Research article Special Issues

Geometric properties of a certain class of multivalent analytic functions associated with the second-order differential subordination

  • We investigate some geometric properties of the class Qn(A,B,α) which is defined by the second-order differential subordination and find the sharp lower bound on |z|=r<1 for the following functional: Re{(1α)z1pf(z)+αp1z2pf(z)} over the class Qn(A,B,0).

    Citation: Yu-Qin Tao, Yi-Hui Xu, Rekha Srivastava, Jin-Lin Liu. Geometric properties of a certain class of multivalent analytic functions associated with the second-order differential subordination[J]. AIMS Mathematics, 2021, 6(1): 390-403. doi: 10.3934/math.2021024

    Related Papers:

    [1] Cai-Mei Yan, Jin-Lin Liu . On second-order differential subordination for certain meromorphically multivalent functions. AIMS Mathematics, 2020, 5(5): 4995-5003. doi: 10.3934/math.2020320
    [2] Jianhua Gong, Muhammad Ghaffar Khan, Hala Alaqad, Bilal Khan . Sharp inequalities for q-starlike functions associated with differential subordination and q-calculus. AIMS Mathematics, 2024, 9(10): 28421-28446. doi: 10.3934/math.20241379
    [3] Ying Yang, Jin-Lin Liu . Some geometric properties of certain meromorphically multivalent functions associated with the first-order differential subordination. AIMS Mathematics, 2021, 6(4): 4197-4210. doi: 10.3934/math.2021248
    [4] K. Saritha, K. Thilagavathi . Differential subordination, superordination results associated with Pascal distribution. AIMS Mathematics, 2023, 8(4): 7856-7864. doi: 10.3934/math.2023395
    [5] Inhwa Kim, Young Jae Sim, Nak Eun Cho . First-order differential subordinations associated with Carathéodory functions. AIMS Mathematics, 2024, 9(3): 5466-5479. doi: 10.3934/math.2024264
    [6] Ebrahim Amini, Mojtaba Fardi, Shrideh Al-Omari, Rania Saadeh . Certain differential subordination results for univalent functions associated with q-Salagean operators. AIMS Mathematics, 2023, 8(7): 15892-15906. doi: 10.3934/math.2023811
    [7] Shujaat Ali Shah, Ekram Elsayed Ali, Adriana Cătaș, Abeer M. Albalahi . On fuzzy differential subordination associated with q-difference operator. AIMS Mathematics, 2023, 8(3): 6642-6650. doi: 10.3934/math.2023336
    [8] Georgia Irina Oros, Gheorghe Oros, Daniela Andrada Bardac-Vlada . Certain geometric properties of the fractional integral of the Bessel function of the first kind. AIMS Mathematics, 2024, 9(3): 7095-7110. doi: 10.3934/math.2024346
    [9] Georgia Irina Oros . Carathéodory properties of Gaussian hypergeometric function associated with differential inequalities in the complex plane. AIMS Mathematics, 2021, 6(12): 13143-13156. doi: 10.3934/math.2021759
    [10] Ekram E. Ali, Georgia Irina Oros, Abeer M. Albalahi . Differential subordination and superordination studies involving symmetric functions using a q-analogue multiplier operator. AIMS Mathematics, 2023, 8(11): 27924-27946. doi: 10.3934/math.20231428
  • We investigate some geometric properties of the class Qn(A,B,α) which is defined by the second-order differential subordination and find the sharp lower bound on |z|=r<1 for the following functional: Re{(1α)z1pf(z)+αp1z2pf(z)} over the class Qn(A,B,0).


    Throughout this paper, we assume that

    nN, pN{1}, 1B<1, B<A  and α>0. (1.1)

    Let An(p) be the class of functions of the form:

    f(z)=zp+k=nap+kzp+k (1.2)

    which are analytic in the open unit disk

    U={z:zCand|z|<1}.

    For functions f(z) and g(z) analytic in U, we say that f(z) is subordinate to g(z) and write f(z)g(z) (zU), if there exists an analytic function w(z) in U such that

    |w(z)||z|andf(z)=g(w(z))(zU).

    If g(z) is univalent in U, then

    f(z)g(z)(zU)f(0)=g(0)andf(U)g(U).

    Definition. A function f(z)An(p) is said to be in the class Qn(A,B,α) if it satisfies the following second-order differential subordination:

    (1α)z1pf(z)+αp1z2pf(z)p1+Az1+Bz(zU). (1.3)

    Recently, several authors (see, for example, [1,2,3,4,5,6,7,8,10,11,12,13,14,15,17] and the references cited therein) introduced and studied various subclasses of multivalent analytic functions. Some properties such as distortion bounds, inclusion relations and coefficient estimates are investigated. In this paper we obtain inclusion relation, sharp bounds on Re(f(z)zp1), Re(f(z)zp), |f(z)| and coefficient estimates for functions f(z) belonging to the class Qn(A,B,α). Furthermore, we investigate a new problem, that is, to find

    min|z|=r<1Re{(1α)z1pf(z)+αp1z2pf(z)},

    where f(z) varies in the class:

    Qn(A,B,0)={f(z)An(p):f(z)zp1p1+Az1+Bz(zU)}. (1.4)

    We need the following lemma in order to derive our main results for the class Qn(A,B,α).

    Lemma. (see [9]) Let the function g(z) be analytic in U. Suppose also that the function h(z) is analytic and convex univalent in U with h(0)=g(0). If

    g(z)+1μzg(z)h(z),

    where Reμ0 and μ0, then g(z)h(z).

    Theorem 1. Let 0<α1<α2. Then Qn(A,B,α2)Qn(A,B,α1).

    Proof. Suppose that

    g(z)=z1pf(z) (2.1)

    for f(z)Qn(A,B,α2). Then the function g(z) is analytic in U with g(0)=p. By using (1.3) and (2.1), we have

    (1α2)z1pf(z)+α2p1z2pf(z)=g(z)+α2p1zg(z)p1+Az1+Bz. (2.2)

    An application of the above Lemma yields

    g(z)p1+Az1+Bz. (2.3)

    By noting that 0<α1α2<1 and that the function 1+Az1+Bz is convex univalent in U, it follows from (2.1), (2.2) and (2.3) that

    (1α1)z1pf(z)+α1p1z2pf(z)=α1α2((1α2)z1pf(z)+α2p1z2pf(z))+(1α1α2)g(z)p1+Az1+Bz.

    This shows that f(z)Qn(A,B,α1). The proof of Theorem 1 is completed.

    Theorem 2. Let f(z)Qn(A,B,α). Then, for |z|=r<1,

    Re(f(z)zp1)p(1(p1)(AB)m=1Bm1rnmαnm+p1), (2.4)
    Re(f(z)zp1)>p(1(p1)(AB)m=1Bm1αnm+p1), (2.5)
    Re(f(z)zp1)p(1+(p1)(AB)m=1(B)m1rnmαnm+p1) (2.6)

    and

    Re(f(z)zp1)<p(1+(p1)(AB)m=1(B)m1αnm+p1)(B1). (2.7)

    All the bounds are sharp for the function fn(z) given by

    fn(z)=zp+p(p1)(AB)m=1(B)m1znm+p(nm+p)(αnm+p1)(zU). (2.8)

    Proof. It is known that for |ξ|σ (σ<1) that

    |1+Aξ1+Bξ1ABσ21B2σ2|(AB)σ1B2σ2 (2.9)

    and

    1Aσ1BσRe(1+Aξ1+Bξ)1+Aσ1+Bσ. (2.10)

    Let f(z)Qn(A,B,α). Then we can write

    (1α)z1pf(z)+αp1z2pf(z)=p1+Aw(z)1+Bw(z)(zU), (2.11)

    where w(z)=wnzn+wn+1zn+1+ is analytic and |w(z)|<1 for zU. By the Schwarz lemma, we know that |w(z)||z|n (zU). It follows from (2.11) that

    (1α)(p1)αz(1α)(p1)α1f(z)+z(1α)(p1)αf(z)=p(p1)αzp1α1(1+Aw(z)1+Bw(z)),

    which implies that

    (z(1α)(p1)αf(z))=p(p1)αzp1α1(1+Aw(z)1+Bw(z)).

    After integration we arrive at

    f(z)=p(p1)αz(1α)(p1)αz0ξp1α1(1+Aw(ξ)1+Bw(ξ))dξ=p(p1)αzp110tp1α1(1+Aw(tz)1+Bw(tz))dt. (2.12)

    Since

    |w(tz)|tnrn(|z|=r<1; 0t1),

    we get from (2.12) and left-hand inequality in (2.10) that, for |z|=r<1,

    Re(f(z)zp1)p(p1)α10tp1α1(1Atnrn1Btnrn)dt=pp(p1)(AB)m=1Bm1rnmαnm+p1, (2.13)

    and, for zU,

    Re(f(z)zp1)>p(p1)α10tp1α1(1Atn1Btn)dt=pp(p1)(AB)m=1Bm1αnm+p1.

    Similarly, by using (2.12) and the right-hand inequality in (2.10), we have (2.6) and (2.7) (with B1).

    Furthermore, for the function fn(z) given by (2.8), we find that fn(z)An(p),

    fn(z)=pzp1+p(p1)(AB)m=1(B)m1znm+p1αnm+p1 (2.14)

    and

    (1α)z1pfn(z)+αp1z2pfn(z)=p+p(AB)m=1(B)m1znm=p1+Azn1+Bzn.

    Hence fn(z)Qn(A,B,α) and, from (2.14), we conclude that the inequalities (2.4) to (2.7) are sharp. The proof of Theorem 2 is completed.

    Corollary. Let f(z)Qn(A,B,α). If

    (p1)(AB)m=1Bm1αnm+p11, (2.15)

    then f(z) is p-valent close-to-convex in U.

    Proof. Let f(z)Qn(A,B,α) and (2.15) be satisfied. Then, by using (2.5) in Theorem 2, we see that

    Re(f(z)zp1)>0(zU).

    This shows that f(z) is p-valent close-to-convex in U. The proof of the corollary is completed.

    Theorem 3. Let f(z)Qn(A,B,α). Then, for |z|=r<1,

    Re(f(z)zp)1p(p1)(AB)m=1Bm1rnm(nm+p)(αnm+p1), (2.16)
    Re(f(z)zp)1+p(p1)(AB)m=1(B)m1rnm(nm+p)(αnm+p1) (2.17)

    and

    Re(f(z)zp)>1p(p1)(AB)m=1Bm1(nm+p)(αnm+p1). (2.18)

    All of the above bounds are sharp.

    Proof. It is obvious that

    f(z)=z0f(ξ)dξ=z10f(tz)dt=zp10tp1f(tz)(tz)p1dt(zU). (2.19)

    Making use of (2.4) in Theorem 2, it follows from (2.19) that

    Re(f(z)zp)=10tp1Re(f(tz)(tz)p1)dt10tp1(pp(p1)(AB)m=1Bm1(rt)nmαnm+p1)dt=1p(p1)(AB)m=1Bm1rnm(nm+p)(αnm+p1),

    which gives (2.16).

    Similarly, we deduce from (2.6) in Theorem 2 and (2.19) that (2.17) holds true.

    Also, with the help of (2.13), we find that

    Re(f(tz)(tz)p1)p(p1)α10up1α1(1A(utr)n1B(utr)n)du>pp(p1)(AB)m=1Bm1tnmαnm+p1(|z|=r<1; 0<t1).

    From this and (2.19), we obtain (2.18).

    Furthermore, it is easy to see that the inequalities (2.16), (2.17) and (2.18) are sharp for the function fn(z) given by (2.8). Now the proof of Theorem 3 is completed.

    Theorem 4. Let f(z)Qn(A,B,α) and AB1. Then, for |z|=r<1,

    |f(z)|rp+p(p1)(AB)m=1(B)m1rnm+p(nm+p)(αnm+p1) (2.20)

    and

    |f(z)|<1+p(p1)(AB)m=1(B)m1(nm+p)(αnm+p1). (2.21)

    The above bounds are sharp.

    Proof. Since AB1, it follows from (2.9) that

    |1+Aξ1+Bξ||1ABσ21B2σ2|+(AB)σ1B2σ2=1+Aσ1+Bσ(|ξ|σ<1). (2.22)

    By virtue of (2.12) and (2.22), we have, for |z|=r<1,

    |f(uz)(uz)p1|p(p1)α10tp1α1|1+Aw(utz)1+Bw(utz)|dtp(p1)α10tp1α1(1+A(utr)n1+B(utr)n)dt (2.23)
    <p(p1)α10tp1α1(1+Auntn1+Buntn)dt. (2.24)

    By noting that

    |f(z)|rp10up1|f(uz)(uz)p1|du,

    we deduce from (2.23) and (2.24) that the desired inequalities hold true.

    The bounds in (2.20) and (2.21) are sharp with the extremal function fn(z) given by (2.8). The proof of Theorem 4 is completed.

    Theorem 5. Let f(z)Q1(A,B,α) and

    g(z)Q1(A0,B0,α0)(1B0<1; B0<A0; α0>0).

    If

    p(p1)(A0B0)m=1Bm10(m+p)(α0m+p1)12, (2.25)

    then (fg)(z)Q1(A,B,α), where the symbol denotes the familiar Hadamard product of two analytic functions in U.

    Proof. Since g(z)Q1(A0,B0,α0), we find from the inequality (2.18) in Theorem 3 and (2.25) that

    Re(g(z)zp)>1p(p1)(A0B0)m=1Bm10(m+p)(α0m+p1)12(zU).

    Thus the function g(z)zp has the following Herglotz representation:

    g(z)zp=|x|=1dμ(x)1xz(zU), (2.26)

    where μ(x) is a probability measure on the unit circle |x|=1 and |x|=1dμ(x)=1.

    For f(z)Q1(A,B,α), we have

    z1p(fg)(z)=(z1pf(z))(zpg(z))

    and

    z2p(fg)(z)=(z2pf(z))(zpg(z)).

    Thus

    (1α)z1p(fg)(z)+αp1z2p(fg)(z)=(1α)((z1pf(z))(zpg(z)))+αp1((z2pf(z))(zpg(z)))=h(z)g(z)zp, (2.27)

    where

    h(z)=(1α)z1pf(z)+αp1z2pf(z)p1+Az1+Bz(zU). (2.28)

    In view of the fact that the function 1+Az1+Bz is convex univalent in U, it follows from (2.26) to (2.28) that

    (1α)z1p(fg)(z)+αp1z2p(fg)(z)=|x|=1h(xz)dμ(x)p1+Az1+Bz(zU).

    This shows that (fg)(z)Q1(A,B,α). The proof of Theorem 5 is completed.

    Theorem 6. Let

    f(z)=zp+k=nap+kzp+kQn(A,B,α). (2.29)

    Then

    |ap+k|p(p1)(AB)(p+k)(αk+p1)(kn). (2.30)

    The result is sharp for each kn.

    Proof. It is known that, if

    φ(z)=j=1bjzjψ(z)(zU),

    where φ(z) is analytic in U and ψ(z)=z+ is analytic and convex univalent in U, then |bj|1 (jN).

    By using (2.29), we have

    (1α)z1pf(z)+αp1z2pf(z)pp(AB)=1p(p1)(AB)k=n(p+k)(αk+p1)ap+kzkz1+Bz(zU). (2.31)

    In view of the fact that the function z1+Bz is analytic and convex univalent in U, it follows from (2.31) that

    (p+k)(αk+p1)p(p1)(AB)|ap+k|1(kn),

    which gives (2.30).

    Next we consider the function fk(z) given by

    fk(z)=zp+p(p1)(AB)m=1(B)m1zkm+p(km+p)(αkm+p1)(zU; kn).

    Since

    (1α)z1pfk(z)+αp1z2pfk(z)=p1+Azk1+Bzkp1+Az1+Bz(zU)

    and

    fk(z)=zp+p(p1)(AB)(p+k)(αk+p1)zp+k+

    for each kn, the proof of Theorem 6 is completed.

    Theorem 7. Let f(z)Qn(A,B,0). Then, for |z|=r<1,

    (i) if Mn(A,B,α,r)0, we have

    Re{(1α)z1pf(z)+αp1z2pf(z)}p[p1((p1)(A+B)+αn(AB))rn+(p1)ABr2n](p1)(1Brn)2; (2.32)

    (ii) if Mn(A,B,α,r)0, we have

    Re{(1α)z1pf(z)+αp1z2pf(z)}p(4α2KAKBL2n)4α(p1)(AB)rn1(1r2)KB, (2.33)

    where

    {KA=1A2r2nnArn1(1r2),KB=1B2r2nnBrn1(1r2),Ln=2α(1ABr2n)αn(A+B)rn1(1r2)(p1)(AB)rn1(1r2),Mn(A,B,α,r)=2αKB(1Arn)Ln(1Brn). (2.34)

    The above results are sharp.

    Proof. Equality in (2.32) occurs for z=0. Thus we assume that 0<|z|=r<1.

    For f(z)Qn(A,B,0), we can write

    f(z)pzp1=1+Aznφ(z)1+Bznφ(z)(zU), (2.35)

    where φ(z) is analytic and |φ(z)|1 in U. It follows from (2.35) that

    (1α)z1pf(z)+αp1z2pf(z)=f(z)zp1+αp(AB)(nznφ(z)+zn+1φ(z))(p1)(1+Bznφ(z))2=f(z)zp1+αnp(p1)(AB)(f(z)pzp11)(ABf(z)pzp1)+αp(AB)zn+1φ(z)(p1)(1+Bznφ(z))2. (2.36)

    By using the Carathéodory inequality:

    |φ(z)|1|φ(z)|21r2,

    we obtain

    Re{zn+1φ(z)(1+Bznφ(z))2}rn+1(1|φ(z)|2)(1r2)|1+Bznφ(z)|2=r2n|ABf(z)pzp1|2|f(z)pzp11|2(AB)2rn1(1r2). (2.37)

    Put f(z)pzp1=u+iv(u,vR). Then (2.36) and (2.37), together, yield

    Re{(1α)z1pf(z)+αp1z2pf(z)}p(1+αn(A+B)(p1)(AB))uαnpA(p1)(AB)αnpB(p1)(AB)(u2v2)αp[r2n((ABu)2+(Bv)2)((u1)2+v2)](p1)(AB)rn1(1r2)=p(1+αn(A+B)(p1)(AB))uαnp(p1)(AB)(A+Bu2)αp(r2n(ABu)2(u1)2)(p1)(AB)rn1(1r2)+αp(p1)(AB)(nB+1B2r2nrn1(1r2))v2. (2.38)

    We note that

    1B2r2nrn1(1r2)1r2nrn1(1r2)=1rn1(1+r2+r4++r2(n2)+r2(n1))=12rn1[(1+r2(n1))+(r2+r2(n2))++(r2(n1)+1)]nnB. (2.39)

    Combining (2.38) and (2.39), we have

    Re{(1α)z1pf(z)+αp1z2pf(z)}p(1+αn(A+B)(p1)(AB))uαnp(p1)(AB)(A+Bu2)+αp((u1)2r2n(ABu)2)(p1)(AB)rn1(1r2)=:ψn(u). (2.40)

    Also, (2.10) and (2.35) imply that

    1Arn1Brnu=Re(f(z)pzp1)1+Arn1+Brn.

    We now calculate the minimum value of ψn(u) on the segment [1Arn1Brn,1+Arn1+Brn]. Obviously, we get

    ψn(u)=p(1+αn(A+B)(p1)(AB))2αnpB(p1)(AB)u+2αp((1B2r2n)u(1ABr2n))(p1)(AB)rn1(1r2),
    ψn(u)=2αp(p1)(AB)(1B2r2nrn1(1r2)nB)2αnp(1B)(p1)(AB)>0(see (2.36)) (2.41)

    and ψn(u)=0 if and only if

    u=un=2α(1ABr2n)αn(A+B)rn1(1r2)(p1)(AB)rn1(1r2)2α(1B2r2nnBrn1(1r2))=Ln2αKB(see (2.31)). (2.42)

    Since

    2αKB(1+Arn)Ln(1+Brn)=2α[(1+Arn)(1B2r2n)(1+Brn)(1ABr2n)]+αnrn1(1r2)[(A+B)(1+Brn)2B(1+Arn)]+(p1)(AB)rn1(1r2)(1+Brn)=2α(AB)rn(1+Brn)+αn(AB)rn1(1r2)(1Brn)+(p1)(AB)rn1(1r2)(1+Brn)>0,

    we see that

    un<1+Arn1+Brn. (2.43)

    But un is not always greater than 1Arn1Brn. The following two cases arise.

    (ⅰ) un1Arn1Brn, that is, Mn(A,B,α,r)0 (see (2.34)). In view of ψn(un)=0 and (2.41), the function ψn(u) is increasing on the segment [1Arn1Brn,1+Arn1+Brn]. Therefore, we deduce from (2.40) that, if Mn(A,B,α,r)0, then

    Re{(1α)z1pf(z)+αp1z2pf(z)}ψn(1Arn1Brn)=p(1+αn(A+B)(p1)(AB))(1Arn1Brn)αnp(p1)(AB)(A+B(1Arn1Brn)2)=p1Arn1Brnαnp(p1)(AB)(11Arn1Brn)(AB1Arn1Brn)=p[p1((p1)(A+B)+αn(AB))rn+(p1)ABr2n](p1)(1Brn)2.

    This proves (2.32).

    Next we consider the function f(z) given by

    f(z)=pz0tp11Atn1BtndtQn(A,B,0).

    It is easy to find that

    (1α)r1pf(r)+αp1r2pf(r)=p[p1((p1)(A+B)+αn(AB))rn+(p1)ABr2n](p1)(1Brn)2,

    which shows that the inequality (2.32) is sharp.

    (ⅱ) un1Arn1Brn, that is, Mn(A,B,α,r)0. In this case, we easily see that

    Re{(1α)z1pf(z)+αp1z2pf(z)}ψn(un). (2.44)

    In view of (2.34), ψn(u) in (2.40) can be written as follows:

    ψn(u)=p(αKBu2Lnu+αKA)(p1)(AB)rn1(1r2). (2.45)

    Therefore, if Mn(A,B,α,r)0, then it follows from (2.42), (2.44) and (2.45) that

    Re{(1α)z1pf(z)+αp1z2pf(z)}p(αKBu2nLnun+αKA)(p1)(AB)rn1(1r2)=p(4α2KAKBL2n)4α(p1)(AB)rn1(1r2)KB.

    To show that the inequality (2.33) is sharp, we take

    f(z)=pz0tp11+Atnφ(t)1+Btnφ(t)dtandφ(z)=zcn1cnz(zU),

    where cnR is determined by

    f(r)prp1=1+Arnφ(r)1+Brnφ(r)=un[1Arn1Brn,1+Arn1+Brn).

    Clearly, 1φ(r)<1, 1cn<1, |φ(z)|1 (zU), and so f(z)Qn(A,B,0). Since

    φ(r)=1c2n(1cnr)2=1|φ(r)|21r2,

    from the above argument we obtain that

    (1α)r1pf(r)+αp1r2pf(r)=ψn(un).

    The proof of Theorem 7 is completed.

    In our present investigation, we have introduced and studied some geometric properties of the class Qn(A,B,α) which is defined by using the principle of second-order differential subordination. For this function class, we have derived the sharp lower bound on |z|=r<1 for the following functional:

    Re{(1α)z1pf(z)+αp1z2pf(z)}

    over the class Qn(A,B,0). We have also obtained other properties of the function class Qn(A,B,α).

    For the benefit and motivation of the interested readers, we have chosen to include a number of recent developments of the related subject of the widespread usages of the basic (or q-) calculus in Geometric Function Theory of Complex Analysis (see, for example, [11,14,16,18]), of which the citation [11] happens to be a survey-cum-expository review article on this important subject.

    The authors would like to express sincere thanks to the referees for careful reading and suggestions which helped us to improve the paper. This work was supported by National Natural Science Foundation of China (Grant No.11571299).

    The authors declare no conflicts of interest.



    [1] M. K. Aouf, J. Dziok, J. Sokól, On a subclass of strongly starlike functions, Appl. Math. Lett., 24 (2011), 27-32. doi: 10.1016/j.aml.2010.08.004
    [2] N. E. Cho, H. J. Lee, J. H. Park, R. Srivastava, Some applications of the first-order differential subordinations, Filomat, 30 (2016), 1456-1474.
    [3] S. Devi, H. M. Srivastava, A. Swaminathan, Inclusion properties of a class of functions involving the Dziok-Srivastava operator, Korean J. Math., 24 (2016), 139-168. doi: 10.11568/kjm.2016.24.2.139
    [4] J. Dziok, Classes of meromorphic functions associated with conic regions, Acta Math. Sci. Ser. B Engl. Ed., 32 (2012), 765-774.
    [5] Y. C. Kim, Mapping properties of differential inequalities related to univalent functions, Appl. Math. Comput., 187 (2007), 272-279.
    [6] J. L. Liu, Applications of differential subordinations for generalized Bessel functions, Houston J. Math., 45 (2019), 71-85.
    [7] J. L. Liu, R. Srivastava, Hadamard products of certain classes of p-valent starlike functions, Rev. Real Acad. Cienc. Exactas Fís. Natur. Ser. A Mat., 113 (2019), 2001-2015. doi: 10.1007/s13398-018-0584-y
    [8] S. Mahmood, J. Sokól, New subclass of analytic functions in conical domain associated with Ruscheweyh q-differential operator, Results Math., 71 (2017), 1345-1357. doi: 10.1007/s00025-016-0592-1
    [9] S. S. Miller, P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J., 28 (1981), 157-172. doi: 10.1307/mmj/1029002507
    [10] M. Nunokawa, H. M. Srivastava, N. Tuneski, B. Jolevska-Tuneska, Some Marx-Ströhhacker type results for a class of multivalent functions, Miskolc Math. Notes, 18 (2017), 353-364.
    [11] H. M. Srivastava, Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A: Sci., 44 (2020), 327-344. doi: 10.1007/s40995-019-00815-0
    [12] H. M. Srivastava, M. K. Aouf, A. O. Mostafa, H. M. Zayed, Certain subordination-preserving family of integral operators associated with p-valent functions, Appl. Math. Inf. Sci., 11 (2017), 951-960. doi: 10.18576/amis/110401
    [13] H. M. Srivastava, R. M. El-Ashwah, N. Breaz, A certain subclass of multivalent functions involving higher-order derivatives, Filomat, 30 (2016), 113-124. doi: 10.2298/FIL1601113S
    [14] H. M. Srivastava, B. Khan, N. Khan, Q. Z. Ahmad, Coefficient inequalities for q-starlike functions associated with the Janowski functions, Hokkaido Math. J., 48 (2019), 407-425. doi: 10.14492/hokmj/1562810517
    [15] H. M. Srivastava, N. E. Xu, D. G. Yang, Inclusion relations and convolution properties of a certain class of analytic functions associated with the Ruscheweyh derivatives, J. Math. Anal. Appl., 331 (2007), 686-700. doi: 10.1016/j.jmaa.2006.09.019
    [16] L. Shi, Q. Khan, G. Srivastava, J. L. Liu, M. Arif, A study of multivalent q-starlike functions connected with circular domain, Mathematics, 7 (2019), 1-12.
    [17] Y. Sun, Y. P. Jiang, A. Rasila, H. M. Srivastava, Integral representations and coefficient estimates for a subclass of meromorphic starlike functions, Complex Anal. Oper. Theory, 11 (2017), 1-19. doi: 10.1007/s11785-016-0531-x
    [18] Q. Khan, M. Arif, M. Raza, G. Srivastava, H. Tang, S. U. Rehman, Some applications of a new integral operator in q-analog for multivalent functions, Mathematics, 7 (2019), 1-13.
  • This article has been cited by:

    1. Afis Saliu, Kanwal Jabeen, V. Ravichandran, Differential subordination for certain strongly starlike functions, 2024, 73, 0009-725X, 1, 10.1007/s12215-023-00904-5
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3824) PDF downloads(144) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog