Citation: Miaomiao Zhang, Bin Lu, Rongfang Yan. Ordering results of extreme order statistics from dependent and heterogeneous modified proportional (reversed) hazard variables[J]. AIMS Mathematics, 2021, 6(1): 584-606. doi: 10.3934/math.2021036
| [1] | N. L. Johnson, S. Kotz, N. Balakrishnan, Continuous univariate distributions-Vol.1, 2 Eds., New York: John Wiley & Sons, 1994. |
| [2] | N. L. Johnson, S. Kotz, N. Balakrishnan, Continuous univariate distributions-Vol.2, 2 Eds., New York: John Wiley & Sons, 1995. |
| [3] |
G. S. Mudholkar, D. K. Srivastava, Exponentiated Weibull family for analyzing bathtub failure-rate data, IIEEE Trans. Reliab., 42 (1993), 299-302. doi: 10.1109/24.229504
|
| [4] | A. W. Marshall, I. Olkin, A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families, Biometrika, 84 (1997), 641-652. |
| [5] | A. W. Marshall, I. Olkin, Life distributions, New York: Springer, 2007. |
| [6] |
N. Balakrishnan, G. Barmalzan, A. Haidari, Modified proportional hazard rates and proportional reversed hazard rates models via Marshall-Olkin distribution and some stochastic comparisons, J. Korean Stat. Soc., 47 (2018), 127-138. doi: 10.1016/j.jkss.2017.12.003
|
| [7] | N. Balakrishnan, N. Torrado, Comparisons between largest order statistics from multiple-outlier models, Statistics, 50 (2016), 176-189. |
| [8] |
J. Navarro, N. Torrado, Y. D. Aguila, Comparisons between largest order statistics from multipleoutlier models with dependence, Methodol. Comput. Appl. Probab., 20 (2018), 411-433. doi: 10.1007/s11009-017-9562-7
|
| [9] |
G. Barmalzan, S. M. Ayat, N. Balakrishnan, R. Roozegar, Stochastic comparisons of series and parallel systems with dependent heterogeneous extended exponential components under Archimedean copula, J. Comput. Appl. Math., 380 (2020), 112965. doi: 10.1016/j.cam.2020.112965
|
| [10] | M. E. Ghitany, Marshall-Olkin extended Pareto distribution and its application, International Journal of Applied Mathematics, 18 (2005), 17-32. |
| [11] | M. E. Ghitany, F. A. Al-Awadhi, L. A. Al-khalfan, Marshall-Olkin extended Lomax distribution and its application to censored data, Commun. Stat.-Theory Methods, 36 (2007), 1855-1866. |
| [12] |
R. Fang, X. H. Li, Advertising a second-price auction, J. Math. Econ., 61 (2015), 246-252. doi: 10.1016/j.jmateco.2015.04.003
|
| [13] |
F. Belzunce, S. Gurler, J. M. Ruiz, Revisiting multivariate likelihood ratio ordering results for order statistics, Probab. Eng. Inform. Sci., 25 (2011), 355-368. doi: 10.1017/S0269964811000052
|
| [14] | J. Navarro, Y. D. Águila, M. A. Sordo, A. Suarez-Llorens, Stochastic ordering properties for systems with dependent identically distributed components, Appl. Stoch. Models Bus. Ind., 29 (2012), 264-278. |
| [15] |
N. Balakrishnan, P. Zhao, Ordering properties of order statistics from heterogeneous populations: A review with an emphasis on some recent development, Probab. Eng. Inform. Sci., 27 (2013), 403-443. doi: 10.1017/S0269964813000156
|
| [16] |
S. Kochar, M. Xu, Stochastic comparisons of parallel systems when components have proportional hazard rates, Probab. Eng. Inform. Sci., 21 (2007), 597-609. doi: 10.1017/S0269964807000344
|
| [17] |
J. Navarro, F. Spizzichino, Comparisons of series and parallel systems with components sharing the same copula, Appl. Stoch. Models. Bus. Ind., 26 (2010), 775-791. doi: 10.1002/asmb.819
|
| [18] | R. F. Yan, G. F. Da, P. Zhao, Further results for parallel systems with two heterogeneous exponential components, Statistics, 47 (2013), 1128-1140. |
| [19] | G. Barmalzan, A. T. P. Najafabadi, N. Balakrishnan, Ordering properties of the smallest and largest claim amounts in a general scale model, Scand. Actuar. J., 2017 (2015), 105-124. |
| [20] | J. R. Wang, R. F. Yan, B. Lu, Stochastic comparisons of parallel and series systems with type II half logistic-resilience scale components, Mathematics, 8 (2020), 470. |
| [21] | R. Fang, C. Li, X. H. Li, Stochastic comparisons on sample extremes of dependent and heterogenous observations, Statistics, 50 (2016), 930-955. |
| [22] |
C. Li, X. H. Li, Hazard rate and reversed hazard rate orders on extremes of heterogeneous and dependent random variables, Stat. Probab. Lett., 146 (2019), 104-111. doi: 10.1016/j.spl.2018.11.005
|
| [23] | S. Das, S. Kayal, Some ordering results for the Marshall and Olkin's family of distributions, Commun. Math. Stat., (2019), 1-27. |
| [24] | G. Barmalzan, N. Balakrishnan, S. M. Ayat, A. Akrami, Orderings of extremes dependent modified proportional hazard and modified proportional reversed hazard variables under Archimedean copula, Commun. Stat.-Theory Methods, (2020), 1-22. |
| [25] | M. Shaked, J. G. Shanthikumar, Stochastic orders, New York: Springer, 2007. |
| [26] | H.J. Li, X. H. Li, Stochastic orders in reliability and risk, New York: Springer, 2013. |
| [27] | R. B. Nelsen, An introduction to copulas, New York: Springer, 2006. |
| [28] | I. Schur, Uber eine Klasse von Mittelbildungen mit Anwendungen auf die Determinantentheorie, Sitzungsberichte der Berliner Mathematischen Gesellschaft, 22 (1923), 9-20. |
| [29] | A. W. Marshall, I. Olkin, B. C. Arnold, Inequalities: Theory of majorization and its applications, 2 Eds., New York: Springer, 2011. |