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1. Introduction

Throughout this paper, we assume that
neN, peN\{l}, -1<B<1, B<A anda > 0. (1.1)

Let A, (p) be the class of functions of the form:

fQ =2+ apua™ (1.2)

k=n
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which are analytic in the open unit disk
U={z:z€eC and |7 <1}.

For functions f(z) and g(z) analytic in U, we say that f(z) is subordinate to g(z) and write f(z) < g(2)
(z € U), if there exists an analytic function w(z) in U such that

W@ <lzl and f(z) = g(w(z)) (z€T).
If g(2) is univalent in U, then
f@)<gz) (zeU) < f(0)=g0) and f(U)c g(U).

Definition. A function f(z) € A,(p) is said to be in the class Q,(A, B, «) if it satisfies the following
second-order differential subordination:

1+A
2P < p—s

_ 1-p g7
(1-a) ”f(z)+p_1 T+ B:

(z€0). (1.3)

Recently, several authors (see, for example, [1-8, 1015, 17] and the references cited therein)
introduced and studied various subclasses of multivalent analytic functions. Some properties such as
distortion bounds, inclusion relations and coefficient estimates are investigated. In this paper we
obtain inclusion relation, sharp bounds on Re (%), Re (%), |f(z)| and coeflicient estimates for

functions f(z) belonging to the class Q,(A, B, @). Furthermore, we investigate a new problem, that is,
to find

lz|=r<1

min Re {(1 —a)7'" P (2) + pc_x 1zz_pf”(z)},

where f(z) varies in the class:

(@) - 1+Az

Qn(A, B, 0) = {f(Z) € An(p) : Zp_l pl + BZ

(z€ U)}. (1.4)

We need the following lemma in order to derive our main results for the class Q,(A, B, ).
Lemma. (see [9]) Let the function g(z) be analytic in U. Suppose also that the function h(z) is
analytic and convex univalent in U with h(0) = g(0). If

1,
8(z) + ;zg (2) < h(2),
where Reu > 0 and u # 0, then g(z) < h(2).
2. Geometric properties of functions in class Q,(A, B, @)

Theorem 1. Ler 0 < o < an. Then Q,(A, B, ;) C Q,(A, B, a;).
Proof. Suppose that

@) =77 2.1)
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for f(z) € Q.(A, B, a,). Then the function g(z) is analytic in U with g(0) = p. By using (1.3) and (2.1),
we have

— y a 7
(1 - @)z " f'(2) + D (@) = g(z)+ 728 @)
1+ Az
< . 2.2
P (2.2)
An application of the above Lemma yields
1 +Az

. 23
8@) < pT B (2.3)

1+Az

By noting that 0 < =X < 1 and that the function is convex univalent in U, it follows from (2.1),

(2.2) and (2.3) that

Z7Pf(2)

220 +1- 2o
0%

(1 - a2 7 f(z) + —
p-—1

a 1%
s ((1 ~ )7 (D) + —
a3 p—1
1+ Az
1+ Bz

<p
This shows that f(z) € Q,(A, B, ;). The proof of Theorem 1 is completed.

Theorem 2. Let f(z) € Q,(A, B, ). Then, for|zl =r <1,

’ b m—1.nm
Re(ZD) 2 pl1-0- -y, L] 4

7P~ anm+p -1
, 1
(];p(zl)) pll-(p-1)(A-DB) Z W} 5 (2.5)
, B m—lrnm
Re(]; p(j)) (1 +(p-D(A-B) Z %19-1 2.6)
and |
Re (J;fZ)) (1 F(p— 1A - B)Z ﬁ] (B % -1). @.7)

All the bounds are sharp for the function f,(z) given by

R — Byl nm+p
(@) =2"+ p(p—1)(A - B) Z m B = (z € U). (2.8)
m=1

+ p)lanm+p—1)
Proof. 1t is known that for |£] < o (00 < 1) that

1+A¢ 1-ABg?

