh))(Rhpl1),qh)=((RhI)(pl1pl)kl,qh)(pl1plkl+pl1t,qh)+(ylhyl+ylyl1+yl1dyld,qh)+((ϕ(ylh)ϕ(yl1))(plpl1),qh)(ϕ(ylh)(Rhpl1pl1),qh)((ϕ(ylh)ϕ(yl1))pl,qh). (3.11)

    We select qh=ζl1, note that 0cζl12Va(ζl1,ζl1), by using Hölder inequality, we obtain

    ζl1ζl+(RhI)(pl1pl)+pl1pl+klpl1t+kl(ylhyl+ylyl1+yl1dyld)+kl((ϕ(ylh)ϕ(yl1))pl+ϕ(ylh)ξl1+(ϕ(ylh)ϕ(yl1))(plpl1)). (3.12)

    Note that ζN=0 and pH1(J;H2(Ω))H2(J;U), summing l from M(0MN) to N, we get

    ζMNl=M(RhI)(pl1pl)+Nl=Mpl1pl+klpl1t+Nl=Mkl(ylhyl+ylyl1+yl1dyld)+Nl=Mkl((ϕ(ylh)ϕ(yl1))pl+ϕ(ylh)ξl1+(ϕ(ylh)ϕ(yl1))(plpl1))Nl=Mtlltl(RhI)pt(s)ds+Nl=Mtl1tl(tls)ptt(s)ds+Nl=Mkl(ylhyl+ylyl1+yl1dyld+ϕ(ylh)W2,ylhyl1pl)+Nl=Mkl(ϕ(ylh)W1,ξl1+ϕ(ylh)W2,tl1tlpt(s)ds)Nl=Mtl1tlCh2pt(s)2ds+Nl=Mtl1tl(tls)ptt(s)ds+Nl=Mkl(ylhyl+ylyl1+yl1dyld+ϕ(ylh)W1,ξl1)+Ch2Ch2TtM1pt(s)2ds+kTtM1ptt(s)ds+Nl=Mkl(ylhyl+ylyl1+yl1dyld)+Ch2Ch2T0pt(s)2ds+kT0ptt(s)ds+|||yhy|||2X+Ck2(ytX+ydtX)C(h2+k+|||Yhy|||2X). (3.13)

    Then (3.8) follows from (3.9)-(3.10), (3.13) and the triangle inequality.

    Now, we estimate the error of the control variable. We need give two intermediate variables (ylh(u),plh(u))Vh×Vh,l=1,2,,N, satisfies the following system:

    (ylh(u)yl1h(u)kl,wh)+a(ylh(u),wh)+(ϕ(ylh(u)),wh)=(fl+ul,wh),whVh,yh(u)0(x)=y0(x),xΩ, (3.14)
    (pl1h(u)plh(u)kl,qh)+a(qh,pl1h(u))+(ϕ(ylh(u))pl1h(u),qh)=(ylh(u)yld,qh),qhVh,pNh(u)(x)=0,xΩ. (3.15)

    For ease of exposition, we set

    φl=ylhylh(u),ζl=plhplh(u),l=0,1,,N.

    It is clear that φ0=0 and ζN=0.

    Lemma 3.3 Let (y,p,u) and (yh(u),ph(u)) be the solutions of (2.7)-(2.9) and (3.14)-(3.15), respectively. Assume that u,pH1(J;U). Then there exists a positive constant C independent of k and h, so the following conclusion holds

    |||uuh|||XC(|||ph(u)p|||X+|||php|||X+k). (3.16)

    Proof. It follows from variational inequalities (2.9), (2.21) and Hölder inequality that

    |||uuh|||2X=Nl=1kl(ululh,ululh)=Nl=1kl(ul+pl,ulUlh)Nl=1kl(ulh+pl1h(u),ululh)+Nl=1kl(pl1h(u)pl,ululh)Nl=1kl(ulh+pl1h(u),ulhul)+Nl=1kl(pl1h(u)pl,ululh)=Nl=1kl(ulh+pl1h,ulhul)+Nl=1kl(pl1h(u)pl1h,ulhul)+Nl=1kl(pl1h(u)pl,ululh)Nl=1kl(pl1h(u)pl1h,ulhul)+Nl=1kl(pl1h(u)pl,ululh):=I1+I2. (3.17)

    Note that φ0=0 and ζN=0, then it follows from (2.19)-(2.20) and (3.14)-(3.15) that

    I1=Nl=1kl(pl1h(u)pl1h,ulhul)Nl=1kl(pl1h(u)pl1,ulhul)+Nl=1kl(pl1pl1h,ulhul)C(δ1)Nl=1klpl1h(u)pl12+C(δ1)Nl=1klpl1hpl12+δ1Nl=1klululh2.C(δ1)|||ph(u)p|||2X+C(δ1)|||php|||2X+C(δ1)|||uuh|||2X (3.18)

    For the second term, note that pH1(J;U), according to Hölder inequality, we have

    I2=Nl=1kl(pl1h(u)pl,ululh)ber=Nl=1kl(pl1h(u)pl1,ululh)+Nl=1kl(pl1pl,ululh)C(δ)Nl=1klpl1h(u)pl12+C(δ)Nl=1klpl1pl2+δNl=1klulUlh2C(δ)|||ph(u)p|||2X+C(δ)k2||pt||X+δ|||uuh|||2XC(δ)|||ph(u)p|||2X+Ck2+δ|||uuh|||2X. (3.19)

    Let δ be small enough, then (3.16) follows from (3.17)-(3.19).

    Lemma 3.4. Let (y,p,u) be the solution of (2.7)-(2.9), (yh(u),ph(u)) is defined in (3.14)-(3.15), the conditions of obedience are the same as the three Lemmas 3.1-3.3, then

    |||yh(u)y|||L(J;L2(Ω))C(h2+k). (3.20)

    Proof. We set

    ylh(u)yl=ylh(u)Rhyl+Rhylyl:=θl1+ηl, (3.21)

    where

    ηl=RylylCh2yl2Ch2(y02+tl0yt(s)2ds)Ch2. (3.22)

    From (2.7) and (2.19), for whVh we have

    (θl1θl11kl,wh)+a(θl,wh)=(RhylRhyl1kl,wh)a(Rhyl,wh)(ϕ(ylh),wh)+(fl+ul,wh)=(RhylRhyl1kl,wh)a(yl,wh)+(fl+ul,wh)(ϕ(ylh),wh)=(RhylRhyl1kl,wh)+(ylt,wh)+(ϕ(yl),wh)(ϕ(ylh),wh)=((RhI)(ylyl1)kl,wh)(ylyl1klylt,wh)(ϕ(ylh)ϕ(yl),wh)=((RhI)(ylyl1)kl,wh)(ylyl1klylt,wh)(ϕ(ylh)(ylhyl),wh)=((RhI)(ylyl1)kl,wh)(ylyl1klylt,wh)(ϕ(ylh)(ylhRhyl),wh)
    (ϕ(ylh)(Rhylyl),wh)((RhI)(ylyl1)kl,wh)(ylyl1klylt,wh)(ϕ(ylh)(ylhRhyl),wh)(ϕ(ylh)(Rhylyl),wh). (3.23)

    We set wh=θl1, so

    (θl1θl11kl,θl1)+a(θl1,θl1)((RhI)(ylyl1)kl,θl1)(ylyl1klylt,θl1)(ϕ(ylh)θl1,θl1)(ϕ(ylh)ηl,θl1)+(ulhul,θl1)((RhI)(ylyl1)kl,θl1)(ylyl1klylt,θl1)(ϕ(ylh)ηl,θl1). (3.24)

    Note that 0cθl12Va(θl1,θl1), according to Hölder inequality, we obtain

    θl1θl1+(RhI)(ylyl1)+ylyl1klylt+klϕ(ylh)ηl. (3.25)

    Summing i from 1 to N(1NN), noting yH1(J;H2(Ω))H2(J;U) and y(x,0)H2(Ω), we get

    θNθ0+Nl=1(RhI)(ylyl1)+Nl=1ylyl1klylt+Nl=1klϕ(ylh)ηlθ0+Nl=1tltl1(RhI)yt(s)ds+Nl=1tltl1(tl1s)ytt(s)dsNl=1klϕ(ylh)W1,ηlθ0+Nl=1tltl1Ch2yt(s)2ds+Nl=1tltl1(tl1s)ytt(s)ds+Ch2Nl=1klϕ(ylh)W2,θ0+Ch2tN0yt(s)2ds+ktN0ytt(s)ds+Ch2Ch2y02+Ch2T0yt(s)2ds+kT0ytt(s)ds+Ch2C(h2+k). (3.26)

    Then (3.20) follows from (3.21)-(3.22), (3.26) and Triangle inequality.