_(A-Bo
1+B¢ 1- B2

2.9
~ 1-B%0? 2:9)
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and .
—AO'S e(1+A§)§1+AO-. (2.10)
1 - Bo 1 + B¢ 1 + Bo
Let f(z) € Q,(A, B, @). Then we can write
1 + Aw(z)
_ 1-p 2 -p g1 — p T\
1-az " f @D+ — Py (@)= PT+ B (z e ), (2.11)

where w(z) = w,z" + Wy 2" + - - is analytic and |w(z)| < 1 for z € U. By the Schwarz lemma, we
know that |[w(z)| < |z]" (z € U). It follows from (2.11) that

1-a)p-1) 4o, (1 U=pmD o, p(p—1) oy 1+ Aw(z)
Y, ¢ S+ ) = By (—1+Bw(z))’

which implies that
U=t ! (p=1 ;i [1+AW(2)
( f'(z )) LZ rall il i I
a 1 + Bw(z)

After integration we arrive at

£ = p(pa/ D) _oopn fo‘ fp;l_l (1 +AW(§))d§

1 + Bw(¢)
1
_pp=D) 1f e (1 +_AW(IZ))d,, (2.12)

Since
wt) <t'r" (zl=r<1;0<r<1),

we get from (2.12) and left-hand inequality in (2.10) that, for |z = r < 1,

@Y _plp-1) r'r
(Zp 1 )_ f (1 —Bt”r”)dt (2.13)

B™ lrnm
=p-pp-1DA-B) ) ———,
;cmm+p—l

and, for z € U,

(f'(Z)) p(p— 1)f (1 _Atn)dt
zP1 1 - B

-1
=p—p(p—1D(A- B)Z

a/nm+p—1

Similarly, by using (2.12) and the right-hand inequality in (2.10), we have (2.6) and (2.7) (with
B+ -1).
Furthermore, for the function f,(z) given by (2.8), we find that f,(z) € A,.(p),
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B)m—l nm+p—1

£ = p™ 4 plp — XA - B) Z c .14

anm+p—1

and
1+ AZ"

1+ Bz*

27f/(2) = p+p(A-B) Z( B2 = p

m=1

(1= ) P fI(z) + —
) 2

Hence f,(z) € Q,(A, B,a) and, from (2.14), we conclude that the inequalities (2.4) to (2.7) are
sharp. The proof of Theorem 2 is completed.

Corollary. Let f(z) € Q.(A, B, a). If
m—1

(p— 1A~ B)Z — <1, (2.15)

anm+p—1

then f(z) is p-valent close-to-convex in U.
Proof. Let f(z) € Q.(A, B, @) and (2.15) be satisfied. Then, by using (2.5) in Theorem 2, we see that

(f ()

Z‘D

) >0 (zel).
This shows that f(z) is p-valent close-to-convex in U. The proof of the corollary is completed.

Theorem 3. Let f(2) € Q,(A, B, ). Then, for|zl =r <1,

f(Z) B~ 1 i
Re(z—p) >1-p(p-1)A- )Z T e =T (2.16)
f(2) (=B)" '
(Z )s 1+ p(p—1)A - B)Z(nm+p)(a'nm+p—l) (2.17)
and 1
f(2) B"~
( )> 1-p(p-1)A- B)Z T rTT— (2.18)

All of the above bounds are sharp.
Proof. 1t is obvious that

4 1
£ = fo FUEE = 2 f Fde

:z”j; " 1(f/§f)] t (zeU. (2.19)

Making use of (2.4) in Theorem 2, it follows from (2.19) that
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1 /
Re(@) :f 7R (f(tz))dt
zP 0 (1z)P!
1 ~ o Bm—l(rt)nm
> | ' p-pp-DA-B) > ——— |4
>f0r(pp(p I )Z t

anm+p—1

B 1 Fm
=1-p(p-1)A- B)Z(nm+p)(a’nm+p_1)

which gives (2.16).
Similarly, we deduce from (2.6) in Theorem 2 and (2.19) that (2.17) holds true.
Also, with the help of (2.13), we find that

(f(tz)) p(p — l)f = (1 —A(utr)")du
(tz)P~! 1 — B(utr)"

mlnm
>p—p(p— DA - B)Z

I (zZl=r<1; 0<t<1).
+p-

From this and (2.19), we obtain (2.18).

Furthermore, it is easy to see that the inequalities (2.16), (2.17) and (2.18) are sharp for the
function f,(z) given by (2.8). Now the proof of Theorem 3 is completed.

Theorem 4. Let f(z) € Q,(A, B,a) and AB < 1. Then, for |zl =r < 1,

FQI< P+ pp-A-B) Y — B (2.20)
’ _ — .
9= pip £ (nm + p)anm + p — 1)
and
F@I< 1+ pp-DA-B) Y — CB" @21
4 (nm + p)anm +p — 1)’ '
The above bounds are sharp.
Proof. Since AB < 1, it follows from (2.9) that
1+A¢ 1-ABo?| (A-Byo 1+Ac
‘1+B§_‘1—Bz<72 —Bo  1+Bs ®I=o<D (222
By virtue of (2.12) and (2.22), we have, for |z| = r < 1,
S (uz) P(P - 1) f o 1 + Aw(utz) gt
(uz)r~! 1 + Bw(utz)
p(p -1) f -ty 1+ A(utr)”
<—2 to | —————|dt 2.23
N a 1 + B(utr)" ( )
=) (" e 1+ Aurr
=D f 7! +—”)dr. (2.24)
a 0 1 + Bu"t"
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By noting that
1| S (uz)
l<rf f
@< | et |
we deduce from (2.23) and (2.24) that the desired inequalities hold true.
The bounds in (2.20) and (2.21) are sharp with the extremal function f,(z) given by (2.8). The
proof of Theorem 4 is completed.

Theorem 5. Let f(z) € Qi(A, B, a) and
8(2) € Qi(Ag, By, ap) (=1 < By <1; By <Ap; @y >0).

If

then (f+g)(z) € Q|(A, B, @), where the symbol * denotes the familiar Hadamard product of two analytic

Jfunctions in U.
Proof. Since g(z) € Q(Ay, By, @), we find from the inequality (2.18) in Theorem 3 and (2.25) that

Bm— 1 1

8(2)
Re (z )>1— (p—l)(Ao—Bo)Z( +p)(a0m+p—1)2§ (z€).

Thus the function g(Z) has the following Herglotz representation:

8@ _ f AP o ew, (2.26)
|

P b=l 1 — X2

where u(x) is a probability measure on the unit circle |x| = 1 and el du(x) =1
For f(z) € Q(A, B, @), we have

ZP(fxg) (@) = @ (2) * (2778(2)

and
Z(fx8)" () = @ "f(2) * (277g(2).
Thus
(1= 59/ @ + =527+ 9) @)
= (1= ) (@7 @) * @8@) + — (@717 @) * (< 8(2)
= h(z) * g(Z) 2.27)
where LA
hz) =1 -z "f(2)+ c @< p b (z € U). (2.28)
p—1 1+ Bz
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In view of the fact that the function “AZ is convex univalent in U, it follows from (2.26) to (2.28)
that
1-p 2 4 ” 1 +AZ
A-a)z (g @+ ——="(f*8)"(2) = h(xz)du(x) < p (ze ).
P — lxj=1 1 + BZ
This shows that (f * g)(z) € Q,(A, B, @). The proof of Theorem 5 is completed.
Theorem 6. Let .
f@ =2+ ayu* € QA B.a). (2.29)
k=n
Then ( 1A - B)
] < 22 (k > n). (2.30)

(p+k)ak+p-1)
The result is sharp for each k > n.
Proof. 1t is known that, if

$@)= > b <y@) (zel),
=1
where ¢(z) is analytic in U and (z) = z + --- is analytic and convex univalent in U, then |b;| < 1
(j € N).
By using (2.29), we have

=) 7 f @+ ;527" @ -p | S (4 Bk Nk
p(A=B) " p(p-DA-B) ;(” thak+p = Dapuz
<< fBZ (ze ), 2.31)

In view of the fact that the function —- is analytic and convex univalent in U, it follows

1+Bz
from (2.31) that
(p+K)ak+p-1)

P - DA—B) =

<1 (k=n),

which gives (2.30).
Next we consider the function f;(z) given by

b —B)yrn—1km+p
A =+ pp= A= B) ), o (zeU; k> ).
m=1

+ p)akm+p—-1)

Since
1 + AZr 1+ Az

<
+Bx P1+B:

(1- a7 f() + p‘_“ 2@ = (zeU)

and

Pp-DA-B)
(p+k)ak+p-1)
for each k > n, the proof of Theorem 6 is completed.

filz) =27
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Theorem 7. Let f(z) € Q,(A, B,0). Then, for|zl =r <1,
(i) if M,(A, B,a,r) > 0, we have

Re {(1 — )" P f () + i f”(z)}
p—1

S plp—-1-((p—1DA+B)+an(A-B)r'" +(p — l)ABrZ”]_
B (p— D(1 = Br")? ’

(ii) if M,,(A, B, a, r) < 0, we have

péa’KyKp — L)
(p = DA = Byr=1(1 = rHKp’

R*@—mﬁvvﬂ- zHT&%Z
p—1 4a

where
Ky =1-A*" —nAr~'(1 - ),
Kg=1-B*r" - nBr”‘l(l — rz),
L, =2a(l — ABr™) —an(A + By '(1 = r*) — (p — (A — B)r"'(1 — r?),
M, (A,B,a,r) =2aKg(1 — Ar*) — L,(1 — Br").

The above results are sharp.
Proof. Equality in (2.32) occurs for z = 0. Thus we assume that 0 < |z] = r < 1.
For f(z) € Q,(A, B,0), we can write
/'@ _ 1+AZ(2)

= z€0),
pzr-t 1+ BZ'¢(z) ( )

where ¢(z) is analytic and |¢(z)| < 1 in U. It follows from (2.35) that

[0

(1 - )" Pf(2) + Zf(2)
p—1

_ '@ | apd - B)n'p(z) + Y'(2)
zr7! (p = D + Bz"¢(2))?

_f@ ., awp (ﬂ@_qP_Bﬂa%_wm—mwwk>
=t (p—1(A-B)\pzr! pzP

By using the Carathéodory inequality:

: 1 - @)
o) < L O
1-r

we obtain

N e
(1+Bz'p(2))* )] — (1 =)l + Bz"p(2)?
anlA _ Bf'(Z)ll _ |& _ 1|2

pzP! pzP!

(A—-B)>?r-1(1 -r?)

(p = D(1 + Bz"p(2))*

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)
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Put L& =y + v (u,v € R). Then (2.36) and (2.37), together, yield

pzP!

an(A + B) . anpA
p—1D(A-B) (p—-DA-B)

Re {(1 — ) PF(R) + — 1Zz”f”(z)} > p(l 7

anpB B ozp[rzn((A — Bu)®> + (Bv)®) — (u — 1)*> + )]

_ —(I/t2 _ VZ) .
(p—1)A-B) (p-DA-B)r'(1-r?
B an(A + B) ~ anp 2 ap(r’(A — Bu)> — (u—1)%)
} p(l MTEN —B))” G-DA-B T @A B -
ap -8B\,
+ —(p “DA-B) (nB + —r"‘l(l — rz))v . (2.38)
We note that
1 — B2 1 - 1

2 = (1 + r2 + r4 4+ o+ r2(n—2) + r2(n—1))
A=) " (=)

= S [(1 + r2(n—1)) + (1”2 + r2(n—2)) +oeee+ (r2(n_1) + 1)]
r-

>n > -nB. (2.39)

Combining (2.38) and (2.39), we have

(A + Bu?)

Re {(l W)+ an(A + B) ) anp

2— 17 -
f (Z)} Zp(l + (p-1)(A-B) “ (p-DA-B)
ap((u— 1> = (A - Bu)®)
(p— DA - Byri(1- )

p—1

=: ¥, (u). (2.40)
Also, (2.10) and (2.35) imply that
1-Ar" !
<u=Re f@ < 1+Ar".
1 - Brm pzP! 1+ Br
We now calculate the minimum value of ¥, (1) on the segment [}:2:2, LA ] Obviously, we get

P-DA-B) G-DA-B" T Gp-DA-B -
yes 2ap 1 - B*r*" 2anp(l — B)
V) = T DU B) (r"-l(l . ”B) *P-DA-B

and (1) = 0 if and only if

_ R2.2n _ _ 2n
w;,(u):p(n an(A + B) ) 2anpB +2a/p((1 B*r?"u — (1 — ABr™"))

>0 (see (2.36)) (2.41)

_ 2a(1-ABr™)—an(A+ B)r"'(1-r)—(p- DA -B)r"'(1- 1)
- 2a(1 — B2 — nBrv=1(1 — r2))

(see (2.31)). (2.42)

u=u,

B Z(IKB
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Since

2aK5(1 + Ar'") — L,(1 + Br")
=2a[(1 + Ar")(1 = B") = (1 + Br")(1 - ABr™")|
+an ' (1 =) [(A+ B)(1 + Br") = 2B(1 + A¥")] + (p — D)(A = B)r"'(1 = r*)(1 + BF")
=2a(A — B)r"(1 + Br") + an(A — B)r"'(1 = r)(1 = B") + (p = D(A = B)r"'(1 — )1 + Br")

> 0,
we see that
1+Ar"
n < . 243
S T B (243)
But u, is not always greater than }:2;:. The following two cases arise.

(i) u, < 4 that is, M,(A, B,a,r) > 0 (see (2.34)). In view of ¥/ (u,) = 0 and (2.41), the function

=B/
Y,(u) is increasing on the segment [}:g:ﬁ, }jg:"] Therefore, we deduce from (2.40) that, if
M,(A,B,a,r) >0, then

o - 1 -Ar
Re{(l—a)z ”f(z)+p_1z Pf (Z)}Z‘/’n(l_Br")

n _ An\2
:p(1+ an(A + B) )(1—Ar) anp (A+B(1 Ar))

(p—-DA-B))\1-Br" - (p—1D(A-B) 1 - Br"
:pl—Ar”_ anp 1_1—Ar" A_Bl—Ar”
1-Br (p—1)A-B) 1 — Br* 1 — Br*

_plp-1-((p-DA+B)+an(A-B)r'" +(p— 1DABr*"]
- (p— D - Br'y?

This proves (2.32).
Next we consider the function f(z) given by

< 1 - A"
= ! dt € Q,(A, B,0).
f(2) pfo [ gt € Qul )
It is easy to find that

PP () = plp=1=((p = DA+ B) + an(A - B)r" + (p = DABr*"]

_ 1- v
(1-a)yr7f(r)+ -1 (p-1(1 - Br)?

which shows that the inequality (2.32) is sharp.

(1) u, > }:g: _ that is, M,(A, B, a, r) < 0. In this case, we easily see that

Re {(1 — @3 @)+ — 122_”f"(z)} > Yn(uty). (2.44)
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In view of (2.34), ¢,,(u) in (2.40) can be written as follows:

plaKgu? — Ly + aKy)
(p= DA =B 11 =)
Therefore, if M, (A, B, a,r) < 0, then it follows from (2.42), (2.44) and (2.45) that

Yn(u) = (2.45)

2—p g1 p(aKBM;% - Lnun + QKA)
< (‘7’)} = - DA- By -
_ p(4C¥2KAKB — Li)
~da(p - DA - Br1(1 - r)Ky

Re {(1 -~ )P () +
p—1

To show that the inequality (2.33) is sharp, we take

< 1+ Af(1) Z—Cp
= P iy d = — e U),
f@=p [ R md w0 == GeD)

where ¢, € R is determined by

f@) _14Are() _ [1=Ar 1+Ar
= = Uy > .
pre=t 1+ Briy(r) 1-Br’ 1+ Br

Clearly, -1 < o(r) < 1, -1 < ¢, < 1, |p(z)| < 1 (z € U), and so f(2) € Q,(A, B,0). Since

l-c  _ 1-lp()P

(1 =c,r)? 1-r2

¢'(r)=-

from the above argument we obtain that

(1 =)' f'(r) + rPF(r) = Yaluy).

p—1

The proof of Theorem 7 is completed.
3. Conclusions
In our present investigation, we have introduced and studied some geometric properties of the class

Q. (A, B, @) which is defined by using the principle of second-order differential subordination. For this
function class, we have derived the sharp lower bound on |z| = r < 1 for the following functional:

Re {(1 — )P () + zz"’f"(z)}

p—1
over the class Q,(A, B,0). We have also obtained other properties of the function class Q,(A, B, ).

For the benefit and motivation of the interested readers, we have chosen to include a number of
recent developments of the related subject of the widespread usages of the basic (or g-) calculus in
Geometric Function Theory of Complex Analysis (see, for example, [11,14,16,18]), of which the
citation [11] happens to be a survey-cum-expository review article on this important subject.
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