    Lemma 3.5. Let (y,p,u) be the solution of (2.7)-(2.9), (yh(u),yh(u)) is defined in (3.14)-(3.15). Then

    |||ph(u)p|||XC(h2+k). (3.27)

    Proof. By using Lemma 3.2 and Lemma 3.4, we get that

    |||yh(u)y|||XC(h2+k), (3.28)

    and

    |||ph(u)p|||L(J;U)C(h2+k+|||yh(u)y|||2X). (3.29)

    Then from (3.28)-(3.29) and embedding theorem, we have that

    |||ph(u)p|||L(J;U)C(h2+k). (3.30)

    Thus,

    |||ph(u)p|||XC|||ph(u)p|||L(J;U)C(h2+k). (3.31)

    We obtain (3.27).

    Now we combine Lemmas 3.1-3.5 to come up with the following main result.

    Theorem 3.1. Let (y,p,u) and (yh,ph,uh) be the solutions of (2.7)-(2.9) and (2.19)-(2.21), respectively. Suppose all the conditions in Lemma 3.1-5 are valid. Then

    |||php|||L(J;U)+|||uhu|||XC(h2+k+|||yhy|||X). (3.32)

    Proof. It is easy to see that (3.32) follows from (3.3), (3.8), (3.16) and (3.27).

    In this section, we shall derive a posteriori error estimates for the backward Euler variational discretization approximation scheme.

    First of all, we recall two important results:

    Lemma 4.1. [6] Let πh be the standard Lagrange interpolation operator. For m=0 or 1, q>n2 and vW2,q(Ω), the conclusion is as follows

    |vπhv|Wm,q(Ω)Ch2m|v|W2,q(Ω).

    Lemma 4.2. [26] For all vW1,q(Ωh), 1q<,

    vW0,q(τ)C(h1qτvW0,q(τ)+h11qτ|v|W1,q(τ)).

    If we set

    J(u)=12T0(yyd2+u2)dt.

    It can be shown that

    (J(u),v)=T0(u+p,v)dt,(J(uh),v)=T0(uh+p(uh),v)dt,

    where y(uh), p(uh) satisfies the system as follows:

    (yt(uh),w)+a(y(uh),w)+(ϕ(y(uh)),w)=(f+uh,w),tJ,wV, (4.1)
    y(uh)(x,0)=y0(x),xΩ,(pt(uh),q)+a(q,p(uh))+(ϕ(y(uh))p(uh),q)=(y(uh)yd,q),tJ,qV, (4.2)
    p(uh)(x,T)=0,xΩ.

    For the needs of the paper, now we give two Lemmas and prove them.

    Lemma 4.3. Let (y,p,u) and (yh,ph,uh) be the solutions of (2.7)-(2.9) and (2.19)-(2.21), respectively. Then there is a constant C independent of k and h, it reduces that

    uuh2XC˜php(uh)2X. (4.3)

    Proof. It follows from δ-Cauchy inequality, the variational inequality in (2.9) and (2.21), we have that

    uuh2X(J(u)J(uh),uuh)=T0(u+p,uuh)dtT0(uh+p(uh),uuh)dtT0[(uh+˜ph,uuh)+(˜php(uh),uuh)]dtC(δ)˜php(uh)2X+δuuh. (4.4)

    Let δ be small enough, then (4.3) follows from (4.4). For any function wC(J;L2(Ω)), we let

    ˆw(x,t)|(tl1,tl]=w(x,tl),˜w(x,t)|(tl1,tl]=w(x,tl1).

    For l=1,2,,N, we set

    yh|(tl1,tl]=((tlt)yl1h+(ttl1)ylh)/kl,ph|(tl1,tl]=((tlt)pl1h+(ttl1)plh)/kl,uh|(tl1,tl]=ulh.

    Then the optimality conditions (2.19)-(2.21) can be rewritten as:

    (yht,wh)+a(ˆyh,wh)+(ϕ(ˆyh),wh)=(ˆf+uh,wh),whVh,t(tl1,tl], (4.5)
    yh(x,0)=yh0(x),xΩ,(pht,qh)+a(qh,˜ph)+(ϕ(ˆyh)˜ph,qh)=(ˆyhˆyd,qh),qhVh,t(tl1,tl], (4.5)
    ph(x,T)=0,xΩ,(uh+˜ph,˜uhuh)0,˜uhDh. (4.7)

    Lemma 4.4. Let (yh,ph,uh) be the solution of (4.5)-(4.7), and (y(uh),p(uh)) as defined in (4.1)-(4.2), so there is a constant C independent of k and h, it holds that

    y(uh)yh2X+p(uh)ph2XC8l=1η2l, (4.8)

    where

    η21=Nl=1tltl1λh2λλ(ˆyhˆyd+div(A˜ph)+pht)2dxdt,η22=Nl=1tltl1lΩ=hll[A˜phn]2dsdt,η23=Nl=1tltl1Ω|A(˜phph)|2dxdt,η24=Nl=1tltl1λh2λλ(ˆf+uh+div(Aˆyh)yht)2dxdt,η25=Nl=1tltl1sΩ=hss[Aˆyhn]2drdt,η26=Nl=1tltl1fˆf2dt,η27=Nl=1tltl1Ω|A(ˆyhyh)|2dxdt,η28=y0(x)yh(x,0)2,

    where hs is the size of the face s=ˉλ1sˉλ2s, with λ1s, λ2s are two neighboring elements in Γh, [Aˆyhn]s and [A˜phn]s are the Anormal and Anormal derivative jumps over the interior face s, respectively, defined by

    [Aˆyhn]s=(Aˆyh|λ1sAˆyh|λ2s)n,[A˜phn]s=(A˜ph|λ1sA˜ph|λ2s)n,

    where n is the normal vector on s=λ1sλ2s outwards λ1s. Then we define [Aˆyhn]s=0 and [A˜phn]s=0 when sΩ.

    Proof. Let ep=p(uh)uh, and epI=ˆπhep, where ˆπh is the interpolation defined in Lemma 4.1. Note that p(uh)(x,T)=0 and ph(x,T)=0, using integration by parts, we have

    T0(pt(uh)pht,ep)dt=ΩT0(pt(uh)pht)epdtdx=12Ω[(p(uh)ph)(x,0)]2dx0.

    It follows from a(u,u)cu2V,vV, combining equations (4.2) and (4.6), we have

    cp(uh)ph2L2(J;H1(Ω))T0[(Aep,(p(uh)ph))(pt(uh)pht,ep)+(ϕ(y(uh))(p(uh)ph),ep)]dt=T0((epepI),A(p(uh)˜ph))dtT0(pt(uh)pht,epepI)dt+T0(ep,A(˜phph))dt+T0[(epI,A(p(uh)˜ph))(pt(uh)pht,epI)]dt+T0[(ϕ(y(uh))p(uh)ϕ(ˆyh)˜ph,epI)+(ϕ(y(uh))p(uh)ϕ(ˆyh)˜ph,epepI)]dt+T0((ϕ(ˆyh)˜phϕ(y(uh))ph),ep)dt=T0(y(uh)ˆyd+div(A˜ph)+pht,epepI)dt+T0λλ(A˜phn)(epepI)dsdt+T0[(y(uh)ˆyh,epI)+(ep,A(˜phph))]dt+T0[(ϕ(ˆyh)˜ph,epI)(ϕ(y(uh))ph,ep)]dt=T0(ˆyhˆyd+div(A˜ph)+pht,epepI)dt+T0λλ(A˜phn)(epepI)dsdt+T0(y(Uh)ˆYh,ep)dt+T0(ep,A(˜phph))dt+T0[(ϕ(ˆyh)˜ph,epI)(ϕ(y(uh))ph,ep)]dt:=I1+I2+I3+I4+I5. (4.9)

    For the first term, by using δ-Cauchy inequality, Lemma 4.1 and Lemma 4.2, we get

    I1=T0(ˆyhˆyd+div(A˜ph)+pht,epepI)dt=T0Ω(ˆyhˆyd+div(A˜ph)+pht)(epepI)dxdt=T0λλ(ˆyhˆyd+div(A˜ph)+pht)(epepI)dxdtC(δ)T0λh2λλ(ˆyhˆyd+div(A˜ph)+pht)2dxdt+δT0h2λλλ|epepI|2dxdtC(δ)T0λh2λλ(ˆyhˆyd+div(A˜ph)+pht)2dxdt+δT0ep2H1(Ω)dtC(δ)η21+δp(uh)ph2L2(J;H1(Ω)). (4.10)

    From δ-Cauchy inequality, Lemma 4.1 and Lemma 4.2, we obtain

    I2=T0λλ(A˜phn)(epepI)dsdtC(δ)T0sΩ=hss[A˜phn]2drdt+δT0ep2H1(Ω)dt=C(δ)η22+δp(uh)ph2L2(J;H1(Ω)). (4.11)

    Using δ-Cauchy inequality, we get

    I3=T0(y(uh)ˆyh,ep)dt=T0(y(uh)Yh+yhˆyh,ep)dtC(δ)ˆyhyh2L2(J;L2(Ω))+C(δ)y(uh)yh2X+δep2L2(J;H1(Ω))C(δ)ˆyhyh2X+C(δ)y(uh)yh2X+δep2X. (4.12)

    It yields from Friedriechs inequality and δ-Cauchy inequality, so we have

    I4=T0(ep,A(˜phph))dtC(δ)T0Ω|A(˜phph)|2dxdt+δT0Ω|ep|2dxdtC(δ)η23+Cδp(uh)ph2L2(J;H1(Ω)). (4.13)
    I5=T0[(ϕ(ˆyh)˜ph,epI)(ϕ(y(uh))ph,ep)]dt=T0[(ϕ(ˆyh)˜phϕ(y(uh))˜ph,ep)+(ϕ(ˆyh)˜ph,epepI)+(ϕ(y(uh))˜phϕ(y(uh))ph,ep)]dt=T0[((ϕ(ˆyh)ϕ(y(uh)))˜ph,ep)+(ϕ(ˆyh)˜ph,epepI)+(ϕ(y(uh))(˜phph),ep)]dt (4.14)
    C(δ)T0˜ph0,4ϕ(ˆyh)ϕ(y(uh))ep0,4dt+C(δ)T0[˜ph0,4ϕ(ˆyh)epepI0,4+˜phph0,4ϕ(y(uh))ep0,4]dtC(δ)T0˜ph1ϕ2,ˆyh(y(uh))ep1dt+C(δ)T0[˜ph1ϕ(ˆyh)1,epepI1+˜phph1ϕ1,ep1]dtC(δ)ˆyh(y(uh))2X+C(δ)T0[˜ph1ϕ(ˆyh)1,epepI1+˜phph1ϕ(y(uh))1,ep1]dt. (4.15)

    Let δ be small enough, we obtain

    p(uh)ph2WC3l=1η2l+C(δ)ˆyhyh2X+C(δ)y(uh)yh2X.

    Similarly, assume ey=y(uh)yh, and its average interpolation is eyI. It holds from integration by parts that

    T0(yt(uh)yht,ey)dt=ΩT0ey(yt(uh)yht)dtdx=12Ω[(y(uh)yh)(x,T)]2dx12y0(x)yh(x,0)2.

    It follows from δ-Cauchy inequality, Lemmas 4.1, Lemma 4.2, (4.1) and (4.5), we obtain

    cy(uh)yh2L2(J;H1(Ω))T0[(A(y(uh)yh),ey)+(yt(uh)yht,ey)]dt+12y0(x)yh(x,0)2=T0[(A(y(uh)ˆyh),(eyeyI))+(yt(uh)yht,eyeyI)]dt+T0[(A(ˆyhyh),ey)+(yt(uh)yht,eyI)]dt+T0(A(y(uh)ˆyh),eyI)dt+12y0(x)yh(x,0)2=T0(ˆf+uh+div(Aˆyh)yht,eyeyI)dt+T0λλ(Aˆyhn)(eyeyI)dsdt+T0[(fˆf,ey)+(A(ˆyhyh),ey)]dt+12y0(x)yh(x,0)2C(δ)T0λh2λλ(ˆf+uh+div(Aˆyh)yht)2dxdt+C(δ)T0sΩ=hss[Aˆyhn]2drdt+C(δ)fˆf2X+C(δ)T0Ω|A(ˆyhyh)|2dxdt+12y0(x)yh(x,0)2+C(δ)yhˆyh2L2(J;H1(Ω))+δey2L2(J;H1(Ω))=C(δ)8l=4η2l+C(δ)yhˆyh2X+δey2L2(J;H1(Ω)).

    Let δ be small enough, we have

    y(uh)yh2L2(J;H1(Ω))C(δ)8l=4η2l+C(δ)yhˆyh2X. (4.16)

    It follows from the assumptions on A(x) and Friedriechs inequality, we obtain

    ˆyhyh2Xˆyhyh2WCT0Ω|A(ˆyhyh)|2dxdt.

    From (4.9)-(4.16), (4.8) is derived.

    Theorem 4.1. Let (y,p,u) and (yh,ph,uh) be the solutions of (2.7)-(2.9) and (2.19)-(2.21), respectively. Assume that all the conditions in Lemmas 4.1-4.4 are valid. Then there exists a constant C independent h and k, it yields the result as follows

    yhy2L2(J;H1(Ω))+php2L2(J;H1(Ω))+uhu2XC8i=1η2l, (4.17)

    where η1, η2,η8 are defined in Lemma 4.4.

    Proof. It follows from Friedriechs inequality and the conditions on A(x), we have

    ˜phph2L2(J;H1(Ω))CT0Ω|A(˜phph)|2dxdt. (4.18)

    Note that

    yhy2L2(J;H1(Ω))yhy(uh)2L2(J;H1(Ω))+y(uh)y2L2(J;H1(Ω)), (4.19)
    php2L2(J;H1(Ω))php(uh)2L2(J;H1(Ω))+p(uh)p2L2(J;H1(Ω)). (4.20)

    From the regularity estimation of (2.7)-(2.8) minus (4.1)-(4.2), we have

    p(uh)p2L2(J;H1(Ω))y(uh)y2L2(J;H1(Ω))Cuhu2X. (4.21)

    Then (4.17) follows from (4.3), (4.8) and (4.18)-(4.21).

    In this paper we discuss the variational discretization for the nonlinear parabolic OCP. We derive a priori error estimates where |||uuh|||L(J;L2(Ω))=O(h2+k) and a posteriori error estimates of residual type. The results for these error estimates by variational discretization be an extension of the linear parabolic problems.

    In our future work, we shall use this method to deal with fourth order parabolic optimal control problems, including linear and nonlinear styles.

    This work is supported by National Science Foundation of China (11201510), China Postdoctoral Science Foundation (2017T100155, 2015M580197), Youth Innovative Talents Project (Natural Science) of Research on Humanities and Social Sciences in Guangdong Normal University (2017KQNCX265), General Scientific Research Project of "Innovation and Strengthening School Engineering" of Guangdong Education Department (2016GXJK227), Innovation Team Building at Institutions of Higher Education in Chongqing (CXTDX201601035), and Chongqing Research Program of Basic Research and Frontier Technology (cstc2019jcyj-msxmX0280), and School projects of Huashang College Guangdong University of Finance and Economics(2020HSDS02).

    The authors declare no conflict of interest in this paper.



    [1] P. Neittaanmaki, D. Tiba, Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications, Dekker, New Nork, 1994.
    [2] D. Tiba, Lectures on The Optimal Control of Elliptic Equations, University of Jyvaskyla Press, Finland, 1995.
    [3] W. Liu, N. Yan, Adaptive Finite Element Methods For Optimal Control Governed by PDEs, Science Press, Beijing, 2008.
    [4] Y. Chen, Z. Lu, W. Liu, Numerical solution of partial differential equation, Science Press, Beijing, 2015.
    [5] T. Hou, C. Liu, Y. Yang, Error estimates and superconvergence of a mixed finite element method for elliptic optimal control problems, Comput. Math. Appl., 74 (2017), 714-726. doi: 10.1016/j.camwa.2017.05.021
    [6] P. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amstterdam, 1978.
    [7] Y. Chen, N. Yi, W. Liu, A legendre galerkin spectral method for optimal control problems governed by elliptic equations, SIAM J. Numer. Anal., 46 (2008), 2254-2275. doi: 10.1137/070679703
    [8] Y. Chen, Y. Dai, Superconvergence for optimal control problems gonverned by semi-linear elliptic equations, J. Sci. Comput., 39 (2009), 206-221. doi: 10.1007/s10915-008-9258-9
    [9] X. Xing, Y. Chen, L-error estimates for general optimal control problem by mixed finite element methods, Int. J. Numer. Anal. Model., 5 (2008), 441-456.
    [10] R. Li, W. Liu, H. Ma, T. Tang, Adaptive finite element approximation for distributed elliptic optimal control problems, SIAM J. Control Optim., 41 (2002), 1321-1349. doi: 10.1137/S0363012901389342
    [11] P. Philip, Optimal control of partial differential equations, SIAM J. Control Optim., 50 (2012), 943-963. doi: 10.1137/100815037
    [12] W. Liu, N. Yan, A posteriori error estimates for optimal control problems governed by parabolic equations, Numer. Math., 93 (2003), 497-521. doi: 10.1007/s002110100380
    [13] B. I. Ananyev, A control problem for parabolic systems with incomplete information, Mathematical Optimization Theory and Operations Research, Springer, Cham, 2019.
    [14] H. Liu, N. Yan, Recovery type superconvergence and a posteriori error estimates for control problems governed by Stokes equations, J. Comput. Appl. Math., 209 (2007), 187-207. doi: 10.1016/j.cam.2006.10.083
    [15] W. Liu, N. Yan, A posteriori error estimates for control problems governed by Stokes equations, SIAM J. Numer. Anal., 40 (2002), 1850-1869. doi: 10.1137/S0036142901384009
    [16] J. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin, 1971.
    [17] J. Lions, E. Magenes, Non Homogeneous Boundary Value Problems and Applications, Springer-verlag, Berlin, 1972.
    [18] H. Fu, H. Rui, A priori error estimates for optimal problems governed by transient advection-diffusion equations, J. Sci. Comput., 38 (2009), 290-315. doi: 10.1007/s10915-008-9224-6
    [19] W. Liu, N. Yan, A posteriori error estimates for distributed convex optimal control problems, Adv. Comput. Math., 15 (2001), 285-309. doi: 10.1023/A:1014239012739
    [20] R. Li, W. B. Liu, N. N. Yan, A posteriori error estimates of recovery type for distributed convex optimal control problems, J. Sci. Comput., 33 (2007), 155-182. doi: 10.1007/s10915-007-9147-7
    [21] N. Yan, postriori error estimators of gradient recovery type for FEM of a model optimal control problem, Adv. Comp. Math., 19 (2003), 323-336. doi: 10.1023/A:1022800401298
    [22] Y. Tang, Y. Chen, Variational discretization for parabolic optimal control problems with control constraints, J. Systems Sci. Compl., 25 (2012), 880-895. doi: 10.1007/s11424-012-0279-y
    [23] M. Hinze, A variational discretization concept in cotrol constrained optimization: the linear-quadratic case, Comput. Optim. Appl., 30 (2005), 45-63. doi: 10.1007/s10589-005-4559-5
    [24] M. Hinze, N. Yan, Z. Zhou, Variational discretization for optimal control governed by convection dominated diffusion equations, J. Comput. Math., 27 (2009), 237-253.
    [25] M. Huang, Numerical Methods for Evelution Equations, Secience Press, Beijing, 2004.
    [26] A. Kufner, O. John, S. Fuck, Function Spaces, Nordhoff, Leiden, The Netherlands, 1997.
  • This article has been cited by:

    1. Mengya Feng, Tongjun Sun, Stochastic perturbation method for optimal control problem governed by parabolic PDEs with small uncertainties, 2023, 185, 01689274, 483, 10.1016/j.apnum.2022.12.008
    2. 美玲 丁, Error Estimate for the Crank-Nicolson Finite Element Scheme Approximation of Nonlinear Parabolic Optimal Control Problems, 2023, 13, 2163-1476, 4147, 10.12677/ORF.2023.134415
    3. Liuping Huang, Hai Zhao, Tongjun Sun, An iterative proper orthogonal decomposition method for a parabolic optimal control problem, 2024, 70, 1598-5865, 47, 10.1007/s12190-023-01961-w
    4. Yuchun Hua, Yuelong Tang, Error estimates of characteristic finite elements for bilinear convection–diffusion optimal control problems, 2024, 22, 25900374, 100445, 10.1016/j.rinam.2024.100445
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3597) PDF downloads(133) Cited by(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog